自动控制原理重要公式
自动控制原理公式
自动控制原理公式自动控制系统最常用的数学描述是利用控制工程中的数学模型。
数学模型是通过分析和建立系统的动态行为方程、传输函数或状态空间方程来描述系统的数学形式。
以下是一些常用的控制原理公式:1.闭环系统传递函数公式闭环系统传递函数是表示控制器输出信号C(s)与参考输入信号R(s)之间的关系的函数。
通常表示为T(s)或G(s)。
2.开环传递函数公式开环传递函数是表示控制器输出信号和系统输入信号之间的关系的函数。
通常表示为G(s)。
3.比例控制器公式比例控制器是最简单的控制器之一,其输出信号与误差信号之间的关系为:C(t)=Kp*e(t),其中Kp为比例增益,e(t)为误差信号。
4.积分控制器公式积分控制器输出信号与误差信号的时间积分之间的关系为:C(t) = Ki * ∫e(t)dt,其中Ki为积分增益。
5.微分控制器公式微分控制器输出信号与误差信号的时间微分之间的关系为:C(t) = Kd * de(t)/dt,其中Kd为微分增益。
6.传递函数的极点和零点公式传递函数的极点和零点是指传递函数的分母和分子中令传递函数等于零的根。
传递函数的极点和零点对系统的稳定性、阻尼比、过渡特性等有重要影响。
7.控制系统稳定性判据公式控制系统稳定性判据是通过判断传递函数的极点位置来评估系统的稳定性。
例如,对于一阶系统,系统稳定的条件是极点实部小于零;对于二阶系统,系统稳定的条件是极点实部均小于零。
8.级联控制系统公式级联控制系统是由两个或多个控制回路组成的系统。
级联控制系统的传递函数可以通过将各个回路的传递函数相乘来获得。
9.PID控制器公式PID控制器是包含了比例控制器、积分控制器和微分控制器的三个组成部分的控制器。
PID控制器的输出信号与误差信号的线性组合关系为:C(t) = Kp*e(t) + Ki∫e(t)dt + Kd *de(t)/dt。
以上是一些常见的自动控制原理公式,用于描述和分析控制系统的特性和行为。
自动控制原理动态误差计算公式
自动控制原理动态误差计算公式在自动控制系统中,动态误差是评估系统性能的重要指标之一。
它表示系统在输入信号发生变化时,输出信号与期望值之间的差异。
动态误差的大小直接反映了系统的稳定性和响应速度。
动态误差的计算公式是通过对系统的输入-输出特性进行分析得出的。
在这个公式中,包含了系统的传递函数和输入信号的频率响应。
下面我们将详细介绍动态误差计算公式的推导过程。
我们假设系统的传递函数为G(s),输入信号为R(s),输出信号为C(s),期望输出信号为D(s)。
根据控制理论的基本原理,系统的动态误差可以表示为以下形式:E(s) = D(s) - C(s)其中,E(s)为误差信号的 Laplace 变换,s为复变量。
为了求得误差信号的频率响应,我们需要对上式进行变换。
通过拉普拉斯变换和传递函数的定义,我们可以得到:C(s) = G(s) * R(s)将上式代入动态误差的定义式中,得到:E(s) = D(s) - G(s) * R(s)进一步整理,得到:E(s) = D(s) - G(s) * R(s) = D(s) - G(s) * [D(s)/H(s)]其中,H(s)为输入信号的传递函数。
这个式子表示了动态误差与系统传递函数、输入信号传递函数和期望输出信号之间的关系。
我们知道,频率响应是系统稳定性和性能的重要指标之一。
通过对系统的频率响应进行分析,可以得到系统的动态特性。
在动态误差计算中,我们需要关注系统的幅频特性和相频特性。
幅频特性描述了系统对不同频率信号的衰减程度。
在动态误差计算中,我们需要考虑幅频特性对误差的影响。
具体来说,我们需要计算幅频特性与期望输出信号之间的差异。
相频特性描述了系统对不同频率信号的相位差。
在动态误差计算中,我们需要考虑相频特性对误差的影响。
具体来说,我们需要计算相频特性与期望输出信号之间的差异。
动态误差的计算公式是基于系统的传递函数、输入信号的传递函数和期望输出信号之间的关系推导出来的。
自动控制原理第二章梅森公式-信号流图课件
ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
自动控制原理公式
自动控制原理公式自动控制原理是研究物理系统中要求自动控制和调节的基本原理和方法的一门学科。
它是现代控制工程和自动化科学的基础,涉及到的内容包括物理系统的建模、控制系统的设计与分析、控制技术的应用以及控制系统的性能评价等方面的内容。
下面将介绍几个自动控制原理中常用的公式及其含义。
1.误差函数误差函数是用来衡量实际输出值与期望输出值之间差距的函数。
在控制系统中,常用的误差函数有如下两种形式:a. 均方根误差(Root Mean Square Error,RMSE)RMSE表示实际输出值和期望输出值之间的平均误差,其计算公式如下:RMSE = sqrt(1/n * Σ(y_i - y_hat_i)^2)其中,n表示样本数量,y_i表示实际输出值,y_hat_i表示期望输出值。
b. 平均绝对误差(Mean Absolute Error,MAE)MAE表示实际输出值和期望输出值之间的绝对平均误差,其计算公式如下:MAE = 1/n * Σ,y_i - y_hat_i其中,n表示样本数量,y_i表示实际输出值,y_hat_i表示期望输出值。
2.比例控制器比例控制器是一种简单的控制器,其根据实际输出值和期望输出值之间的差异,按比例改变控制量的大小。
比例控制器的控制量计算公式如下:u(t)=K_p*e(t)其中,u(t)表示控制量,e(t)表示误差,K_p表示比例增益。
3.积分控制器积分控制器是在比例控制器的基础上加入积分项,用来解决比例控制器无法完全消除稳态误差的问题。
积分控制器的控制量计算公式如下:u(t) = K_p * e(t) + K_i * ∫e(t) dt其中,u(t)表示控制量,e(t)表示误差,K_p表示比例增益,K_i表示积分增益。
4.微分控制器微分控制器是在比例控制器的基础上加入微分项,用来改善控制系统的动态性能。
u(t) = K_p * e(t) + K_d * de(t) / dt其中,u(t)表示控制量,e(t)表示误差,K_p表示比例增益,K_d表示微分增益,de(t)/dt表示误差的导数。
自动控制原理重要公式
扰动信号的误差传递函数
H.静态误差系数
单位
输入形式
稳态误差ess
0型
Ⅱ型
Ⅲ型
阶跃1(t)
1/1+Kp
0
0
斜坡t·1(t)
∞
1/Kv
0
加速度·1﹙t﹚
∞
∞
1/Ka
I.二阶系统的时域响应:
其闭环传递函数为
或
系统的特征方程为
特征根为
上升时间tr
其中
峰值时间tp
最大超调量Mp
调整时间ts
a.误差带范围为±5%
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角,称为系统的相开环传递函数G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
的关系
二阶系统的闭环传递函数为
系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为
sna0a2a4a6……
sn-1a1a3a5a7……
sn-2b1b2b3b4……
sn-3c1c2c3c4……
… … …
s2f1f2
s1g1
s0h1
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
惯性环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
对数相频特性:
3.微分环节
纯微分环节的传递函数G(s)=s
频率特性:
幅频特性:
自动控制原理 第二章 梅森公式-信号流图
已知系统信号流图, 例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。 。
∑L
则
a
= − d − eg − bcg
有两个互不接触回路 ∑ Lb Lc = deg
∆ = 1 + d + eg + bcg + deg
f
1. X 1 → X 4 , p1 = aef , p2 = abcf ∆1 = 1 + d , ∆ 2 = 1
G4 G1 H1 G4 G1 H1 H1 G2 G2
作用分解
G3 H3
G3 H3 H3
梅逊公式介绍 R-C :
C(s) = R(s)
∑Pk△k △
其中: 其中
△称为系统特征式 △= 1 - ∑La + ∑LbLc -∑LdLeLf+…
所有单独回路增益之和 所有单独回路增益之和 回路增益 ∑LbLc—所有两两互不接触回路增益乘积之和 —所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和 所有三个互不接触回路增益乘积之和
R(s) 1
e
g
a f
b
c
h
d
C(s)
前向通路两条
四个单独回路, 四个单独回路,两个回路互不接触 ab c d + e d (1 – b g) C(s) = – a – bg – c – R(s) 1 f h e h g f + af c h
信号流图
• 信号流图是由节点和支路组成的一种信号传递网络。 信号流图是由节点和支路组成的一种信号传递网络 是由节点和支路组成的一种信号传递网络。 信号流图的基本性质 基本性质: 信号流图的基本性质: 1) 节点标志系统的变量,节点标志的变量是所有流向该节点信 节点标志系统的变量 标志系统的变量, 号的代数和, 表示; 号的代数和,用“O”表示; 表示 2) 信号在支路上沿箭头单向传递; 信号在支路上沿箭头单向传递 在支路上沿箭头单向传递; 3) 支路相当于乘法器,信号流经支路时,被乘以支路增益而变 支路相当于乘法器 信号流经支路时, 相当于乘法器, 成另一信号; 成另一信号; 4) 对一个给定系统,信号流图不是唯一的。 对一个给定系统,信号流图不是唯一的。 x6 信号流图中常用的名词术语: 信号流图中常用的名词术语: x5 x1 • 源节点(输入节点): 源节点(输入节点): x2 x3 x7 I(s) x4 o在源节点上,只有信号输出 在源节点上, 在源节点上 1/R1 1+R1C1s R2 支路而没有信号输入的支路, 支路而没有信号输入的支路, 它一般代表系统的输入变量。 它一般代表系统的输入变量。 -1 •阱节点(输出节点): 阱节点( 阱节点 输出节点): 在阱节点上,只有信号输入的支路而没有信号输出的支路, 在阱节点上,只有信号输入的支路而没有信号输出的支路,它 一般代表系统的输出变量。 一般代表系统的输出变量。
自动控制原理胡寿松笔记
自动控制原理胡寿松笔记自动控制原理是电气工程领域的重要课程,胡寿松教授的笔记是该领域学习的重要参考资料。
本文将按照章节顺序,对胡寿松教授的笔记进行梳理和总结,帮助读者更好地理解和掌握自动控制原理。
第一章自动控制的基本概念1. 自动控制的基本组成:控制器、传感器、执行器、被控对象。
2. 自动控制的目的:实现对系统的稳态和动态性能的优化。
3. 自动控制的基本术语:控制量、受控量、干扰、传递、转换等。
4. 自动控制系统的分类:开环控制系统和闭环控制系统。
第二章自动控制系统的数学模型1. 微分方程:描述系统动态特性的基本数学工具。
2. 传递函数:描述控制系统动态特性的重要数学模型。
3. 动态结构图:描述控制系统动态特性的图形工具。
4. 信号流图:描述控制系统内部信息传递方式的图形工具。
5. 梅逊公式:用于将微分方程转化为传递函数的公式。
第三章线性定常系统的时域分析法1. 控制系统性能的评价指标:稳态误差、超调量、调节时间等。
2. 系统的稳定性分析:稳定性定义、代数稳定判据、李亚普诺夫直接法。
3. 系统性能的改善:放大缩小法、超前滞后补偿法、PID控制器等。
4. 一系列具体分析方法的介绍:单位阶跃响应、斜坡响应、李亚普诺夫直接法等。
第四章线性定常系统的根轨迹法1. 根轨迹的基本概念和性质:幅值-相位特性、零点-极点关系、渐近线等。
2. 绘制根轨迹的基本规则和步骤:参数方程、几何意义、注意事项等。
3. 根轨迹图的特征分析:闭环零点、极点与系统性能的关系等。
4. 基于根轨迹法的系统优化设计:稳定化控制器设计、增益调度等。
第五章线性系统的频域分析法1. 频率域的基本概念和性质:频率特性、频率响应、频域分析方法等。
2. 频率域分析方法的应用:稳定性分析、系统性能评估、频率特性设计等。
3. 对数频率特性曲线及其应用:增益边界和相位边界的意义、系统性能的评估等。
4. 基于频率域分析法的系统优化设计:频率相关控制器设计、频率调制等。
自动控制原理知识点总结(通用4篇)
自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。
对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。
振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。
|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。
(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。
当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。
这条曲线就是幅相频率特性曲线,简称幅相曲线。
(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。
对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。
对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。
(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。
自动控制原理公式
自动控制原理公式下面是一些重要的自动控制原理公式:1.连续时间系统的传递函数:传递函数是描述系统输入和输出之间关系的函数。
对于连续时间系统,传递函数表示为s的函数:G(s)=Y(s)/U(s)其中,G(s)是系统的传递函数,Y(s)是系统的输出,U(s)是系统的输入,s是复变量。
2.离散时间系统的传递函数:对于离散时间系统,传递函数表示为z的函数:G(z)=Y(z)/U(z)其中,G(z)是系统的传递函数,Y(z)是系统的输出,U(z)是系统的输入,z是复变量。
3.闭环传递函数:闭环传递函数描述了闭环控制系统的输入和输出之间的关系。
对于连续时间系统,闭环传递函数表示为s的函数:T(s)=Y(s)/R(s)其中,T(s)是闭环传递函数,Y(s)是系统的输出,R(s)是参考输入。
4.控制系统的传递函数表达式:控制系统的传递函数可以表示为系统组成部分的传递函数之间的乘积或相加。
例如,对于一个系统,其传递函数可以表示为:G(s)=G1(s)*G2(s)/(1+G1(s)*G2(s)*H(s))其中,G1(s)和G2(s)是系统的组成部分的传递函数,H(s)是反馈路径的传递函数。
5.极点和零点:极点是系统传递函数的根,决定了系统的稳定性和动态响应。
零点是传递函数等于零的点,对系统的频率响应和稳定性有影响。
6.PID控制器公式:PID控制器是一种常见的反馈控制器,它根据误差信号来调整系统输出。
PID控制器的输出由比例项、积分项和微分项组成,公式表示为:u(t) = Kp * e(t) + Ki * ∫ e(t)dt + Kd * de(t) / dt其中,u(t)是PID控制器的输出,Kp、Ki、Kd是控制器的参数,e(t)是当前时刻的误差信号,∫ e(t)dt和de(t) / dt分别是误差信号的积分和微分。
这些公式只是自动控制原理中的一小部分,涵盖了控制系统的建模和调节方法。
自动控制原理公式是自动控制工程师和研究人员分析和设计自动控制系统的重要工具。
自动控制原理超调量公式
自动控制原理超调量公式在自动控制系统中,超调量这个词听起来可能有点高深,但其实它跟我们的日常生活息息相关,简直就是控制系统中的“小调皮”。
别着急,我这就带你一起捋一捋这个概念,让你轻松搞懂它的来龙去脉。
1. 什么是超调量?1.1 定义首先,超调量就是指在系统响应过程中,输出值超出期望值的那部分。
想象一下,你等公交车,刚走到站台,公交车来了,你兴冲冲地挥手,结果一不小心,超出了站台边缘,哎呀,差点摔个四脚朝天!这个“超出”的感觉,就是超调量。
1.2 举个例子再说个生活中的例子,你家里的空调是不是会在你设定温度时,先把温度降得比你想要的低一点,然后再慢慢调回去?这就是超调量的一个体现!空调觉得“哎呀,我得快点让你凉快”,于是就先使劲儿降温,然后再“慢慢来”。
这样一来,虽然你最终是凉快了,但那一瞬间的“冷”可真是让人受不了,感觉像是走进了冰箱。
2. 超调量的公式2.1 公式介绍说到公式,这里得提一下控制理论中的一个重要公式:超调量一般用百分比来表示,计算公式是:。
M_p = frac{y_{max y_{ss{y_{ss times 100% 。
这里的 ( y_{max ) 是系统输出的最大值,而 ( y_{ss ) 是稳态值。
简单来说,就是你最高点和最终目标之间的差距,再用这个差距除以目标值,乘以100就得到了超调量。
2.2 公式应用当你把这个公式运用到实际中去时,就像是给你的超调量穿上了一件“外套”,让它看起来更加高大上。
想象一下,假设你设定的温度是25度,但空调调到的最高温度是30度,那么你的超调量就是:。
M_p = frac{30 25{25 times 100% = 20% 。
哇,20%的超调量!这意味着空调在调整过程中,真是“火力全开”,给你来了个“冰火两重天”!3. 超调量的重要性3.1 控制系统的影响那么,超调量到底有什么重要性呢?首先,它影响着系统的稳定性和响应速度。
就像你在追求一份目标时,假如你总是走得太快,结果反而可能会摔倒,反而慢下来会更稳妥。
自动控制原理阻尼比计算公式
自动控制原理阻尼比计算公式在自动控制领域,阻尼比是一个非常重要的概念。
阻尼比是指系统的阻尼与临界阻尼的比值。
它是一个无量纲的参数,通常用ζ表示。
阻尼比的大小与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
因此,阻尼比的计算是自动控制中的一个重要问题。
在本文中,我们将介绍阻尼比的定义、计算公式及其应用。
首先,我们来看看阻尼比的定义。
阻尼比的定义阻尼比是指系统的阻尼与临界阻尼的比值。
临界阻尼是指系统在达到稳态时,振动的幅值最小的阻尼。
当阻尼比为1时,称为临界阻尼。
当阻尼比小于1时,称为欠阻尼;当阻尼比大于1时,称为过阻尼。
阻尼比的计算公式阻尼比的计算公式如下:ζ = c / c_c其中,ζ表示阻尼比,c表示系统的阻尼,c_c表示临界阻尼。
系统的阻尼可以通过测量系统的阻尼系数来得到。
阻尼系数是指系统在受到外力作用后,系统所受到的阻力与其速度之比。
阻尼系数可以通过实验测量来得到。
一般来说,阻尼系数与系统的阻尼成正比。
因此,我们可以通过测量系统的阻尼系数来得到系统的阻尼。
临界阻尼可以通过系统的固有频率来计算。
固有频率是指系统在无外力作用下,自由振动的频率。
当系统的阻尼等于临界阻尼时,系统的固有频率就等于系统的自然频率。
因此,我们可以通过测量系统的固有频率来计算系统的临界阻尼。
阻尼比的应用阻尼比是自动控制中的一个重要参数,它与系统的稳定性、响应速度、振幅大小等参数有着密切的关系。
在控制系统的设计中,我们需要根据实际情况来选择合适的阻尼比。
当阻尼比小于1时,系统处于欠阻尼状态。
在这种情况下,系统的振幅会不断增大,直到系统失稳。
因此,我们需要加大系统的阻尼,以提高系统的稳定性。
当阻尼比大于1时,系统处于过阻尼状态。
在这种情况下,系统的响应速度会变慢,因为阻尼会抑制系统的振荡。
因此,我们需要适当减小系统的阻尼,以提高系统的响应速度。
当阻尼比等于1时,系统处于临界阻尼状态。
在这种情况下,系统的响应速度和稳定性都达到了最优值。
自控原理的传递函数
自控原理的传递函数
自控原理的传递函数是指输入信号与输出信号之间的数学关系,用数学公式表示。
一般情况下,自控原理的传递函数可以使用拉普拉斯变换来表示。
下面以一阶惯性环节为例,给出其传递函数的公式:
G(s) = K / (Ts+1)
其中,G(s)为系统的传递函数,K为系统的比例增益,T为系统的时间常数,s
为复频域变量。
这个传递函数告诉我们,对于一个输入信号u(t),系统的输出y(t)可以通过该公式计算得出。
具体计算过程可以使用反演拉普拉斯变换来实现。
对于多个惯性环节、时延环节等组成的复杂系统,其传递函数可以根据各个环节的传递函数进行级联、并联和反馈等操作得到。
这些操作可以通过数学运算来实现,最终得到系统的总传递函数。
自动控制原理第三章3_劳斯公式
3
要使系统稳定,必须 k 0 ①系数皆大于0, ②劳斯阵第一列皆大于0 120 k 0 k 120 有 8 0 k 120 k 0
所以,临界放大系数 k p 120 确定系统的相对稳定性(稳定裕度) 利用劳斯和胡尔维茨稳定性判据确定的是系统稳定或不稳 定,即绝对稳定性。在实际系统中,往往需要知道系统离临界 稳定有多少裕量,这就是相对稳定性或稳定裕量问题。
a3 a2 a2 a1 a3 a0 a2 a0 a1 a0 0 0
s2 s
1
s0
稳定的充要条件为: a3 , a2 , a1 , a0 均大于零
且a1a2 a3a0 0
劳斯判据特殊情况
特殊情况下劳斯阵列的列写及结论: 用一个正数去乘或除某整行,不会改变系统的稳定性结论; 劳斯阵第一列所有系数均不为零,但也不全为正数,则系统不 稳定。表示s右半平面上有极点,极点个数等于劳斯阵列第一列 系数符号改变的次数。 [例]:系统的特征方程为: s 5 2s 4 s 3 3s 2 4s 5 0
现以sx1代入上式得要使系统稳定必须系数皆大于0劳斯阵第一列皆大于018线性系统稳定的充要条件劳斯代数稳定性判据劳斯阵各种特殊情况下劳斯阵的排列和判稳方法劳斯稳定性判据的应用系统参数变化对稳定性的影响系统的相对稳定性
系统的稳定性和代数稳定判据
稳定的充要条件和属性
一、稳定的基本概念和线性系统稳定的充要条件 稳定是控制系统的重要性能,也是系统能够正常运行的首要条 件。控制系统在实际运行过程中,总会受到外界和内部一些因 素的扰动,例如负载和能源的波动、系统参数的变化、环境条 件的改变等。如果系统不稳定,就会在任何微小的扰动作用下 偏离原来的平衡状态,并随时间的推移而发散。因此,如何分 析系统的稳定性并提出保证系统稳定的措施,是自动控制理论 的基本任务之一。
自动控制原理状态方程知识点总结
自动控制原理状态方程知识点总结自动控制原理中的状态方程是描述系统动态行为的一种数学模型。
通过分析系统的输入和输出,可以利用状态方程来预测系统的响应和稳定性。
本文将对状态方程的基本概念、求解方法以及应用进行总结。
一、状态方程的基本概念状态方程(State Equation)是指用代表系统参数和输入的变量来描述控制系统中元件状态随时间变化的关系表达式。
一般形式如下所示:dx(t)/dt = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)表示状态向量,代表系统的状态变量;u(t)为输入向量,指系统的输入信号;y(t)为输出向量,代表系统的输出信号;A、B、C、D为系统的参数矩阵。
二、状态方程的求解方法1. 直接求法:通过系统的关系方程,将所有元件的微分方程组合在一起,得到状态方程。
这种方法适用于简单且线性的系统。
2. 简化求法:对于线性定常系统,可以使用拉普拉斯变换将微分方程转换为代数方程,然后通过代数求解的方法得到状态方程。
3. 传递函数转换法:对于已知系统的传递函数,可以通过传递函数转换为状态方程的形式。
通过分子多项式的展开和分母多项式的因式分解,得到状态方程的形式。
三、状态方程的应用1. 系统分析:通过状态方程可以推导系统的稳定性、响应特性等。
可以通过分析系统的状态转移矩阵,判断系统的稳定性和控制性能。
2. 系统设计:利用状态方程可以进行系统的控制器设计。
可以通过选择适当的状态反馈增益矩阵,使系统满足不同的控制要求。
3. 系统仿真:借助计算机仿真工具,可以利用状态方程对系统进行仿真分析,模拟不同输入下系统的响应和稳定性,从而指导实际系统的控制设计。
总结:状态方程是自动控制原理中的重要概念,能够用数学模型描述系统的动态行为。
掌握状态方程的基本概念、求解方法和应用,对于理解和设计控制系统具有重要意义。
通过本文的介绍,相信读者已经对状态方程有了更深入的理解和认识。
让我们在自动控制原理的学习中更加游刃有余,应用自如。
自动控制原理阻尼比计算公式
自动控制原理阻尼比计算公式阻尼比(damping ratio)是描述振动系统衰减能力的重要参数,它对于系统的稳定性和响应性能具有重要影响。
在自动控制原理中,阻尼比的计算通常基于系统的传递函数。
本文将介绍阻尼比的计算公式及其推导过程。
首先,我们考虑一个具有阻尼的二阶振动系统,其传递函数为:G(s) = ωn^2 / (s^2 + 2ξωns + ωn^2)其中,ωn表示系统的固有频率,ξ表示阻尼比。
传递函数的分母为二次方程,根据解方程的一般公式可以得到两个根:s1,2=-ξωn±ωn√(ξ^2-1)由于阻尼比通常为非负实数,因此ξ^2 - 1 ≥ 0。
令ξ = cos(θ),其中θ为一个角度,那么上式可以改写为:s1, 2 = -ωnξ ± ωn√(ξ^2 - 1) = -ωn cos(θ) ± ωnsin(θ)我们可以看到,当ξ^2-1=0时,根为实数且相等;当ξ^2-1>0时,根为复数共轭,由此可见,阻尼比的大小直接决定了根的分布。
根据阻尼比的定义,我们可以将其表达为:ξ=-(1/ωn)(Re(s1)+Re(s2))其中,Re(s1)和Re(s2)分别表示根的实部。
将s1,2代入上式可以得到:ξ = -(1 / ωn)(-ωn cos(θ) + ωn cos(θ)) = cos(θ)因此,我们可以得到阻尼比与角度θ的关系为:ξ = cos(θ)以上推导过程是针对一个具有阻尼的二阶振动系统的情况。
在实际应用中,阻尼比的计算公式可能会因系统模型的不同而有所差异。
需要注意的是,阻尼比的范围通常为0到1之间。
当阻尼比等于1时,系统的阻尼达到临界阻尼,此时系统的响应最为快速而不会产生振荡。
当阻尼比小于1时,系统的阻尼较小,可能会导致系统的振荡。
当阻尼比大于1时,系统的阻尼较大,可能会使系统的响应较为缓慢。
综上所述,阻尼比的计算公式可通过系统的传递函数进行推导,通常为ξ = cos(θ)。
自动控制原理重要公式
A.阶跃函数 斜坡函数 抛物线函数 脉冲函数 正弦函数B.典型环节的传递函数 比例环节 惯性环节(非周期环节) 积分环节微分环节 二阶振荡环节(二阶惯性环节) 延迟环节 C.环节间的连接串联并联反馈 开环传递函数=前向通道传递函数=负反馈闭环传递函数 正反馈闭环传递函数D.梅逊增益公式E.劳斯判据 劳斯表中第一列所有元素均大于零 s n a 0 a 2 a 4 a 6 …… s n-1a 1 a 3 a 5 a 7 ……s n-2 b 1 b 2 b 3 b 4 …… s n-3 c 1 c 2 c 3 c 4 …… … … …s 2 f 1 f 2s 1 g 1 s 0 h 1,,,,,,141713131512121311171603151402131201b b b a a c b b b a a c b b b a a c a a a a a b a a a a a b a a a a a b -=-=-=-=-=-=劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;劳斯表中某一行的元素全为零。
P(s)=2s 4+6s 2-8。
F.赫尔维茨判据 特征方程式的所有系数均大于零。
⎩⎨⎧≥<=000)(t A t t r ⎩⎨⎧≥<=000)(t At t t r ⎪⎩⎪⎨⎧≥<=02100)(2t At t t r ⎪⎩⎪⎨⎧>≤≤<=εεt t z At t r 0000)(⎩⎨⎧≥<=0sin 00)(t t A t t r ωKs R s C s G ==)()()(1)()()(+==Ts K s R s C s G sT s R s C s G i 1)()()(==sT s R s C s G d ==)()()(2222)(n n n s s K s G ωζωω++=se s R s C s G τ-==)()()()()()( )()()()()()()()()(211121s G s G s G s X s C s X s X s R s X s R s C s G n n =⋅==-)()()( )()()()()()()(2121s G s G s G s R s C s C s C s R s C s G n n +++=+++== )()()()(s H s G s E s B =)()()(s G s E s C =)()(1)()()()(s H s G s G s R s C s +==Φ)()(1)()()()(s H s G s G s R s C s -==Φ∆∆=∑kk P TG.误差传递函数扰动信号的误差传递函数单位 输入形式 稳态误差e ss 0型 Ⅱ型 Ⅲ型 阶跃1(t) 1/1+Kp 0 0 斜坡t ·1(t) ∞ 1/Kv 0 加速度0.5t 2·1﹙t ﹚∞ ∞ 1/Ka I.二阶系统的时域响应:其闭环传递函数为 或 系统的特征方程为2)(22=++=n n s s s D ωζω特征根为1,221`-±-=ζωζωn n s上升时间t r其中 峰值时间t p最大超调量M p调整时间t sa.误差带范围为 ±5%b.误差带范围为± 2%振荡次数NJ.频率特性:还可表示为:G (jω)=p (ω)+jθ(ω) 为G (jω)的实部,称为实频特性; θ(ω)——为G (jω)的虚部,称为虚频特性。
自动控制原理 梅森公式求系统传递函数
1 2 3 1 4
1 2 H1 2 3 H2 1 2 3
L1 G1G2H1 L2 G2G3H 2 L3 G1G2G3
P1 G1G2G3 P2 G1G4
4 H2 1 4
L4 G4H2 L5 G1G4
8
R(s)
-
G4
A
G1
G2
-B
H1
P
1
2
Pk k
k 1
G1G2G3 G3G4 G1G3G4 H1
1 G1H1 G3H 2 G1G2G3H1H 2 G1G3H1H 2
6
G4
求 E(s) R(s)
R
E
-
G1
G2
+
-
G3
C
+
H1
H2
P1 1, 1 1 G3H2
P2 G3G4H1H2 , 2 1
△2=1
△3=1+G2(s)H1(s)
Cs N s
P11
P2 2
P33
1 Gn sG1sG2 s Gn sG1sG3s Gn sG1sG2 sG3sH1s]
23
练习
已知系统的结构如图,求传递函数 Y , Y , Y
9
练习 求传递函数
-
G1
R
Y
-
-
G2
GY
G2 G1 G1G2 G1G2
R 1 G2 G1 G1G2 G1G2 G1G2
G2 G1 2G1G2 1 G2 G1 3G1G2
10
2.3.5 闭环控制系统的传递函数
自动控制原理重要公式
A.阶跃函数斜坡函数抛物线函数脉冲函数正弦函数B.典型环节的传递函数比例环节惯性环节(非周期环节)积分环节微分环节二阶振荡环节(二阶惯性环节)延迟环节C.环节间的连接串联并联反馈开环传递函数=前向通道传递函数=负反馈闭环传递函数正反馈闭环传递函数D.梅逊增益公式E.劳斯判据劳斯表中第一列所有元素均大于零s n aa2a4a6……s n-1 a1a3a5a7……s n-2 b1b2b3b4……s n-3 c1c2c3c4……… … …s2 f1f2s1 g1s0 h1劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;劳斯表中某一行的元素全为零。
P(s)=2s4+6s2-8。
F.赫尔维茨判据特征方程式的所有系数均大于零。
G.误差传递函数扰动信号的误差传递函数I.二阶系统的时域响应:其闭环传递函数为或系统的特征方程为2222)()(nnnsssRsCωζωω++=121)()(22++=TssTsRsCζ特征根为 上升时间t r其中峰值时间t p最大超调量M p调整时间t sa.误差带范围为 ±5%b.误差带范围为± 2%振荡次数N J.频率特性: 还可表示为:G (jω)=p (ω)+jθ(ω) p (ω)——为G (jω)的实部,称为实频特性; θ(ω)——为G (jω)的虚部,称为虚频特性。
显然有: K.典型环节频率特性:1. 积分环节 积分环节的传递函数: 频率特性:幅频特性: 相频特性: 对数幅频特性: 2. 惯性环节 惯性环节的传递函数: 频率特性:幅频特性: 相频特性:实频特性:虚频特性: 对数幅频特性:对数相频特性: 3. 微分环节纯微分环节的传递函数G (s )=s频率特性: 幅频特性: 相频特性: 对数幅频特性: 4. 二阶振荡环节 二阶振荡环节的传递函数:频率特性: 幅频特性: 相频特性: 实频特性: 虚频特性: 对数幅频特性:5. 比例环节比例环节的传递函数: G (s )=K频率特性: 幅频特性: )()()(ωωωj R j C R C j G ss ==⋅⋅⎪⎪⎪⎭⎪⎪⎪⎬⎫=+===)()()()()()()(sin )()()(cos )()(22ωωθωϕωθωωωϕωωθωϕωωp arctgp A A A p s s G 1)(=211)(πωωωj e j j G -==ωω1)(=A 2)(πωϕ-=ωωωlg 20)(lg 20)(-==A L 11)(+=Ts s G T jarctg e T T j j G ωωωω⋅-+=+=2)(1111)(2222111T T j T ωωω+-+=2211)(T A ωω+=Tarctg ωωϕ-=)(2211)(T p ωω+=221)(T T ωωωθ+-=221lg 20)(lg 20)(T A L ωωω+-==Tarctg ωωϕ-=)(2)(πωωωje j j G ==ωω=)(A 2)(πωϕ=ωωωlg 20)(lg 20)(==A L 121)(22++=Ts s T s G ζ12)(1)(2++=ωζωωT j T j j G 2222)2()1(1)(T T A ζωωω+-=2212)(ωζωωϕT T arctg --=222222)2()1(1)(T T T p ζωωωω+--=2222)2()1(2)(T T T ζωωωζωθ+--=2222)2()1(lg 20)(lg 20)(T T A Lζωωωω+--==Kj G =)(ωK A =)(ω21ζωβπωβπ--=-=n d r t ζζβ21-=arctg 21ζωπωπ-==n d p t %1001exp )()()(2⨯⎪⎪⎭⎫⎝⎛--=∞∞-=ζζπh h t h M p p ns t ζω3=ns t ζω4=πωωπ2/2s d d s d s t t T t N ===相频特性: 对数幅频特性: 6. 滞后环节 滞后环节的传递函数: 式中 —— 滞后时间 频率特性: 幅频特性: 相频特性: 对数幅频特性: L.增益裕量: 式中ωg 满足下式∠G (j ωg ) H (j ωg )= -180°增益裕量用分贝数来表示:Kg =-20lg|G (j ωg )H (j ωg )|dB 相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角 ,称为系统的相角裕度或相角裕量,表示为 M.由开环频率特性求取闭环频率特性开环传递函数G (s ),系统的闭环传递函数 系统的闭环频率特性N.闭环频域性能指标与时域性能指标 的关系二阶系统的闭环传递函数为系统的闭环频率特性为系统的闭环幅频特性为系统的闭环相频特性为 二阶系统的超调量Mp谐振峰值Mr 由此可看出,谐振峰值Mr 仅与阻尼比ζ有关,超调量Mp 也仅取决于阻尼比 ζ谐振频率ωr 与峰值时间tp 的关系由此可看出,当 ζ为常数时,谐振频率 ωr与峰值时间 tp 成反比,ωr 值愈大,tp 愈小,表示系统时间响应愈快. 低频段对数幅频特性 0)(=ωϕK A L lg 20)(lg 20)(==ωωse s G τ-=)(τωτωj ej G -=)(1)(=ωA )(3.57)()(C rad οωττωωϕ-=-=dBA L 0)(lg 20)(==ωω)()(1g g g j H j G K ωω=)ψ(ωγc 180+︒=)(1)()()()(s G s G s R s C s M +==)(1)()()()(ωωωωωj G j G j R j C j M +==2222)(nn n s s s ωζωωφ++=2222)()(n n n j j j ωωζωωωωφ++=22222)2()()(ωζωωωωωn n n M +-=222)(ωωωζωωϕ--=n n arctg %10021/⨯=--ζζπe M p 2121ζζ-=r M 22121ζζπω--=r p t ωυωlg 20lg 20)(-=K L d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增益裕量用分贝数来表示:
Kg=-20lg|G(jωg)H(jωg)|dB
相角裕量:定义:使系统达到临界稳定状态,
尚可增加的滞后相角 ,称为系统的相角裕
度或相角裕量,表示为 γ 180 ψ(ωc)
M.由开环频率特性求取闭环频率特性
开环传递函数 G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
………
s2
f1 f2
s1
g1
s0
h1
劳斯表中某一行的第一个元素为零
而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。
P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
G.误差传递函数
扰动信号的误差传递函数
H.静态误差系数
单位 输入形式
稳态误差 ess 0 型 Ⅱ Ⅲ型
型
阶跃 1(t)
1/1+Kp 0 0
斜坡 t·1(t) ∞
1/ 0
Kv
加速度 0.5t2·1 ∞
∞ 1/Ka
﹙t﹚
I.二阶系统的时域响应:
其闭环传递函数为
或 C(s) 系统的特R(征s)方程T为2 s 2
C(s) R1(s) s2 2Ts 1
n2 2 n s
n2
D(s)
s2
2
ns
2 n
0
特征根为 s1` ,2 n n 2 1
上升时间 tr 其中 峰值时间 tp
tr
d
n 1 2
最大超调量 Mp
调整时间 ts a.误差带范围为 ±5% b.误差带范围为± 2%
3 ts n
振荡次数 N
J.频率特性:
还可表示为:G(jω)=p(ω)+jθ(ω)
p(ω)——为 G(jω)的实部,称为实频特性;
θ(ω)——为 G(jω)的虚部,称为虚频特性。
6. 滞后环节
滞后环节的传递函数: G(s) es
式中 —— 滞后时间 频率特性:G( j) e j
幅频特性:A() 1
相频特性:() (rad ) 57.3 ( C)
对数幅频特性:L() 20lg A() 0 dB
L式.增中益ω裕g 量满:足下K式g∠G
1 G(jω( gj) Hg()jωHg()=j-1g8)0°
前向通道传递函数=
负反馈闭环传递函数
正反馈闭环传递函数
DE..梅劳逊斯增判Φ益据(s公) 式CR((ss))
1
G(s) G(s)H
(s)
劳斯表中第一列所有元素均大于零
sn a0 a2 a4 a6 …… sn-1 a1 a3 a5 a7 …… sn-2 b1 b2 b3 b4 …… sn-3 c1 c2 c3 c4 ……
低频段对数幅频特性Ld () 20 lg K 20 lg
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
L5(.比) 例2环0lg节A() 20lg (1T 22)2 (2T)2
比例环节的传递函数: G(s)=K
频率特性: G( j) K
幅频特性: A() K
相频特性: () 0 对数幅频特性:L() 20lg A() 20lg K
Ts 1
G( j) 1
1
e jarctgT
1 jT 1 (T )2
幅频特性:
的关系
相频特性:() arctgT
二阶系统的闭环传递函数为
实频特性: 虚频特性: 对数幅频特性:
系统的闭环频率特性为
系统的闭环幅频特性为( j)(s)
系统的闭环相频特性为
s2
( j)
22j2nnn22s nn2n
2
显然有: p() A() cos()
K.典型环节频(率)特性A:() sin (
1. 积分环节
积分环节的A传(递)函数:pG2 ((s)
12 s
频率特性:() arctg ()
) (
)
幅频特性:
p()
相频特性:
对数幅频特性:
2. 惯性环节
惯性环节的传递函数:G(s) 1
频率特性:
A.阶跃函数
0 t 0
斜坡函数 抛物线函数
r(t
)
A
t0
脉冲函数
正弦函数
B.典型环节的传递函数 比例环节 G(s) C(s) K 惯性环节(非周期环R(节s) )
积分环节
微分环节
二阶振荡环节(二阶惯性环节)
延迟环节
C.环G节(间s)的连接
Kn2
串联 并联
s2 2 ns n2
反馈 开环传递函数=
对数相频特L性(:) (20)lgA(arc)tgT20lg
3. 微分环节
纯微分环节的传递函数 G(s)=s
12T二 谐 由2 阶 振 此系 峰 可统 看值的 出M,超r 谐调振量峰(MM值p)pMrea仅rc与t/ g阻12尼2n2比1n0ζ0有2%
频率特性: 幅频特性: 相频特性:
A() G( j) ()
2
j
j e 2
关,超调量 Mp 也仅取决于阻尼比 ζ 谐振频率 ωr 与峰值时间 tp 的关系 由此可看出,当 ζ 为常数时,谐振频率 ωr
对数幅频特性:L() 20lg A() 20lg 与峰值时间 tp 成反比,ωr 值愈大,tp 愈小,
4. 二阶振荡环节
表示系统时间响应愈快.
二阶振荡环节的传递函数: 频率特性: