最新高中数学导数理科数学试题含答案
高三数学导数试题答案及解析
高三数学导数试题答案及解析1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x)上单调递减D.若x0是f(x)的极值点,则f′(x)=0【答案】C【解析】若c=0,则有f(0)=0,所以A正确.由f(x)=x3+ax2+bx+c得f(x)-c=x3+ax2+bx,因为函数f(x)=x3+ax2+bx的对称中心为(0,0),所以f(x)=x3+ax2+bx+c的对称中心为(0,c),所以B正确.由三次函数的图象可知,若x是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x)单调递减是错误的,D正确.2.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为。
②数列满足首项,,当且最大时,数列有2048个。
③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个。
④已知直线,其中,而且,则一共可以得到不同的直线196条。
【答案】②③④【解析】①令,,则,所以,故不正确.②由条件知数列是首项为,公差为2的等差数列,则,则当时,,所以各有两种可能取值,因此满足条件的数列有个,故正确.③根据条件可知满足条件的数列可分为四类:(1),且,有9种;(2),且,有5种;(3),且,有10种;(4),且,有9种,共有9+5+10+9=33种.④满足的选法有,其中比值相同重复有14种,因此满足条件的直线共有210-14=196.【考点】1、导数的计数;2、等差数列;3、计数原理.3.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.【答案】②③④【解析】对①,将求导得:,所以.故错.对②,是一个等差数列,都是互为相反数的两个值,所以数列共有个.对③,由得.法一、由于,,故将加4个2,再减3个2即可.由于故不能连续加4次,也不能连续减3次,所以共有个.法二、因为,所以或,注意到数列中的每一项都是集合M的元素,依次下去可得.由于,所以.由此我们可得以下树图:,所以符合这些条件的不同数列一共有14+19=33个.法三、由于或,,故可以分以下四种情况分别求解:.,共有9个;,共有5个;,共有10个;,共有9个.所以总共有33个.对④,从中取3个不同的数作为,因为,所以共有种取法.再排除其中重复的直线.与相同的有,多3条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条(注意这种情况在前面已经考虑了);与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条.一共可以得到不同的直线条.【考点】1、导数;2、数列;3、直线的方程;4、计数原理.4.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.5.设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【答案】D【解析】根据和构造的函数在(0,+∞)上单调递减,又是定义在R上的奇函数,故是定义在R上单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).【考点】1.导数在函数单调性中的应用;2.复合函数的导数.6.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.7.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.8.已知函数,.(Ⅰ)若,求函数在区间上的最值;(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)【答案】(Ⅰ) 最大值;(Ⅱ)的取值范围是.【解析】(Ⅰ) 讨论去掉绝对值,利用导数求得最值; (Ⅱ) 对分,讨论:当时,,恒成立,所以;当时,对讨论去掉绝对值,分离出通过求函数的最值求得的范围.试题解析:(1) 若,则.当时,,,所以函数在上单调递增;当时,,.所以函数在区间上单调递减,所以在区间[1,e]上有最小值,又因为,,而,所以在区间上有最大值.(2)函数的定义域为.由,得.(*)(ⅰ)当时,,,不等式(*)恒成立,所以;(ⅱ)当时,①当时,由得,即,现令,则,因为,所以,故在上单调递增,从而的最小值为,因为恒成立等价于,所以;②当时,的最小值为,而,显然不满足题意.综上可得,满足条件的的取值范围是.【考点】绝对值的计算、函数的最值求法、利用导数求函数单调性.9.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.(Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.10.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.11.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。
导数高中试题及解析答案
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
(完整word版)高二数学导数大题练习详细答案
(完整word 版)高二数学导数大题练习详细答案一、解答题1.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.2.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 3.己知函数()2ln ,f x x ax a R =-∈.(1)当0a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)设函数()()ln 21g x f x x x =--+,若()0g x ≤在其定义域内恒成立,求实数a 的最小值;(3)若关于x 的方程()2ln f x x x =+恰有两个相异的实根12,x x ,求实数a 的取值范围,并证明121x x >.4.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<.5.求函数()31443f x x x =-+在区间1,33⎡⎤⎢⎥⎣⎦上的最大值与最小值.6.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 7.已知函数()1ln xf x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 8.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 9.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e1313e e e 222222x x x x xm g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 2.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==-⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =.即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 3.(1)22y x =- (2)1-(3)(),1-∞-;证明见解析. 【解析】 【分析】(1)根据题意,()2ln f x x =,分别求出()1f 和()1f '求解即可;(2)条件等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+求解最大值即可; (3)令()()ln 0xm x x a x x=-->,求出()m x 的单调性,得到()()11max m x m a ==--, 根据题意求解a 的范围即可;不妨设12x x <,则1201x x <<<,2101x <<,题设即证明()121m x m x ⎛⎫> ⎪⎝⎭成立,构造()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭, 求解单调性得到()()10x ϕϕ>=即可求解. (1)当0a =时,()2ln f x x =,所以()2l 01n1=f =,()2f x x'=,所以()12f '=, 所以曲线()y f x =在()()1,1f 处的切线方程为:()021y x -=-,即22y x =- (2)由题意得,()ln 21g x x ax x =--+,因为()0g x ≤在其定义域内恒成立, 所以ln 210x ax x --+≤在()0,∞+恒成立,即ln 12x a x++≥在()0,∞+恒成立, 等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令()ln 1x h x x +=()0,∞+,所以()2ln x h x x -'=, 令()0h x '>解得01x <<,令()0h x '<解得1x >,所以函数()h x 在()0,1单调递增, 在()1,+∞单调递减,所以()()1=1h x h ≤,所以21a +≥,即1a ≥-,故a 的最小值为1-.(3)先证明必要性:由()2ln f x x x =+得2ln x ax x -=,即ln 0xx a x--=, 令()()ln 0x m x x a x x =-->,则()221ln x x m x x --'=, 设()21ln t x x x =--,则()12t x x x'=--,因为0x >,所以()0t x '<恒成立,函数()t x 在()0,∞+单调递减,而()10t =,故在()0,1上()0t x >,()0m x '>,()m x 单调递增,在()1,+∞上()0t x <,()0m x '<,()m x 单调递减,所以()()11max m x m a ==--.故方程()2ln f x x x =+恰有两个相异的实根只需:10a -->,所以实数a 的取值范围是(),1-∞-; 再证明充分性:当(),1a ∞∈--时,方程()2ln f x x x =+恰有两个相异的实根,条件等价于2ln x ax x -=,即ln x x a x -=,即y a =与ln x y x x=-, 当1a <-,0x >时有两个不同的交点,所以221ln x xy x --'=,由上面必要性的证明可知函数在()0,1单调递增,在()1,+∞单调递减, 所以ln x y x x =-在0x >时的最大值为:ln11=11y =--,最小值趋近于负无穷, 所以当(),1a ∞∈--时,程()2ln f x x x =+恰有两个相异的实根,即充分性成立.下证:121x x >,不妨设12x x <,则1201x x <<<,2101x <<, 所以()121122111x x x m x m x x ⎛⎫>⇔>⇔> ⎪⎝⎭,因为()()120m x m x ==, 所以()()22122222221ln ln 1111x x m x m m x m x a a x x x x x ⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭ 2222222222221lnln ln 11ln 1x x x x x x x x x x x x =--+=-++2222211ln x x x x x ⎛⎫=+-+ ⎪⎝⎭,令()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭,则()211ln 0x x xϕ⎛⎫'=-> ⎪⎝⎭,所以()x ϕ在()1,+∞上单调递增,所以当1x >时,()()10x ϕϕ>=,即2222211ln 0x x x x x ⎛⎫+-+> ⎪⎝⎭,所以()121m x m x ⎛⎫> ⎪⎝⎭,所以121x x >. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义, 往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.4.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<.5.最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭【解析】 【分析】利用导数判断函数的单调性与最值情况. 【详解】由()31443f x x x =-+,得()24f x x '=-令()0f x '=.得2x =±1,33x ⎡⎤∈⎢⎥⎣⎦,所以2x =-舍去, 列表如下:()f x ∴的极小值为()23f =-又1217381f ⎛⎫= ⎪⎝⎭,()31f =,所以,()f x 的最小值为()423f =-,最大值为1217381f ⎛⎫=⎪⎝⎭. 6.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:()f x 0x (2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 7.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x ++≤+=, 令()()()e 1ln x x g x x ++=,则()2eln x x g x x -'=, 令()eln h x x x =-,则()ee 1x h x x x-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=, ()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-. 【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.8.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.9.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x '=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。
高中数学导数的计算精选题目(附答案)
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
导数高中试题及解析答案
导数高中试题及解析答案一、选择题1. 若函数f(x)=x^3-3x+1,则f'(x)等于()。
A. 3x^2-3B. 3x^2+3C. 3x^2-3xD. 3x^2+3x答案:A解析:根据导数的定义,f'(x)=3x^2-3。
2. 函数y=x^2-4x+c的导数是()。
A. 2x-4B. 2x+4C. -2x-4D. -2x+4答案:A解析:对函数y=x^2-4x+c求导,得到y'=2x-4。
二、填空题3. 若f(x)=x^2+2x+1,则f'(1)=______。
答案:4解析:将x=1代入f'(x)=2x+2,得到f'(1)=2*1+2=4。
4. 函数y=ln(x)的导数是______。
答案:1/x解析:对函数y=ln(x)求导,得到y'=1/x。
三、解答题5. 求函数g(x)=x^3-2x^2+x-1的导数。
答案:g'(x)=3x^2-4x+1解析:根据导数的运算法则,对函数g(x)求导得到g'(x)=3x^2-4x+1。
6. 已知f(x)=x^2+3x+2,求f'(-1)。
答案:-2解析:首先求出f'(x)=2x+3,然后将x=-1代入,得到f'(-1)=2*(-1)+3=-2。
四、应用题7. 某物体在t秒时的速度为v(t)=t^2-t,求物体在t=2秒时的瞬时速度。
答案:3解析:首先求出速度函数的导数v'(t)=2t-1,然后将t=2代入,得到v'(2)=2*2-1=3。
8. 函数y=e^x-x^2在x=0处的切线斜率是多少?答案:1解析:求出函数y的导数y'=e^x-2x,然后将x=0代入,得到y'(0)=e^0-2*0=1。
五、证明题9. 证明:若f(x)=x^3+2x,则f'(x)=3x^2+2。
答案:证明如下:∵f(x)=x^3+2x∴f'(x)=3x^2+2证明完毕。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
高中数学导数精选题目(附答案)
高中数学导数精选题目(附答案)(1)函数的单调性与其导数正负的关系一般地,在区间(a,b)内函数的单调性与导数有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常数函数(2)函数图象的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图象越大快比较“陡峭”(向上或向下)越小慢比较“平缓”(向上或向下)(3)极值点与极值①极小值点与极小值如图,函数f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则称点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.②极大值点与极大值函数f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则称点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.③极值点与极值极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(4)求可导函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.②如果在x0附近的左侧f′(x)<0时,右侧f′(x)>0,那么f(x0)是极小值.(5)函数y=f(x)在区间[a,b]上的最值一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(6)函数最值的求法求函数y=f(x)在闭区间[a,b]上的最值的步骤如下:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.(7)如果在区间(a,b)内恒有f′(x)=0,则f(x)有什么特性?答:f(x)为常数函数,不具有单调性.(8)在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增,反之也成立吗?答:不一定成立.比如y=x3在R上为增函数,但其在x=0处的导数等于零.也就是说f′(x)>0是y=f(x)在某个区间上单调递增的充分不必要条件.(9)下图为导函数y=f′(x)的图象,则函数y=f(x)的单调区间是什么?答:单调递增区间:(-∞,-3],[-2,1],[3,+∞);单调递减区间:[-3,-2],[1,3].(10):若函数f(x)为可导函数,且在区间(a,b)上是单调递增(或递减)函数,则f′(x)满足什么条件?答:f′(x)≥0(或f′(x)≤0).(11):若函数f(x)在(a,b)上满足f′(x)>0(或f′(x)<0),则f(x)在(a,b)上具备什么样的单调性?答:若f′(x)>0,则f(x)在(a,b)上为增函数;若f′(x)<0,则f(x)在(a,b)上为减函数.(12):f′(x)>0或f′(x)<0的解集与函数f(x)的单调区间有什么关系?答:f′(x)>0的解集对应函数f(x)的单调递增区间;f′(x)<0的解集对应函数f(x)的单调递减区间.(13):函数的极大值一定大于极小值吗?答:不一定,课本P27图1.3-11中c处的极小值大于f处的极大值.(14):函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?答:一个.x1,x2,x3是极值点,其中x2是极小值点. x1、x3是极大值点.(15):已知x0是函数f(x)定义域内的一点,当满足什么条件时,f(x0)是f(x)的极大值?当满足什么条件时,f(x0)是f(x)的极小值?答:当f′(x0)=0,且在x0附近的左侧f′(x)>0,右侧f′(x)<0时,f(x0)是极大值;当f′(x0)=0,且在x0附近的左侧f′(x)<0,右侧f′(x)>0时,f(x0)是极小值.(16):导数为0的点都是极值点吗?答:不一定,如f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.所以,当f′(x0)=0时,要判断x=x0是否为f(x)的极值点,还要看f′(x)在x0两侧的符号是否相反.(17):函数y=f(x)在给定区间(a,b)内一定有极值点吗?答:不一定,若函数y=f(x)在区间(a,b)内是单调函数,就没有极值点.(18):若a≥f(x)恒成立,则a的取值范围是什么?若a≤f(x)恒成立,则a的取值范围是什么?答:(1)a≥f(x)恒成立⇔a≥f(x)ma x.(2)a≤f(x)恒成立⇔a≤f(x)mi n.1.(1)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()2.(1)函数y=f(x)的图象如图所示,则导函数的图象大致是()(2)函数y=f(x)在定义域R上有导数,其导函数的图象如图所示,则函数y =f(x)的递增区间为____________;递减区间为________________.3.求证:函数f(x)=e x-x-1在(0,+∞)内是增函数,在(-∞,0)内是减函数.利用导数判断函数f(x)在(a,b)内的单调性的步骤(1)求f′(x);(2)确定f′(x)在(a,b)内的符号;(3)得出结论.4.试证明:函数f(x)=ln xx在区间(0,2)上是单调递增函数.5.求下列函数的单调区间:(1)f(x)=x3-2x2+x;(2)f(x)=3x2-2l n x.利用导数求函数单调区间的步骤(1)求函数的定义域;(2)求f′(x),解不等式f′(x)>0(或f′(x)<0);(3)利用不等式的解集与定义域求交集得单调区间.注意事项:①求函数的单调区间,必须在函数的定义域内进行.②如果函数的单调区间有多个时,单调区间不能用“∪”符号连接,只能用“,”或“和”隔开.③导数法求得的单调区间一般用开区间表示.6.求函数f(x)=e xx-2的单调区间.7.已知函数f(x)=x3-a x-1.讨论f(x)的单调区间.提示:由题意,可先求f′(x),然后根据a的取值情况,讨论f′(x)>0或f′(x)<0的解集即可.8.(1)本例中f(x)不变,若f(x)为单调递增函数,求实数a的取值范围;(2)本例中f(x)不变,若f(x)在区间(1,+∞)内为增函数,求a的取值范围;(3)本例中f(x)不变,若f(x)在区间(-1,1)上为减函数,试求a的取值范围;(4)本例中f(x)不变,若f(x)的单调递减区间为(-1,1),求a的取值范围;(5)本例中f(x)不变,若f(x)在区间(-1,1)上不单调,求a的取值范围.9.求下列函数的极值:(1)f(x)=x2e-x; (2)y=ln x x.10.求下列函数的极值:(1)f(x)=13x3-x2-3x+3;(2)f(x)=2xx2+1-2.11.已知f(x)=x3+3a x2+b x+a2在x=-1时有极值0,求常数a,b的值.12.已知f(x)=a x3+b x2+c x(a≠0)在x=±1处取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极大值点还是极小值点,并说明理由.13.求函数f(x)=x3-3a x+b(a≠0)的极值.提示:分类讨论a取不同值时,函数的单调性,进而求极值.14.设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值15.求下列各函数的最值.(1)f(x)=-x3+3x,x∈[-3,3];(2)f(x)=x2-54x(x<0).16.求下列各函数的最值.(1)f(x)=x3-3x2+6x-2,x∈[-1,1];(2)f(x)=12x+S i n x,x∈[0,2π].17.已知函数f(x)=(4x2+4a x+a2)x,其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.18.已知函数f(x)=a x3-6a x2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.19.已知f(x)=x l n x,g(x)=-x2+a x-3.(1)求函数f(x)的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.提示:2f(x)≥g(x)恒成立,可转化为2f(x)-g(x)≥0恒成立,然后利用分离参数法求a的取值范围.(1)a≥f(x)(或≤f(x))恒成立⇔a≥f(x)ma x(或≤f(x)mi n);(2)a≥f(x)(或≤f(x))恒有解⇔a≥f(x)mi n(或≤f(x)ma x);(3)f(x)≥g(x)恒成立⇔F(x)mi n≥0(其中F(x)=f(x)-g(x));(4)f (x )≥g (x )恒有解⇔F (x )ma x ≥0(其中F (x )=f (x )-g (x )). 20.设函数f (x )=x e x-x ⎝ ⎛⎭⎪⎫a 2x +1+2.(1)若a =1,求f (x )的单调区间;(2)当x ≥0时,f (x )≥x 2-x +2恒成立,求a 的取值范围.参考答案:1.解: (1)由函数的图象可知:当x <0时,函数单调递增,导数始终为正; 当x >0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.(2)从f ′(x )的图象可以看出,在区间⎝ ⎛⎭⎪⎫a ,a +b 2内, 导数单调递增; 在区间⎝ ⎛⎭⎪⎫a +b 2,b 内,导数单调递减.即函数f (x )的图象在⎝ ⎛⎭⎪⎫a ,a +b 2内越来越陡,在a +b 2,b 内越来越平缓,由此可知,只有选项D 符合.2.解析:选D 因为函数f (x )在(0,+∞)和(-∞,0)上都是单调递减的,即f ′(x )<0.解析:由f ′(x )的图象可知,当x ∈(-2,-1)∪(1,3)∪(4,+∞)时,f ′(x )>0; 当x ∈(-∞,-2)∪(-1,1)∪(3,4)时,f ′(x )<0.故函数f (x )的增区间为(-2,-1),(1,3),(4,+∞);减区间为(-∞,-2),(-1,1),(3,4).3.解: 由于f (x )=e x -x -1, 所以f ′(x )=e x -1,当x ∈(0,+∞)时,e x >1,即f ′(x )=e x -1>0. 故函数f (x )在(0,+∞)内为增函数,当x ∈(-∞,0)时,e x <1,即f ′(x )=e x -1<0. 故函数f (x )在(-∞,0)内为减函数.4.证明:由于f (x )=ln xx ,所以f ′(x )=1x ·x -ln x x 2=1-ln x x 2. 由于0<x <2,所以l n x <l n 2<1, 故f ′(x )=1-ln xx 2>0,即函数f (x )=ln xx 在区间(0,2)上是单调递增函数. 5.解: (1)函数的定义域为R ,∵f (x )=x 3-2x 2+x ,∴f ′(x )=3x 2-4x +1. 令f ′(x )>0,解得x >1或x <13.因此f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,13,(1,+∞).令f ′(x )<0,解得13<x <1.因此f (x )的单调递减区间是⎝ ⎛⎭⎪⎫13,1.(2)函数的定义域为(0,+∞),f ′(x )=6x -2x =2·3x 2-1x .令f ′(x )>0,即2·3x 2-1x >0,解得-33<x <0或x >33,又x >0,∴x >33; 令f ′(x )<0,即2·3x 2-1x <0,解得x <-33或0<x <33,又x >0,∴0<x <33. ∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫33,+∞;单调递减区间为⎝⎛⎭⎪⎫0,33.6.解:函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2.因为x ∈(-∞,2)∪(2,+∞),所以e x >0,(x -2)2>0. 由f ′(x )>0得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3). 7.解: f ′(x )=3x 2-a . (1)当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. (2)当a >0时,令3x 2-a =0,得x =±3a3.当x >3a 3或x <-3a3时,f ′(x )>0; 当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知, 当a ≤0时,f (x )在R 上为增函数.当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.8.解:(1)由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数, 所以a ≤0.即实数a 的取值范围为(-∞,0].(2)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)恒成立, 即3x 2-a ≥0在(1,+∞)恒成立, 所以a ≤3x 2在(1,+∞)恒成立,即a的取值范围为(-∞,3].(3)由f′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在x∈(-1,1)恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围是[3,+∞).(4)由例题可知,f(x)的单调递减区间为-3a3,3a3,∴3a3=1,即a=3.(5)∵f(x)=x3-a x-1,∴f′(x)=3x2-a,由f′(x)=0,得x=±3a3(a≥0),∵f(x)在区间(-1,1)上不单调,∴0<3a3<1,即0<a<3.故a的取值范围为(0,3).9.解:(1)函数的定义域为R.f′(x)=2x e-x-x2e-x=x(2-x)e-x.令f′(x)=0,得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:由上表可以看出,当x=0时,函数有极小值,且f(0)=0.当x=2时,函数有极大值,且f(2)=4 e2.(2)函数y=ln xx的定义域为(0,+∞),y′=1-ln xx2.令y′=0,即1-ln xx2=0,得x=e.当x变化时,y′,y的变化情况如下表:由表可知,当x=e时,函数有极大值1 e.10.解:(1)函数的定义域为R,f′(x)=x2-2x-3.令f′(x)=0,得x=3或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:∴x=-1是f(x)的极大值点,x=3是f(x)的极小值点.∴f(x)极大值=143,f(x)极小值=-6.(2)函数的定义域为R,f′(x)=2(x2+1)-4x2 (x2+1)2=-2(x-1)(x+1)(x2+1)2.令f′(x)=0,得x=-1或x=1.当x变化时,f′(x),f(x)的变化情况如下表:由表可以看出:当x =-1时,函数f (x )有极小值,且f (-1)=-22-2=-3; 当x =1时,函数f (x )有极大值,且f (1)=22-2=-1. 11.解: ∵y =f (x )在x =-1时有极值为0, 且f ′(x )=3x 2+6a x +b ,∴⎩⎨⎧ f ′(-1)=0,f (-1)=0,即⎩⎨⎧3-6a +b =0,-1+3a -b +a 2=0. 解得⎩⎨⎧ a =1,b =3或⎩⎨⎧a =2,b =9.①当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, y =f (x )在R 上为增函数,无极值,故舍去. ②当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,f (x )在x =-1处取极小值且f (-1)=0. ∴a =2,b =9.12.解:f ′(x )=3a x 2+2b x +c , (1)法一:∵x =±1是函数的极值点,∴x =±1是方程3a x 2+2b x +c =0的两根.由根与系数的关系知⎩⎪⎨⎪⎧-2b 3a =0, ①c 3a =-1, ②又f (1)=-1,∴a +b +c =-1,③ 由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0,① 3a -2b +c =0,②又f (1)=-1,∴a +b +c =-1,③ 由①②③解得a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时f ′(x )>0,当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.∴当x =-1时,函数取得极大值,x =-1为极大值点;当x =1时,函数取得极小值,x =1为极小值点.13.解: f ′(x )=3(x 2-a )(a ≠0),当a <0时,f ′(x )>0恒成立,即函数在(-∞,+∞)上单调递增,此时函数没有极值;当a >0时,令f ′(x )=0,得x =-a 或x =a .当x 变化时,f ′(x )与f (x )的变化情况如下表:∴f (x )的极大值为f (-a )=2a a +b , 极小值为f (a )=-2a a +b .14.解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为1.(2)f ′(x )=-x 2+2x +m 2-1.令f ′(x )=0,解得x =1-m 或x =1+m .因为m >0,所以1+m>1-m.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间为(-∞,1-m),(1+m,+∞),递增区间为(1-m,1+m).函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=-23m3+m2-13.函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=23m3+m2-13.15.解:(1)f′(x)=3-3x2=3(1-x)(1+x).令f′(x)=0,得x=1或x=-1,当x变化时,f′(x),f(x)的变化情况如下表:所以x=1和x=-1是函数在[-3,3]上的两个极点,且f(1)=2,f(-1)=-2.又因为f(x)在区间端点处的取值为f(-3)=0,f(3)=-18.所以f(x)ma x=2,f(x)mi n=-18.(2)f′(x)=2x+54x2.令f′(x)=0得x=-3.当x变化时,f′(x),f(x)的变化情况如下表:所以x =-3时,f (x )取得极小值,也就是最小值, 故f (x )的最小值为f (-3)=27,无最大值.16.解:(1)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3, 因为f ′(x )在[-1,1]内恒大于0, 所以f (x )在[-1,1]上为增函数. 故x =-1时,f (x )取最小值为-12, x =1时,f (x )取最大值为2. (2)f ′(x )=12+co S x ,令f ′(x )=0, 又x ∈[0,2π],解得x =2π3或x =4π3.计算得f (0)=0,f (2π)=π,f ⎝ ⎛⎭⎪⎫2π3=π3+32,f ⎝ ⎛⎭⎪⎫4π3=2π3-32.所以当x =0时,f (x )有最小值f (0)=0; 当x =2π时,f (x )有最大值f (2π)=π 17.解: (1)当a =-4时,f ′(x )=2(5x -2)(x -2)x,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,25或x ∈(2,+∞),故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,25和(2,+∞). (2)f ′(x )=(10x +a )(2x +a )2x ,a <0,由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝ ⎛⎭⎪⎫0,-a 10时,f (x )单调递增;当x ∈-a 10,-a 2时,f (x )单调递减;当x∈⎝ ⎛⎭⎪⎫-a 2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝ ⎛⎭⎪⎫-a 2=0.①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a+a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4,即-8≤a <-2时,此时15<-a 10≤45,f (x )在[1,4]上的最小值为f ⎝ ⎛⎭⎪⎫-a 2=0,不符合题意.③当-a2>4,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)=8时没有符合题意的a 值,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意.综上知,a =-10.18.解:由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾.f ′(x )=3a x 2-12a x =3a x (x -4),令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,当x =0时,f (x )取得极大值,也就是函数在[-1,2]上的最大值,∴f (0)=3,即b =3.又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值,也就是函数在[-1,2]上的最小值,∴f (0)=-29,即b =-29.又f (-1)=-7a -29,f (2)=-16a -29>f (-1), ∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.19.解: (1)已知函数f (x )的定义域为(0,+∞),f ′(x )=l n x +1, 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增.所以f (x )mi n =f ⎝ ⎛⎭⎪⎫1e =-1e . (2)2x l n x ≥-x 2+a x -3,则a ≤2l n x +x +3x , 设h (x )=2l n x +x +3x (x >0), 则h ′(x )=(x +3)(x -1)x 2, ①x ∈(0,1),h ′(x )<0,h (x )单调递减; ②x ∈(1,+∞),h ′(x )>0,h (x )单调递增; 所以h (x )mi n =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )mi n =4,即a 的取值范围是(-∞,4]. 20.解:(1)∵a =1, ∴f (x )=x e x -x ⎝ ⎛⎭⎪⎫12x +1+2=x e x -12x 2-x +2, ∴f ′(x )=(e x -1)(x +1), ∴当-1<x <0时,f ′(x )<0; 当x <-1或x >0时,f ′(x )>0,∴f (x )在(-1,0)上单调递减,在(-∞,-1),(0,+∞)上单调递增. (2)由f (x )≥x 2-x +2,得x ⎝ ⎛⎭⎪⎫e x -a +22x ≥0, 当x =0时,显然成立; 当x >0时,即e x x ≥a +22恒成立. 记g (x )=e xx ,则g ′(x )=e x (x -1)x 2, 当0<x <1时,g ′(x )<0,g (x )是减函数, 当x >1时,g ′(x )>0,g (x )是增函数.∴g(x)的最小值为g(1)=e,∴a+22≤e,得a≤2e-2.即a的取值范围是(-∞,2e-2].。
(完整版)导数大题练习带答案
导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。
2024届新高考数学大题精选30题--导数(解析版)
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
高中导数试题题型及答案
高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。
答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。
答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。
答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。
答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。
答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。
8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。
高中数学 导数 试题及解析
高中数学导数试题一.选择题(共25小题)1.已知函数y=f(x),其导函数y=f'(x)的图象如图,则对于函数y=f(x)的描述正确的是()A.在(﹣∞,0)上为减函数B.在x=0处取得最大值C.在(4,+∞)上为减函数D.在x=2处取得最小值2.如果某物体的运动方程为S=2(1﹣t2)(S的单位为m,t的单位为S),那么其在1.2S 末的瞬时速度为()A.﹣4.8m/S B.﹣0.88m/S C.0.88m/S D.2.8m/S3.如果函数y=f(x)的导函数的图象如图所示,给出下列判断:①函数y=f(x )在区间内单调递增;②当x=﹣2时,函数y=f(x)有极小值;③函数y=f(x)在区间(﹣2,2)内单调递增;④当x=3时,函数y=f(x)有极小值.则上述判断中正确的是()A.①②B.②③C.③④D.③4.已知函数f(x)=(x3﹣2x)e x ,则的值为()A.﹣e B.1C.e D.05.若函数f(x)=x2由x=1至x=1+△x的平均变化率的取值范围是(1.975,2.025),则增量△x的取值范围为()1A.(﹣0.025,0.025)B.(0,0.025)C.(0.025,1)D.(﹣0.025,0)6.设函数f(x)=1+sin2x ,则等于()A.﹣2B.0C.3D.27.一个物体的运动方程为s=t2﹣t+2(其中s的单位是米,t的单位是秒),那么物体在t=4秒的瞬时速度是()A.6米/秒B.7米/秒C.8米/秒D.9米/秒8.若小球自由落体的运动方程为s(t )=(g为常数),该小球在t=1到t=3的平均速度为,在t=2的瞬时速度为v2,则和v2关系为()A .>v2B .<v2C .=v2D.不能确定9.已知函数f(x)在x=x0处可导,若=1,则f'(x0)=()A.2B.1C .D.010.一物体做直线运动,其位移s(单位:m)与时间t(单位:s)的关系是s=5t﹣t2,则该物体在t=3s时的瞬时速度是()A.﹣1m/s B.1m/s C.2m/s D.6m/s11.一质点按规律s=2t3运动,则其在时间段[1,2]内的平均速度为_____m/s,在t=1时的瞬时速度为_____m/s.()A.12,3B.10,5C.14,6D.16,6 12.若函数f(x)=ax3﹣3x2+x+8存在极值点,则实数a的取值范围是()A.(﹣∞,3)B.(﹣∞,3]C.(﹣∞,0)∪(0,3]D.(﹣∞,0)∪(0,3)13.在函数y=x2图象上取一点(1,1)及附近一点(1+△x,1+△y),则为()A.4△x+2△x2B.4+2△x C.△x+2D.4+△x 14.对于函数,当△x=2.018时,△y的值是()A.2018B.﹣2018C.0D.不能确定15.函数f(x)=x3﹣e x的图象在x=1处的切线斜率为()A.3B.3﹣e C.3+e D.e16.若函数f(x)=2lnx+4x2+bx+5的图象上的任意一点的切线斜率都大于0,则b的取2值范围是()A.(﹣∞,﹣8)B.(﹣8,+∞)C.(﹣∞,8)D.(8,+∞)17.已知函数f(x)在R上可导,其部分图象如图所示,设k =,则下列不等式正确的是()A.k<f'(x1)<f'(x2)B.f'(x1)<k<f'(x2)C.f'(x2)<f'(x1)<k D.f'(x1)<f'(x2)<k18.曲线在x=1处的切线的倾斜角为α,则的值为()A .B .C .D .19.函数y=f(x)的图象如图所示,f′(x)是函数f(x)的导函数,下列数值排序正确的是()A.f′(2)<f′(3)<f(3)﹣f(2)<0B.f′(3)<f′(2)<f(3)﹣f(2)<0C.f(3)﹣f(2)<f′(3)<f′(2)<0D.f′(2)<f(3)﹣f(2)<f′(3)<020.已知函数f(x)的图象如图,设f′(x)是f(x)的导函数,则()A.f′(2)<f′(3)<f(3)﹣f(2)3B.f′(3)<f′(2)<f(3)﹣f(2)C.f(3)﹣f(2)<f′(2)<f′(3)D.f′(3)<f(3)﹣f(2)<f′(2))21.已知函数f(x)在R上有导函数,f(x)图象如图所示,则下列不等式正确的是(C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)22.已知函数f(x)在x=x0处的导数为12,则=()A.﹣4B.4C.﹣36D.3623.已知函数,则=()A.4B.2C.﹣2D.﹣424.下列函数中,当x>0时,随x的增大,增长速度最快的是()A.y=x B.y=2x C.y=3x D .25.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()A .B .C .D .4二.填空题(共25小题)26.已知函数f(x)可导且f′(1)=﹣2,则=.27.已知函数f(x)是可导函数,且f'(a)=1,则等于.28.函数f(x)=3x2在[2,6]内的平均变化率为.29.函数f(x)=sin x在[﹣,]上的平均变化率是.30.质点运动的速度v=(18t﹣3t2)m/s,则质点由开始运动到停止运动所走过的路程是.31.若某物体运动规律是S=t3﹣6t2+5(t>0),则在t=时的瞬时速度为0.32.某汽车启动阶段的路程函数S=2t3﹣3t2(t的单位是s,S的单位是m),则t=2时,汽车的瞬时速度为m/s.33.已知一质点的运动方程为s=2﹣t2,则该质点在一段时间[0,2]内的平均速度为.34.设函数f(x)在x=1处存在导数为2,则=.35.某物体做直线运动,其运动规律是(t的单位是秒,s的单位是米),则它在t=2的瞬时速度为.(单位:米/秒)36.已知函数y=x2+1在区间[1,1+△x]上的平均变化率是.37.某物体作直线运动,其位移S与时间t的运动规律为(t的单位为秒,S 的单位为米),则它在第4秒末的瞬时速度应该为米/秒.38.若曲线y=x3﹣x2在点P处的切线l与直线y=﹣x垂直,则切线l的方程为.39.已知函数f(x)=sin x,则=40.设函数f(x)的导数为f′(x),且f(x)=x3+f′()x2﹣x,则f′(1)=.41.曲线f(x)=3﹣,在点(0,3)处的切线方程为.42.已知P为函数y=lnx图象上任意一点,点Q为圆x2+(y﹣e2﹣1)2=1上任意一点,则线段PQ长度的最小值为.43.函数f(x)的图象在x=2处的切线方程为2x+y﹣3=0,则f(2)+f'(2)=.44.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.5645.如图函数f (x )的图象在点P 处的切线为:y =﹣2x +5,则f (2)+f ′(2)= .46.函数y =(x ﹣1)e x 的图象在点(1,0)处的切线的斜率是 . 47.若曲线y =e x +e﹣x的一条切线的斜率是,则切点的横坐标为 .48.已知曲线f (x )=ax 2﹣lnx 在点(2,f (2))处的切线斜率为,则f (x )的最小值为 .49.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f ′(1)= .50.一个物体的位移s (米)和与时间t (秒)的关系为s =4﹣2t +t 2,则该物体在3秒末的瞬时速度是 .参考答案与试题解析一.选择题(共25小题)1.已知函数y=f(x),其导函数y=f'(x)的图象如图,则对于函数y=f(x)的描述正确的是()A.在(﹣∞,0)上为减函数B.在x=0处取得最大值C.在(4,+∞)上为减函数D.在x=2处取得最小值【分析】结合图象,求出函数的单调区间,在判断函数的最值.【解答】解:当0<x<2或x>4时,f′(x)<0,故函数f(x)在(0,2),(4,+∞)上单调递减,当2<x<4或x<0时,f′(x)>0,故函数f(x)在(2,4)(﹣∞,0)上单调递增,∴当x=0或x=4时函数取的极大值,∴函数f(x)最大值为,max{f(0),f(4)},无最小值,故选:C.【点评】本题考查了导数和函数的单调性和极值,最值的关系,属于中档题.2.如果某物体的运动方程为S=2(1﹣t2)(S的单位为m,t的单位为S),那么其在1.2S 末的瞬时速度为()A.﹣4.8m/S B.﹣0.88m/S C.0.88m/S D.2.8m/S【分析】根据瞬时变化率和导数的关系求解即可.【解答】解:∵S′=﹣4t,∴在1.2S末的瞬时速度为S′|t=1.2=(﹣4)×1.2=﹣4.8,故选:A.【点评】本题考查了瞬时变化率和导数,考查常见函数的导数,考查计算能力,属于基础题.3.如果函数y=f(x)的导函数的图象如图所示,给出下列判断:7①函数y=f(x )在区间内单调递增;②当x=﹣2时,函数y=f(x)有极小值;③函数y=f(x)在区间(﹣2,2)内单调递增;④当x=3时,函数y=f(x)有极小值.则上述判断中正确的是()A.①②B.②③C.③④D.③【分析】利用使f′(x)>0的区间是增区间,使f′(x)<0的区间是减区间,导数等于零的值是极值,先增后减是极大值,先减后增是极小值分别对①②③④进行逐一判定【解答】解:对于①,函数y=f(x)在区间(﹣3,﹣)内有增有减,故①不正确;对于②,当x=﹣2时,函数y=f(x)有极小值,故②正确;对于③,函数y=f(x)当x∈(﹣2,2)时,恒有f′(x)>0,则函数y=f(x)在区间(﹣2,2)内单调递增,故③正确;对于④,当x=3时,f′(x)≠0,故④不正确.故选:B.【点评】本题考查了通过导函数图象判定原函数的单调性,以及极值问题,属于易错题.4.已知函数f(x)=(x3﹣2x)e x ,则的值为()A.﹣e B.1C.e D.0【分析】先求导,根据导数的定义可得=f′(1),代值计算即可.【解答】解:∵f(x)=(x3﹣2x)e x,∴f′(x)=(x3+3x2﹣2x﹣2)e x,8∴=f′(1)=(1+3﹣2﹣2)e=0,故选:D.【点评】本题考查了导数的定义和求导法则,属于基础题.5.若函数f(x)=x2由x=1至x=1+△x的平均变化率的取值范围是(1.975,2.025),则增量△x的取值范围为()A.(﹣0.025,0.025)B.(0,0.025)C.(0.025,1)D.(﹣0.025,0)【分析】利用平均变化率的意义即可得出.【解答】解∵函数f(x)在区间[1,1+△x]上的增量△y=f(1+△x)﹣f(1)=(△x+1)2﹣12=△x2+2△x∴f(x)在区间[1,1+△x]上上的平均变化率为=△x+2∵△x+2∈(1.975,2.025),∴△x∈(﹣0.025,0.025),故选:A.【点评】本题考查了平均变化率的意义及其求法,属于基础题.6.设函数f(x)=1+sin2x ,则等于()A.﹣2B.0C.3D.2【分析】利用导数的定义,即可得出结论.【解答】解:∵f′(x)=2cos2x,∴.故选:D.【点评】本题考查导数的定义,考查学生的计算能力,比较基础.7.一个物体的运动方程为s=t2﹣t+2(其中s的单位是米,t的单位是秒),那么物体在t=4秒的瞬时速度是()A.6米/秒B.7米/秒C.8米/秒D.9米/秒【分析】根据导数的物理意义,求出函数在t=4处的导数即可.【解答】解:∵s=s(t)=t2﹣t+2,∴s'(t)=2t﹣1,∴根据导数的物理意义可知物体在4秒末的瞬时速度为为s'(4),即s'(4)=2×4﹣1=7(米/秒),故选:B.9【点评】本题主要考查导数的物理意义,根据导数的公式直接进行计算即可,比较基础.8.若小球自由落体的运动方程为s(t )=(g为常数),该小球在t=1到t=3的平均速度为,在t=2的瞬时速度为v2,则和v2关系为()A .>v2B .<v2C .=v2D.不能确定【分析】求函数的导数,根据导数的物理意义进行求解即可.【解答】解:平均速度为===2g,∵s(t )=,∴s′(t)=gt,t=2的瞬时速度为v2,∴v2=s′(2)=g×2=2g,∴=v2故选:C.【点评】本题主要考查导数的计算和函数的变化率,比较基础.9.已知函数f(x)在x=x0处可导,若=1,则f'(x0)=()A.2B.1C .D.0【分析】根据题意,由极限的性质分析可得=2×,由导数的定义分析可得答案.【解答】解:根据题意,若=2×=2f′(x0)=1,则f'(x0)=,故选:C.【点评】本题考查导数的定义,涉及极限的性质,属于基础题.1010.一物体做直线运动,其位移s(单位:m)与时间t(单位:s)的关系是s=5t﹣t2,则该物体在t=3s时的瞬时速度是()A.﹣1m/s B.1m/s C.2m/s D.6m/s【分析】根据题意,求出s=5t﹣t2,令t=3计算可得答案.【解答】解:根据题意,位移s与时间t的关系是s=5t﹣t2,其导数s′(t)=5﹣2t,则有s′(3)=5﹣2×3=﹣1,即该物体在t=3s时的瞬时速度是﹣1m/s;故选:A.【点评】本题考查导数的几何意义,涉及变化率的计算,属于基础题.11.一质点按规律s=2t3运动,则其在时间段[1,2]内的平均速度为_____m/s,在t=1时的瞬时速度为_____m/s.()A.12,3B.10,5C.14,6D.16,6【分析】根据题意,由变化率公式可得在时间段[1,2]内的平均速度为=,计算可得答案,求出函数的导数,进而可得s′(1)的值,由瞬时变化率公式计算可得答案.【解答】解:根据题意,一质点按规律s=2t3运动,则其在时间段[1,2]内的平均速度为==14m/s,其导数s′(t)=6t2,则s′(1)=6,则在t=1时的瞬时速度为6m/s故选:C.【点评】本题考查变化率的计算,关键是掌握变化率与瞬时变化率的定义,属于基础题.12.若函数f(x)=ax3﹣3x2+x+8存在极值点,则实数a的取值范围是()A.(﹣∞,3)B.(﹣∞,3]C.(﹣∞,0)∪(0,3]D.(﹣∞,0)∪(0,3)【分析】由函数的极值得:①当a=0时,x =为函数的极值点,②当a≠0时,函数存在极值点,则△=36﹣12a>0,解得a<3且a≠0,综合①②得:实数a的取值范围是a<3,得解.【解答】解:因为f(x)=ax3﹣3x2+x+8,所以f′(x)=3ax2﹣6x+1,11又f(x)=ax3﹣3x2+x+8存在极值点,①当a=0时,x =为函数的极值点,②当a≠0时,函数存在极值点,则△=36﹣12a>0,解得a<3且a≠0,综合①②得:实数a的取值范围是a<3,故选:A.【点评】本题考查了函数的极值,属简单题.13.在函数y=x2图象上取一点(1,1)及附近一点(1+△x,1+△y),则为()A.4△x+2△x2B.4+2△x C.△x+2D.4+△x【分析】先算出函数值的变化量与自变量的变化量的比值,再化简即可求得.【解答】解:△y=(1+△x)2﹣1=(△x)2+2△x,∴=△x+2,故选:C.【点评】本题主要考查变化的快慢与变化率.通过计算函数值的变化来解,比较简单.14.对于函数,当△x=2.018时,△y的值是()A.2018B.﹣2018C.0D.不能确定【分析】根据函数的变化率即可判断.【解答】解:∵函数y =,∴△y =﹣═∵△x=2.018,∴△y =,不确定,故选:D.【点评】本题考查了变化量的概念,属于容易题,难度不大.15.函数f(x)=x3﹣e x的图象在x=1处的切线斜率为()A.3B.3﹣e C.3+e D.e【分析】根据题意,求出函数的导数,即可得f′(1)的值,由导数的几何意义分析可得答案.12【解答】解:根据题意,函数f(x)=x3﹣e x,其导数f′(x)=3x2﹣e x,则f′(1)=3﹣e,即函数f(x)=x3﹣e x的图象在x=1处的切线斜率k=3﹣e;故选:B.【点评】本题考查导数的几何意义,涉及导数的计算,属于基础题.16.若函数f(x)=2lnx+4x2+bx+5的图象上的任意一点的切线斜率都大于0,则b的取值范围是()A.(﹣∞,﹣8)B.(﹣8,+∞)C.(﹣∞,8)D.(8,+∞)【分析】根据题意,分析函数的定义域,求出其导数,由导数的几何意义分析可得f′(x )=+8x+b>0在(0,+∞)上恒成立,变形可得b >﹣(+8x)在(0,+∞)上恒成立,结合基本不等式的性质分析可得答案.【解答】解:根据题意,函数f(x)=2lnx+4x2+bx+5,其定义域为(0,+∞),其导数f′(x )=+8x+b,若函数f(x)的图象上的任意一点的切线斜率都大于0,则有f′(x )=+8x+b>0在(0,+∞)上恒成立,变形可得b >﹣(+8x)在(0,+∞)上恒成立,又由+8x≥2×=8,当且仅当x =时等号成立,即+8x有最小值8,若b >﹣(+8x)在(0,+∞)上恒成立,必有b>﹣8,即b的取值范围为(﹣8,+∞);故选:B.【点评】本题考查函数导数的几何意义,涉及函数的最值,属于基础题.17.已知函数f(x)在R上可导,其部分图象如图所示,设k =,则下列不等式正确的是()A.k<f'(x1)<f'(x2)B.f'(x1)<k<f'(x2)C.f'(x2)<f'(x1)<k D.f'(x1)<f'(x2)<k【分析】根据图象及导数的几何意义即可判断.13【解答】解:函数的增长越来越快,所以函数在该点的斜率越来越大,∴f′(x1)<k<f′(x2).故选:B.【点评】本题考查了导数的几何意义以及函数的变化率,属于基础题.18.曲线在x=1处的切线的倾斜角为α,则的值为()A .B .C .D .【分析】曲线在x=1处的切线的倾斜角为α,所以y′|x=1=tanα,所以=﹣sin2α=﹣=﹣,将tanα代入即可.【解答】解:依题意,y ′=+,所以tanα==3,所以=﹣sin2α=﹣=﹣=﹣=﹣,故选:D.【点评】本题考查了导数的几何意义,直线的倾斜角与斜率,三角恒等变换,属于基础题.19.函数y=f(x)的图象如图所示,f′(x)是函数f(x)的导函数,下列数值排序正确的是()A.f′(2)<f′(3)<f(3)﹣f(2)<0B.f′(3)<f′(2)<f(3)﹣f(2)<0C.f(3)﹣f(2)<f′(3)<f′(2)<0D.f′(2)<f(3)﹣f(2)<f′(3)<0【分析】根据题意,设M(2,f(2))、N(3,f(3))为函数的上的点,由导数的几何意义分析可得f′(3)与f′(2)的几何意义,又由f(3)﹣f(2)=,为直线MN的斜率,结合图象分析可得答案.【解答】解:根据题意,设M(2,f(2))、N(3,f(3))为函数的上的点,则f′(2)为函数f(x)在x=2处切线的斜率,14f′(3)为函数f(x)在x=3处切线的斜率,f(3)﹣f(2)=,为直线MN的斜率,结合图象分析可得f′(2)<f(3)﹣f(2)<f′(3)<0;故选:D.【点评】本题考查导数的几何意义,涉及直线的斜率大小比较,属于基础题.20.已知函数f(x)的图象如图,设f′(x)是f(x)的导函数,则()A.f′(2)<f′(3)<f(3)﹣f(2)B.f′(3)<f′(2)<f(3)﹣f(2)C.f(3)﹣f(2)<f′(2)<f′(3)D.f′(3)<f(3)﹣f(2)<f′(2)【分析】由题意,分析f′(3)、f(3)﹣f(2)、f′(2)所表示的几何意义,结合图形分析可得答案.【解答】解:根据题意,由导数的几何意义:f′(3)表示函数在x=3处切线的斜率,f′(2)表示函数在x=2处切线的斜率,f(3)﹣f(2)=,为点(2,f(2))和点(3,f(2))连线的斜率,结合图象可得:0<f′(3)<f(3)﹣f(2)<f′(2),故选:D.【点评】本题考查导数的几何意义,涉及直线的斜率比较,属于基础题.21.已知函数f(x)在R上有导函数,f(x)图象如图所示,则下列不等式正确的是()15A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)【分析】根据题意,由导数的几何意义可得f′(a)、f′(b)、f′(c)分析函数在x=a、x=b和x=c处切线的斜率,结合函数的图象分析可得答案.【解答】解:根据题意,f′(a)、f′(b)、f′(c)分析函数在x=a、x=b和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选:A.【点评】本题考查导数的几何意义,注意比较函数的切线的斜率,属于基础题.22.已知函数f(x)在x=x0处的导数为12,则=()A.﹣4B.4C.﹣36D.36【分析】根据题意,由极限的性质可得则=×,结合导数的定义计算可得答案.【解答】解:根据题意,函数f(x)在x=x0处的导数为12,则=×==4;故选:B.【点评】本题考查极限的计算以及导数的定义,属于基础题.23.已知函数,则=()A.4B.2C.﹣2D.﹣4【分析】根据函数的导数的极限定义进行转化求解得2f′(0),然后求函数的导数即可.【解答】解:=2=2f′(0),16∵,∴f′(x)=3x﹣2e x,则f′(0)=0﹣2e0=﹣2,则2f′(0)=﹣4,故选:D.【点评】本题主要考查函数的导数的计算,结合导数的极限定义进行转化是解决本题的关键.24.下列函数中,当x>0时,随x的增大,增长速度最快的是()A.y=x B.y=2x C.y=3x D .【分析】根据题意,依次计算函数的导数,比较导数的大小,由导数的几何意义分析可得答案.【解答】解:根据题意,依次分析选项:对于A,y=x,其导数y′=1,对于B,y=2x,其导数y′=2x ln2,对于C,y=3x,其导数y′=3x ln3,对于D,y=log3x,其导数y ′=,分析可得:随x的增大,增长速度最快的是y=3x,故选:C.【点评】本题考查函数单调性的性质以及判定,注意导数的几何意义,25.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()A .B .17C .D .【分析】先从f(x)的图象判断出f(x)的单调性,根据函数的单调性与导函数的符号的关系判断出导函数的符号,判断出导函数的图象【解答】解:由f(x)的图象判断出可得从左到右函数的单调性在y轴左侧先增,再减,在y轴的右侧,函数单调递减,∴导函数y=f′(x)的图象可能为区间(﹣∞,0)内,先有f′(x)>0,再有f′(x)<0,在(0,+∞)再有f′(x)>0.故选:A.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,属于基础题二.填空题(共25小题)26.已知函数f(x)可导且f′(1)=﹣2,则=1.【分析】先根据导数定义得出f'(x o)=,再计算即可.【解答】解:根据导数的定义,==﹣f'(x )=1,故答案为:1.【点评】本题主要考查了导数的定义,属于基础题.27.已知函数f(x)是可导函数,且f'(a)=1,则等于3.【分析】根据题意,由极限的运算公式可得=3×=3f'(a),计算即可得答案.【解答】解:根据题意,函数f(x)中,f'(a)=1,=3×=3f'(a)=3;故答案为:3.【点评】本题考查导数的定义,涉及极限的运算,属于基础题.28.函数f(x)=3x2在[2,6]内的平均变化率为24.18【分析】根据题意,由平均变化率的计算公式可得=,进而计算可得答案.【解答】解:根据题意,函数f(x)=3x2,其在区间[2,6]内的平均变化率===24;故答案为:24.【点评】本题考查变化率的计算,关键是掌握变化率的计算公式,属于基础题.29.函数f(x)=sin x在[﹣,]上的平均变化率是.【分析】利用平均变化率的定义即可求出.【解答】解:函数f(x)=sin x在[﹣,]上的平均变化率为:==故答案为:【点评】本题考查了平均变化率的定义及其求法问题,是基础题.30.质点运动的速度v=(18t﹣3t2)m/s,则质点由开始运动到停止运动所走过的路程是108.【分析】由速度为0求出t的值为0和6,求出速度函数在[0,6]上的定积分即可.【解答】解:由18t﹣3t2=0,得t=0或t=6.当t∈[0,6]时,质点运动的路程为S=(18t﹣3t2)dt==﹣63+9×62=108;故答案为:108.【点评】本题考查了定积分,考查了定积分的物理意义,关键是对题意的理解,是基础题.31.若某物体运动规律是S=t3﹣6t2+5(t>0),则在t=4时的瞬时速度为0.【分析】利用导数的几何意义即可得出.【解答】解:∵质点按规律S=t3﹣6t2+5运动,∴S′=3t2﹣12t,令S′=3t2﹣12t=0,解得t=4,∴质点在4s时的瞬时速度为0.19故答案为:4【点评】本题考查的知识点是变化的快慢与变化率,其中根据质点位移与时间的关系时,求导得到质点瞬时速度的表达式是解答本题的关键.32.某汽车启动阶段的路程函数S=2t3﹣3t2(t的单位是s,S的单位是m),则t=2时,汽车的瞬时速度为12m/s .【分析】根据导数的物理意义,计算函数s(t)=2t 3﹣3t2的导数,将t=2代入其中,计算即可得答案.【解答】解:根据题意,位移s与时间t的关系是s(t)=2t3﹣3t2,则s′(t)=6t2﹣6t,则s′(2)=24﹣12=12,即t=2s时,汽车的瞬时速度为12m/s,故答案为:12.【点评】本题主要考查导数的物理意义,以及导数的基本运算,属于简单题.33.已知一质点的运动方程为s=2﹣t2,则该质点在一段时间[0,2]内的平均速度为﹣2.【分析】别求出经过0秒种的位移与经过2秒种的位移,根据平均速度的求解公式平均速度=位移÷时间,建立等式关系即可.【解答】解:由题意==﹣2,故答案为:﹣2【点评】本题主要考查了函数的平均变化率公式,注意平均速度与瞬时速度的区别,属于基础题.34.设函数f(x)在x=1处存在导数为2,则=.【分析】利用极限概念直接求解.【解答】解:==f′(1)=故答案为:【点评】本题考查函数的极限的求法,是基础题,解题时要认真审题,注意极限定义的合理运用.35.某物体做直线运动,其运动规律是(t的单位是秒,s的单位是米),则它在t=2的瞬时速度为.(单位:米/秒)20【分析】根据题意,求出s=t2+的导数,分析可得该物体在2秒末的瞬时速度就是t=2时的导数值,将t=2代入导数即可得答案.【解答】解:根据题意,s=t2+,则其导数s′=2t﹣,该物体在3秒末的瞬时速度就是t=3时的导数值,即s′|t=2=4﹣=,故答案为:.【点评】本题考查导数的意义,关键明确导数的意义.36.已知函数y=x2+1在区间[1,1+△x]上的平均变化率是2+△x.【分析】利用平均变化率的意义即可得出.【解答】解:函数y=x2+1在区间[1,1+△x]上的平均变化率为:=2+△x.故答案为:2+△x.【点评】本题考查了平均变化率的意义及其求法,属于基础题.37.某物体作直线运动,其位移S与时间t的运动规律为(t的单位为秒,S 的单位为米),则它在第4秒末的瞬时速度应该为米/秒.【分析】物理中的瞬时速度常用导数来求,故求出S的导数,代入4求值.【解答】解:,∴S′=1+,∴它在4秒末的瞬时速度为1+=,故答案为:.【点评】本题考查变化的快慢与变化率,解答本题关键是理解导数的物理意义,由此转化为求导数的问题.38.若曲线y=x3﹣x2在点P处的切线l与直线y=﹣x垂直,则切线l的方程为y=x ﹣1或.【分析】根据题意可设P,并且可据题意得出y=x3﹣x2在点P 处的切线斜率为1,从而可得出,解出x0,从而可得出点P的坐标,根据直线的点斜式方程进而求出切线的方程.【解答】解:据题意设P,且y=x3﹣x2在点P处的切线斜率为1,y′=3x2﹣2x,∴,解得,或1,∴,或P(1,0),∴切线l的方程为或y=x﹣1.故答案为:或y=x﹣1.【点评】本题考查了相互垂直的直线的斜率的关系,导数的几何意义,直线的点斜式方程,考查了计算能力,属于基础题.39.已知函数f(x)=sin x,则=﹣2【分析】根据题意,由极限的运算性质可得=2×=2f′(π),结合导数的计算公式求出f′(π)的值,即可得答案.【解答】解:根据题意,=2×=2f′(π),又由f(x)=sin x,则f′(x)=cos x,则有f′(π)=cosπ=﹣1,则=﹣2;故答案为:﹣2.【点评】本题考查导数的计算以及导数的定义,涉及极限的计算,属于基础题.40.设函数f(x)的导数为f′(x),且f(x)=x3+f′()x2﹣x,则f′(1)=0.【分析】根据题意,求出函数的导数f′(x)=3x2+2f′()x﹣1,令x=可得:f′()=3()2+2f′()x﹣1,解可得f′()的值,即可得f′(x)的解析式,将x=1代入计算可得答案.【解答】解:根据题意,f(x)=x3+f′()x2﹣x,其导数f′(x)=3x2+2f′()x﹣1,令x=可得:f′()=3()2+2f′()•﹣1,解可得f′()=﹣1,则f′(x)=3x2﹣2x﹣1,故f′(1)=3﹣2﹣1=0,故答案为:0.【点评】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.41.曲线f(x)=3﹣,在点(0,3)处的切线方程为x+y﹣3=0.【分析】由导数的几何意义得:f′(0)=﹣1,所以在点(0,3)处的切线方程为y﹣3=﹣x,即x+y+3=0,得解.【解答】解:由f(x)=3﹣,则f′(x)=,所以f′(0)=﹣1,所以在点(0,3)处的切线方程为y﹣3=﹣x,即x+y﹣3=0,故答案为:x+y﹣3=0.【点评】本题考查了导数的几何意义,属简单题.42.已知P为函数y=lnx图象上任意一点,点Q为圆x2+(y﹣e2﹣1)2=1上任意一点,则线段PQ长度的最小值为e﹣1.【分析】圆x2+(y﹣e2﹣1)2=1的圆心坐标为:C(0,e2+1).y=lnx对x求导可得:y′=.设与曲线y=lnx相切的切点为M(x0,lnx0),且满足CM与切线垂直.可得•=﹣1,解得x0,进而得出答案.【解答】解:圆x2+(y﹣e2﹣1)2=1的圆心坐标为:C(0,e2+1).y=lnx对x求导可得:y′=.设与曲线y=lnx相切的切点为M(x0,lnx0),且满足CM与切线垂直.则•=﹣1,化为:lnx0+﹣e2﹣1=0,令g(x)=lnx+x2﹣e2﹣1在(0,+∞)上单调递增,且g(e)=0.∴x0=e.∴切点为:(e,1).∴线段PQ长度的最小值=﹣1=e﹣1.故答案为:e﹣1.【点评】本题考查了导数的几何意义、直线与圆的位置关系、斜率计算公式,考查了推理能力与计算能力,属于难题.43.函数f(x)的图象在x=2处的切线方程为2x+y﹣3=0,则f(2)+f'(2)=﹣3.【分析】先将x=2代入切线方程可求出f(2),再由切点处的导数为切线斜率可求出f'(2)的值,最后相加即可.【解答】解:由已知切点在切线上,所以f(2)=﹣1,切点处的导数为切线斜率,所以f'(2)=﹣2,所以f(2)+f′(2)=﹣3.故答案为:﹣3.【点评】本题主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率.44.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=1.【分析】求导数得出f′(x)=3ax2+2bx+c,由图象可看出,x=﹣1,2是f(x)的两个极值点,从而得出x=﹣1,2是方程3ax2+2bx+c=0的两实数根,根据韦达定理即可得出,从而得出,从而得到.【解答】解:f′(x)=3ax2+2bx+c;根据图象知,x=﹣1,2是f(x)的两个极值点;∴x=﹣1,2是方程3ax2+2bx+c=0的两实数根;根据韦达定理,;∴2b=﹣3a,c=﹣6a;∴.故答案为:1.【点评】考查基本初等函数的求导,函数极值点的定义,根据函数导数求极值点的方法.45.如图函数f(x)的图象在点P处的切线为:y=﹣2x+5,则f(2)+f′(2)=﹣1.【分析】根据导数的几何意义和切线方程求出f′(2),把x=2代入切线方程求出f (2),代入即可求出f(2)+f′(2)的值.【解答】解:∵函数y=f(x)的图象在点x=2处的切线方程是y=﹣2x+5,∴f′(2)=﹣2,f(2)=﹣4+5=1,∴f(2)+f′(2)=﹣2+1=﹣1,故答案为:﹣1【点评】本题考查导数的几何意义,以及切点在切线上的灵活应用,属于基础题.46.函数y=(x﹣1)e x的图象在点(1,0)处的切线的斜率是e.【分析】根据在函数图象上某点的切线的斜率是该函数在该点的导数值,从而只需求函数y=(x﹣1)e x在点(1,0)处的导数即可.【解答】解:y′=xe x,∴x=1时,y′=e,∴y=(x﹣1)e x的图象在点(1,0)处的切线的斜率为e.故答案为:e.【点评】本题考查了导数的几何意义,基本初等函数积的导数的求导公式,考查了计算能力,属于基础题.47.若曲线y=e x+e﹣x的一条切线的斜率是,则切点的横坐标为ln2.【分析】设切点的横坐标为x0,求导数由题意可得x0的方程,解方程可得.【解答】解:∵f(x)=e x+e﹣x,∴f′(x)=e x﹣e﹣x,设切点的横坐标为x0,可得e x0﹣e﹣x0=整理可得2()2﹣3﹣2=0,解得=2,或=(舍去)∴x0=ln2故答案为:ln2【点评】本题考查导数值与切线斜率的关系,涉及一元二次方程的求解,属基础题.48.已知曲线f(x)=ax2﹣lnx在点(2,f(2))处的切线斜率为,则f(x)的最小值为.【分析】求出函数的导数,得到关于a的方程,求出a的值,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.【解答】解:f′(x)=2ax﹣,f′(2)=4a﹣=,解得:a=,故f(x)=x2﹣lnx,f′(x)=x﹣=,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,故f(x)在(0,1)递减,在(1,+∞)递增,故f(x)min=f(1)=,故答案为:.【点评】本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.49.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=3.【分析】因为切点坐标一定满足切线方程,所以据此可以求出f(1)的值,又因为切线的斜率是函数在切点处的导数,就可求出f′(1)的值,把f(1)和f′(1)代入即可.【解答】解:∵点M(1,f(1))是切点,∴点M在切线上,∴f(1)=+2=,∵函数y=f(x)的图象在点M(1,f(1))处的切线的方程是y=x+2,∴切线斜率是,即f′(1)=,∴f(1)+f'(1)=+=3.故答案为:3.【点评】本题主要考查函数的切线斜率与导数的关系,属于导数的几何意义的应用,属于基础题.50.一个物体的位移s(米)和与时间t(秒)的关系为s=4﹣2t+t2,则该物体在3秒末的瞬时速度是4米/秒.【分析】此类运动问题中瞬时速度问题的研究一般借助函数的导数求其某一时刻的瞬时速度,解答本题可以先求s=4﹣2t+t2的导数,再求得t=3秒时的导数,即可得到所求的瞬时速度.【解答】解:∵一个物体的位移s(米)和与时间t(秒)的关系为s=4﹣2t+t2,∴s′=2t﹣2∴该物体在3秒末的瞬时速度是s′|x=3=2×3﹣2=4米/秒,故答案为4米/秒.【点评】本题主要考查了变化的快慢与变化率,正确解答本题关键是理解导数的物理意义,属于基础题.。
高三数学导数试题答案及解析
高三数学导数试题答案及解析1.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】因为的定义域为,又,由,得.当时,,当时,据题意,,解得.故选B.【考点】应用导数研究函数的单调性2.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.3.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.4.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.5.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。
从而在上单调递减,在上单调递增. 6分(Ⅱ)由(Ⅰ)知在上单调递增,故在上的最大值为最小值为 10分从而对任意有,而当时,,从而12分【考点】1.利用导数研究函数的单调性;2.利用导数求函数的最值;3.正余弦函数的取值范围.6.曲线在点处的切线方程为 .【答案】【解析】∵,∴,∴,∴切线方程为,即.【考点】用导数求切线方程.7.过坐标原点与曲线相切的直线方程为 .【答案】【解析】设切点坐标为,∵,∴,∴,∴切线方程为,又∵在切线上,∴即,又∵在曲线上,∴,∴,∴切线方程为即.【考点】过点求切线.8.已知函数,则函数的图象在点处的切线方程是 .【答案】【解析】,由得,切线斜率为,所以切线方程为,即.【考点】1.直线方程;2.导数的几何意义.9.已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.(Ⅰ)求a,b,c的值;(Ⅱ)求证:.【答案】(Ⅰ),,;(Ⅱ)详见解析.【解析】(Ⅰ)利用导数的几何意义求、,利用导数导数法判断单调性,用函数的最值积恒成立求;(Ⅱ)构造新函数,利用导数法求的最小值,利用结合(Ⅰ)中的结论进行证明.试题解析:(Ⅰ),,,,. (2分),由于,所以当时,是增函数,当时,是减函数,,由恒成立,,即恒成立,①(4分)令,则,在上是增函数,上是减函数,,即,当且仅当时等号成立 .,由①②可知,,所以. (6分)(Ⅱ)证法一:所求证不等式即为.设,,当时,是减函数,当时,是减函数,,即. (8分)由(Ⅰ)中结论②可知,,,当时,,从而 (10分).(或者也可)即,原不等式成立. (12分)【考点】导数法判断函数的单调性,恒成立,不等式的证明.10.曲线C:在x=0处的切线方程为________.【答案】【解析】因为,,所以,,曲线在点处的切线的斜率为,曲线在点处的切线的方程为,故答案为.【考点】导数的几何意义11.已知,根据函数的性质、积分的性质和积分的几何意义计算的值为()A.B.C.D.【答案】B【解析】因为是奇函数,由定积分的性质【考点】考查定积分的简单计算.12.已知函数的导函数为(其中为自然对数的底数,为实数),且在上不是单调函数,则实数的取值范围是()A.B.C.D.【答案】D【解析】当时,,,在上恒成立,此时函数在上是单调递增函数,与题设条件矛盾,排除A、B选项,由于,故,函数的导函数,令,解不等式得,解不等式得,故函数在区间上单调递减,在上单调递增,故函数在处取得极小值,亦即最小值,由于函数在上不是单调函数,故函数存在变号零点,,由于,解得.【考点】函数的单调性与导数13.已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值;当,在处取得极小值,无极大值.(Ⅲ)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解,解得的取值范围是.综上,得的最大值为.此题的一二问考查的是最基本的函数切线问题及对极值含参情况的讨论,所以导数公式必需牢记,对于参数的讨论找到一个合理的分类标准做到不重不漏即可,可这往往又是学生最容易出现问题的地方.而第三问对于曲线是否无交点要懂得转化成函数零点或方程根的个数问题处理,这也是常规处理含参就比较麻烦,平时要多加练习.【考点】本小题主要考查函数与导数,两数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想.属综合要求比较高的难题.14.设,则的值为( )A.B.C.D.【答案】C【解析】根据题意,由于,那么可知,故选C.【考点】定积分的运算点评:主要是考查了分段函数的解析式以及定积分的计算,属于基础题。
高中数学导数练习题附答案
高中数学导数练习题附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 4.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 5.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 6.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.7.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 8.已知函数()1ln xf x x +=.(1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>.所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x -+-'=--=,且()10f =,由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min 11e e g x g ⎛⎫==- ⎪⎝⎭,当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦, 令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<; 当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤ ⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立. 所以a 的取值范围为[)1,+∞. 4.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 6.(1)1- (2)极小值32【解析】 【分析】(1)求导函数,结合(2)2f '=解方程即可;(2)令()0f x '=进而分析单调性,即可求出极值. (1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x'=+->,令()210f x x x'=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值()312f =.7.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦, 即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x ax a x a a f x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.8.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=, 令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.9.(1)25y x =+(2)0b =【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值.(1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+.(2)当1a =时,令函数()()()2e 11x g x f x b x =-=+--, 则()2f x ≥恒成立等价于()0g x ≥恒成立.又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值.又因为()00g =,所以0x =为g (x )的最小值点.所以ln(1)0b -=,解得0b =.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x xb x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级导数理科数学试题一、选择题:(每题5分,共60分)1. 若000(2)()lim 1x f x x f x x ∆→+∆-=∆,则0()f x '等于( C )A .2B .-2C . 12D .12-2.物体运动方程为4134S t =-,则2t =时瞬时速度为(D )A .2B .4C . 6D .83.函数sin y x =的图象上一点(3π处的切线的斜率为( D )A .1B .2C . 2D .124.设()ln f x x x =,若0'()2f x =,则0x =( B )A. 2eB. eC. ln 22 D. ln 25.曲线324y x x =-+在点(13),处的切线的倾斜角为( B )A .30°B .45°C .60°D .120°6.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( C )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-7.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( C )(A)-1<a<2 (B) -3<a<6 (C)a<-3或a>6 (D) a<-1或a>28.已知f(x)是定义域R上的增函数,且f(x)<0,则函数g(x)=x2f(x)的单调情况一定是( A )(A) 在(-∞,0)上递增(B)在(-∞,0)上递减(C)在R上递增(D)在R上递减9.曲线ln(21)y x=-上的点到直线230x y-+=的最短距离是( A )A.5B.25C.35D. 010.如果函数y=f(x)的图象如图所示,那么导函数y=)(xf'的图象可能是 (A )11. 已知x≥0,y≥0,x+3y=9,则x2y的最大值为( A )A.36B.18C.25D.4212.设函数1()ln(0),3f x x x x=->则()y f x=A在区间1(,1),(1,)ee内均有零点 B在区间1(,1),(1,)ee内均无零点C 在区间1(,1)e 内有零点,在区间(1,)e 内无零点.D 在区间1(,1)e内无零点,在区间(1,)e 内有零点. 解析:由题得x x x x f 33131)`(-=-=,令0)`(>x f 得3>x ;令0)`(<x f 得30<<x ;0)`(=x f 得3=x ,故知函数)(x f 在区间)3,0(上为减函数,在区间),3(+∞为增函数,在点 3=x 处有极小值03ln 1<-;又()0131)1(,013,31)1(>+=<-==ee f e e f f ,故选择D 。
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)13.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为 [-1,2] .14.已知x x f lg )(=,函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论:①0(3)(3)(2)(2)f f f f ''<<-<; ②0(3)(2)(3)(2)f f f f ''<<<-;③;0)()(2121>--x x x f x f ④.2)()()2(2121x f x f x x f +<+ 上述结论中正确结论的序号是 ①③ .15.对于函数2()(2)x f x x x e =-(1)(2,2)是()f x 的单调递减区间;(2)(f 是()f x 的极小值,f 是()f x 的极大值;(3)()f x 有最大值,没有最小值;(4)()f x 没有最大值,也没有最小值.其中判断正确的是___________(2)(4)_____.16.若函数52)(23+-+=x ax x x f 在区间(21,31)上既不是单调递增函数,也不是单调递 减函数,则实数a 的取值范围是___.( 25,45 )___________________。
三、解答题(本题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤.)17. (12分) 已知函数32()f x x bx cx d =+++的图象过点(0, 2)P ,且在点(1, (1))M f -- 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的 单调区间.(Ⅰ)由)(x f 的图象经过(0, 2)P ,知2d =,所以32()2f x x bx cx =+++.所以2()32f x x bx c '=++.由在(1, (1))M f --处的切线方程是670x y -+=,知6(1)70f ---+=,即(1)1f -=,(1)6f -=′.所以326,12 1.b c b c -+=⎧⎨-+-+=⎩ 即23,0.b c b c -=⎧⎨-=⎩解得3b c ==-.故所求的解析式是32()332f x x x x =--+.(Ⅱ)因为2()363f x x x '=--, 令23630x x --=,即2210x x --=,解得 11x =21x =.当1x <-1x >+()0f x '>,当11x <<()0f x '<,故32()332f x x x x =--+在(, 1-∞内是增函数,在(1 1+内是减函数,在 ),21(+∞+内是增函数.18.(12分)已知函数3()3f x x x =- (I )求函数()f x 在3[3,]2-上的最大值和最小值.(II )过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.解:(I )'()3(1)(1)f x x x =+-, ……………………………………………2分 当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >, 3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <,[1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,………………………………5分所以当3x =-时,min ()18f x =-当1x =-时,max ()2f x = ………………………………………………6分(II )设切点为3(,3)Q x x x -,则所求切线方程为32(3)3(1)()y x x x x x --=-- ………………………………………………8分由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--,解得0x =或3x = ………………………………………………10分 所以切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --= ………………………………………………12分19.(12分)已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围.解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121.(2)由题意知)1('f =0,即3-1+b=0,∴b=-2.x∈[-1,2]时,f(x)<c 2恒成立,只需f(x)在[-1,2]上的最大值小于c 2即可.因)(x f '=3x 2-x-2,令)(x f '=0,得x=1或x=-32.∵f(1)=-23+c,f(-,21)1(,2722)32c f c +=-+=f(2)=2+c.∴f(x)max =f(2)=2+c,∴2+c<c 2.解得c>2或c<-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).20.(本小题共12分) 给定函数x a ax x x f )1(3)(223-+-=和x a x x g 2)(+=(I)求证: )(x f 总有两个极值点;(II)若)(x f 和)(x g 有相同的极值点,求a 的值. 证明: (I)因为)]1()][(1([)1(2)('22--+-=-+-=a x a x a ax x x f ,令0)('=x f ,则1,121-=+=a x a x ,------------------------------------------2 分则当1-<a x 时, 0)('>x f ,当11+<<-a x a , '()0f x <所以1-=a x 为)(x f 的一个极大值点, -----------------------4分同理可证1+=a x 为)(x f 的一个极小值点.-------------------------------------5 分另解:(I)因为'22()2(1)f x x ax a =-+-是一个二次函数,且22(2)4(1)40a a ∆=---=>,-------------------------------------2分 所以导函数有两个不同的零点,又因为导函数是一个二次函数,所以函数()f x 有两个不同的极值点.---------------------------------------5 分(II) 因为222))((1)('x a x a x x a x g +-=-=,令0)('=x g ,则a x a x -==21, ---------------------------------------6分 因为)(x f 和)(x g 有相同的极值点, 且a x =1和1,1-+a a 不可能相等,所以当1+=-a a 时, 21-=a , 当1-=-a a 时, 21=a , 经检验, 21-=a 和21=a 时, a x a x -==21,都是)(x g 的极值点.--------------8分21.(12分)把边长为a 的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x ,容积为()V x .(Ⅰ)写出函数()V x 的解析式,并求出函数的定义域;(Ⅱ)求当x 为多少时,容器的容积最大?并求出最大容积.解:(Ⅰ)因为容器的高为x ,则做成的正三棱柱形容器的底边长为()a -----1分.则2())V x a x =- . -------------------------3分函数的定义域为). ------------------------- 4分(Ⅱ)实际问题归结为求函数()V x 在区间)上的最大值点. 先求()V x 的极值点.在开区间(0,)6内,22'()64V x ax =-+--------------------6分令'()0V x =,即令2260ax -+=,解得12,( x x ==舍去).因为1x =在区间)内,1x 可能是极值点. 当10x x <<时,'()0V x >;当1x x <<时,'()0V x <. ---------------------8分因此1x 是极大值点,且在区间)内,1x 是唯一的极值点,所以1x x ==是()V x 的最大值点,并且最大值 31()1854f a =即当正三棱柱形容器高为时,容器的容积最大为3154a .----22.(14分)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式;(II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取 值范围.解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即 36(1)0m m n -++=,所以36n m =+ ……………………………………3分(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦……4分 当0m <时,有211m >+,当x 变化时,()f x 与()f x '的变化如下表:11 ………………………………………………………………………………………………8分故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+ ⎪⎝⎭单调递减, 在2(1,1)m+单调递增,在(1,)+∞上单调递减.……………………………………………9分 (III )由已知得()3f x m '>,即22(1)20mx m x -++>…………………………10分又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-① 设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,……11分 所以22(1)0120(1)010g m m g ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<< 即m 的取值范围为4,03⎛⎫- ⎪⎝⎭………。