第三章 脂 类

合集下载

食品化学_脂质2部分

食品化学_脂质2部分
脂类化合物在酶作用或加热条件下发生水解, 脂类化合物在酶作用或加热条件下发生水解,释 酶作用或加热条件下发生水解 放出游离脂肪酸。 放出游离脂肪酸。 植物油在高温 高温条件下发生脂类水解反应 植物油在高温条件下发生脂类水解反应 动物组织在酶 动物组织在酶的作用下在宰杀后其脂肪水解产生 游离脂肪酸。 游离脂肪酸。 乳脂肪在微生物的作用下水解生成低级脂肪酸, 微生物的作用下水解生成低级脂肪酸 乳脂肪在微生物的作用下水解生成低级脂肪酸, 产生干酪味或酸败味。如牛奶、奶酪。 产生干酪味或酸败味。如牛奶、奶酪。
反式脂肪酸(Trans fatty acid) 反式脂肪酸
反式脂肪酸的危害: 反式脂肪酸的危害: 反式脂肪酸以两种形式影响我们: 反式脂肪酸以两种形式影响我们: 一种是扰乱我们所 吃的食品,一种是改变我们身体正常代谢途径。 吃的食品,一种是改变我们身体正常代谢途径。反式 脂肪酸像饱和脂肪酸一样, 脂肪酸像饱和脂肪酸一样,会增加血液中低密度脂蛋 白胆固醇含量, 白胆固醇含量,同时还会减少可预防心脏病的高密度 脂蛋白胆固醇含量,增加患冠心病的危险。 脂蛋白胆固醇含量,增加患冠心病的危险。反式脂肪 酸导致心血管疾病的几率是饱和脂肪酸的3-5倍 酸导致心血管疾病的几率是饱和脂肪酸的 倍,反式 脂肪酸还会增加人体血液的黏稠度,易导致血栓形成。 脂肪酸还会增加人体血液的黏稠度,易导致血栓形成。 此外,反式脂肪酸还会诱发肿瘤(乳腺癌)、哮喘、 )、哮喘 此外,反式脂肪酸还会诱发肿瘤(乳腺癌)、哮喘、 II型糖尿病、过敏等病症。反式脂肪酸对生长发育期 型糖尿病、 型糖尿病 过敏等病症。 的婴幼儿和成长中的青少年也有不良影响。 的婴幼儿和成长中的青少年也有不良影响。
酸性催化剂包括易溶于醇的催化剂(如硫酸、磺酸等) 酸性催化剂包括易溶于醇的催化剂(如硫酸、磺酸等)和 各种固体酸催化剂。 各种固体酸催化剂。 反应机理: 反应机理:

第三章 脂 类

第三章  脂  类

第三章脂类一、定义脂类(lipids,脂质、类脂)由脂肪酸(C4以上的)和醇(包括甘油醇、鞘氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。

一般不溶于水,而溶于非极性溶剂(如乙醚、丙酮、氯仿等)的各类生物分子。

脂类都含有碳、氢、氧元素,有的还含有氮、磷和硫。

脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。

极性脂的主体是脂溶性的,其中的部分结构是水溶性的。

二.分类按化学组成一般分为三大类:单纯脂类、复合脂类和衍生脂质。

按能否被碱水解分为:可皂化脂质合和不可皂化脂质。

按生物学功能可分为三类:贮存脂类、结构脂类和活性脂类。

按极性可分为:非极性脂质和4类极性脂质。

三.分布与功能(一)三酰甘油是储备能源(二)极性脂参与生物膜的构成(三)有些脂类及其衍生物具有重要生物活性(四)有些脂类是生物表面活性剂(五)作为溶剂1.油脂作为贮能物质有哪些优点呢?(1)与糖类相比,脂肪的还原程度更高,因而相同质量下储存的能量更多。

(2)脂肪具疏水性,不会水化。

2.为什么哺乳动物摄入大量糖容易长胖?①糖类在体内经水解产生单糖,像葡萄糖可通过有氧氧化生成乙酰CoA,作为脂肪酸合成原料合成脂肪酸,因此脂肪也是糖的贮存形式之一。

②糖代谢过程中产生的磷酸二羟丙酮可转变为磷酸甘油,也作为脂肪合成中甘油的来源。

3.1、什么糖尿病患者容易出现酸中毒现象?请解释之。

答:在人体内,糖的分解代谢需要胰岛素参与。

在这种情况下,糖可以彻底氧化分解为机体提供能量。

当机体缺乏胰岛素时,糖未经分解就排出体外。

糖尿病患者因体内缺乏胰岛素,故体内的糖还未氧化就随尿液排出体外。

由于机体新陈代谢所需的能量不能由糖的氧化分解提供,则机体只能通过大量氧化脂肪来获取能量。

脂肪降解的产物主要是脂肪酸。

脂肪酸的代谢过程先在线粒体内经β-氧化降解为乙酰辅酶A,再与草酰乙酸反应生成柠檬酸,然后经三羧酸循环彻底氧化,同时为机体供能。

在体内,草酰乙酸主要由丙酮酸羧化而得。

生物化学知识点与题目第三章脂类化合物

生物化学知识点与题目第三章脂类化合物

第三章脂类化合物知识点:脂类的概念,脂酰甘油类,脂肪酸的共性,甘油三酯的性质,皂化与皂化值、酸败与酸值、卤化与碘值磷脂类是分子中含磷酸的复合脂,包括含甘油的甘油磷脂和含鞘氨醇的鞘磷脂两大类,它们是生物膜的重要成分。

鞘磷脂是由鞘氨醇、脂肪酸、磷酸、胆碱等组成的脂类。

萜类和类固醇类,前列腺素及蜡类:萜类化合物属于简单脂类,不含脂肪酸,是异戊二烯的衍生物。

类固醇化合物不含脂肪酸,是环戊烷多氢菲的衍生物。

前列腺素(PG)广泛存在于许多组织中,是一类廿碳不饱和脂肪酸的衍生物,其基本结构为前列烷酸,蜡广泛分布在自然界,主要成分是高级脂肪酸和高级一元醇或固醇所形成的酯。

生物膜的结构和功能:生物膜结构模型特点,膜的不对称性。

名词解释脂类化合物;流动镶嵌模型,生物膜的不对称性选择题1.脂肪酸在血中与下列哪种物质结合运输?A.载脂蛋白;B.清蛋白;C.球蛋白;D.脂蛋白;E.磷脂3.以下那种因素不影响膜脂的流动性?A、膜脂的脂肪酸组分B、胆固醇含量C、糖的种类D、温度4.哪种组分可以用磷酸盐缓冲液从生物膜上分离下来?A、外周蛋白B、嵌入蛋白C、跨膜蛋白D、共价结合的糖类5.哪些组分需要用去垢剂或有机溶剂从生物膜上分离下来?A、外周蛋白B、嵌入蛋白C、共价结合的糖类D、膜脂的脂肪酸部分6.以下哪种物质几乎不能通过扩散而通过生物膜?A、H2OB、H+C、丙酮D、乙醇7.下列各项中,哪一项不属于生物膜的功能:A、主动运输B、被动运输C、能量转化D、生物遗传8.当生物膜中不饱和脂肪酸增加时,生物膜的相变温度:A、增加B、降低C、不变9.生物膜的功能主要决定于:A、膜蛋白B、膜脂C、糖类D、膜的结合水10.人们所说的“泵”是指:A、载体B、膜脂C、主动运输的载体D、膜上的受体11.已知细胞内外的Ca2+是外高内低,那么Ca2+从细胞内向细胞外运输属于哪种方式?A、简单扩散B、促进扩散C、外排作用D、主动运输12.下列有关甘油三酯的叙述,不正确的是A.甘油三酯是由一分子甘油和三分子脂酸所组成的酯B.任何一个甘油三酯分子总是包含三个相同的酯酰基C.在室温下,甘油三酯可以使固体,也可以是液体D.甘油三酯可以制造肥皂E.甘油三酯在氯仿中是可溶的13.下列哪个不属于脂类化合物A.甘油三硬脂酸酯;B.甘油三丁酸酯;C.胆固醇硬脂酸酯;D.羊毛蜡;E.石蜡14.生物膜的基本结构是A.磷脂双层两侧各有蛋白质附着B.磷脂形成片层结构,蛋白质位于各片层之间C.蛋白质为骨架,二层磷脂分别附着于表面或插入其中D. 磷脂双层,蛋白质分别附着于表面或插入磷脂双层中16.正常血浆脂蛋白按密度低→高顺序的排列为:(...)A.CM→VLDL→IDL→LDL;B.CM→VLDL→LDL→HDL;C.VLDL→CM→LDL→HDL D.VLDL→LDL→IDL→HDL;E.VLDL→LDL→HDL→CM18.胆固醇含量最高的脂蛋白是:(...)A.乳糜微粒;B.极低密度脂蛋白;C.中间密度脂蛋白;D.低密度脂蛋白;E.高密度脂蛋白填空题1.构成生物膜的三类膜脂是、和。

第三章 脂类

第三章 脂类

体质脂=?

组织含有大量微血管,颜色较为深暗,其脂 肪细胞含有数个大小不一的脂肪球,粒线体 数目特别多,主要的功能是产热以维持体温 ,对体重也有影响,缺少棕色脂肪组织的动 物有肥胖的现象。
二、供能与保护机体
名称 蛋白质 脂肪
生理能值 (KJ/g) 16.7 37.6 16.7
碳水化合物

贮存脂有隔热、保 温、支持和保护体 内各种脏器,使之 不受损伤。


脂肪酸的分类
按脂肪酸碳链长度分类
长链脂肪酸(含14碳以上) 中链脂肪酸(含8~12碳) 短链脂肪酸(含4~6碳)
主要的
按脂肪酸饱和程度分类
饱和脂肪酸(saturated
fatty
acid,SFA)
单不饱和脂肪酸(monounsaturated
fatty acid,MUFA)
第一节 脂类的功能
一、构成体质

脂类是人体重要的组成成分,它以多种形式 存在于各种组织中 – 贮存脂:举例 –体质脂:举例
贮存脂=?


贮存脂指存在于人体皮下结缔组织、腹腔大网膜 、肠系膜等处的甘油三酯,它是体内过剩能量的 储存形式,脂肪细胞贮存的甘油三酯可达到细胞 体积的80%-90%。 正常人体:脂肪含量约占体重的14%-20%; 胖子: 32% 严重肥胖者: 60%左右。 人如长期摄入能量过多,活动过少可使贮存脂增 高,人发胖;相反饥饿或摄入能量小于消耗,则 使贮存脂减少或耗竭,人消瘦。因此贮存脂又称 动脂。
第二节 脂类的组成及其特征
一、(中性)脂肪和类脂
1、脂肪(中性脂肪neutral fat) 通常指由甘油和三分子脂肪酸组成的三酰甘油 酯,也称三脂酰甘油,俗称甘油三酯,是植物 和动物脂肪的主要结构。

第三章脂类与脂肪酸

第三章脂类与脂肪酸

第三章 脂类与脂肪酸【学习要点】1.掌握必需脂肪酸的概念及其生理功能。

2.掌握脂类的适宜摄入量与食物来源。

3.熟悉脂类的生理功能以及脂类和脂肪酸的分类。

4.了解脂类的代谢概况。

第一节 脂类与脂肪酸的分类脂类(lipids)包括脂肪和类脂,其共同特性是具有脂溶性,不仅易溶于有机溶剂,而且可溶解其他脂溶性物质。

脂肪即三酰甘油(亦称甘油三酯),是由一个甘油分子和三个脂肪酸形成的酯;营养学上重要的类脂有磷脂和固醇。

人体主要脂类的化学结构(图1-3-1)。

图1-3-1 人体主要脂类的化学结构一、脂肪酸及其分类(一)根据脂肪酸的碳链长短分类碳链在14个碳原子以上的脂肪酸为长链脂肪酸;8~12个碳原子的为中链脂肪酸;2~6个碳原子的为短链脂肪酸。

(二)根据脂肪酸碳链中有无双键分类碳链中不含双键的脂肪酸为饱和脂肪酸(SFA),含有双键的脂肪酸为不饱和脂肪酸,依据碳链中含双键的多少分为:①单不饱和脂肪酸(MUFA),碳链中只含一个双键;②多不饱和脂肪酸(PUFA),碳链中含两个以上双键。

还可根据空间结构不同分为顺式脂肪酸(cis-fattyacid)和反式脂肪酸(trans-fattyacid)。

不饱和脂肪酸根据其碳链上第一个双键的位置,可分为ω-3、ω-6、ω-9(或n-3、n-6、n-9)等系列。

直链脂肪酸中距离羧基最远的碳原子称ω碳原子,若从ω碳原子起(即从甲基端数起)第一个双键在第三和第四碳原子之间的不饱和脂肪酸,称为ω-3或n-3系列脂肪酸;第一个双键在第六和第七碳原子之间的不饱和脂肪酸,称为ω-6或n-6系列脂肪酸;以此类推。

(三)必需脂肪酸(essential fatty acid ,EFA )EFA是指人体不可缺少而自身不能合成,必须从膳食中摄取的多不饱和脂肪酸。

目前肯定的必需脂肪酸有ω-6系列中的亚油酸和ω-3系列中的α-亚麻酸。

它们的化学结构(图1-3-2)。

图1-3-2 人体的必需脂肪酸及其命名此外,花生四烯酸、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)也是人体不可缺少的脂肪酸,但人体可以利用亚油酸或α-亚麻酸来合成这些脂肪酸。

第三章脂类化学

第三章脂类化学

第三章脂类化学一、单项选择题1.彻底水解混合甘油酯最少可以得到几种产物A. 2B. 3C. 4D. 5E. 62.彻底水解混合甘油酯最多可以得到几种产物A.2 B. 3C. 4D. 5E. 63. 花生四烯酸有几个双键A.1 B. 2C. 3D. 4E. 54. 花生四烯酸有几个顺式双键A. 1B. 2C. 3D. 4E. 55. 关于脂肪的皂化反应A. 脂肪在碱性条件下水解B. 脂肪在酶的作用下水解C. 脂肪在酸性条件下水解D. 皂化值越大表示脂肪中脂肪酸的不饱和程度越高E. 皂化值越大表示脂肪中脂肪酸的平均分子质量越大6. 并非所有的磷脂都含有A. CB. HC. ND. OE. P7. 磷酸甘油酯是A. 磷脂酸B. 磷脂酰胆碱C. 磷脂酰肌醇D. 磷脂酰丝氨酸E. 磷脂酰乙醇胺8. 俗称卵磷脂的是A. 磷脂酰胆碱B. 磷脂酰甘油C. 磷脂酰肌醇D. 磷脂酰丝氨酸E. 磷脂酰乙醇胺9. 常用以防治脂肪肝的物质是A. 磷脂酰胆碱B. 磷脂酰甘油C. 磷脂酰肌醇D. 磷脂酰丝氨酸E. 磷脂酰乙醇胺10. 俗称脑磷脂的是A. 磷脂酰胆碱B. 磷脂酰甘油C. 磷脂酰肌醇D. 磷脂酰丝氨酸E. 磷脂酰乙醇胺11. 1个游离型胆汁酸分子中最多有几个氧原子A. 2B. 3C. 4D. 5E. 612. 糖皮质激素是A. 雌二醇B. 睾酮C. 皮质醇D. 醛固酮E. 孕酮13. 盐皮质激素是A. 雌二醇B. 睾酮C. 皮质醇D. 醛固酮E. 孕酮二、多项选择题1. 以下哪种分子含有手性碳原子A. 单纯甘油酯B. 胆固醇C. 甘油-3-磷酸D. 卵磷脂E. 脂肪酸2. 以下哪些是不饱和脂肪酸A. 花生酸B. 软油酸C. 软脂酸D. 亚麻酸E. 亚油酸3. 以下哪些是多不饱和脂肪酸A. 花生酸B. 软油酸C. 软脂酸D. 亚麻酸E. 亚油酸4. 在碘化反应中,1分子脂肪可能加几个碘原子A. 1B. 2C. 3D. 4E. 55. 酸败作用属于化学反应,以下叙述正确的是A. 包括水解反应B. 包括氧化反应C. 生成产物有醛 C. 生成产物有醛酸D. 生成产物有羧酸6. 所有的鞘脂都含有A. CB. HC. ND. O7. 类固醇是胆固醇及其衍生物,体内重要的类固醇包括A. 胆固醇酯B. 二羟丙酮C. 牛磺酸D. 醛固酮E. 维生素D28. 那些是类固醇激素A. 雌二醇B. 睾酮C. 皮质醇D. 醛固酮E. 孕酮9. 肾上腺皮质可以合成A. 雌二醇B. 睾酮C. 皮质醇D. 醛固酮E. 肾上腺素10. 对动物第二性征(如声音、体型等)的发生和成熟有重要调节作用的是A. 雌二醇B. 睾酮C. 皮质醇D. 醛固酮E. 孕酮三、填空题脂肪是由甘油与脂肪酸形成的三酰甘油。

第三章 脂类物质

第三章  脂类物质

7. 海产动物油类
• 来源:鱼油、肝油、海生哺乳油。
• 组成特点:含有大量的C20以上的长链 高不饱和脂肪酸,双键数目多达6个。
第二节 油脂的物理性质 及在食品中的功能
色泽与气味 油性与粘度 熔点和沸点 稠度 表面张力和界面张力 乳状液与乳化剂
一、色泽与气味
1. 2.
色泽: 气味:与脂肪酸链长短有关
• 提供能量和必需脂肪酸(EFA)
二、脂肪酸及命名
系统命名法:羧基端、甲基端(n-
,-) 俗名 三、油脂的结构和命名 Sn:立体有择位次编排命名法。 1-**酰-2-**酰-3-**酰-Sn-甘油
三、食用油脂的分类
1. 乳脂肪类: 来源:动物乳汁 组成特点:主要脂肪酸是油酸、硬脂酸、 棕榈酸;含有少量低分子量(C12以下)饱 和脂肪酸。 2. 月桂酸类 来源:棕榈类植物,椰子树、巴巴苏树的 种籽中,棕榈仁油。
粗大 密度最大
3、油脂的结晶方向: 趋向该温度下最稳定的晶形。 4、影响油脂晶形的主要因素
内因:油脂脂肪酸的组成和在甘油酯中的位置分 布。 外因:纯度、温度、冷却速度、晶核的存在
Crystal Form Tendency of Oils
Beta-type
椰子油 玉米油 橄榄油 猪油
Beta-Prime Type
•来源:植物种籽。棉籽油、花生油、芝麻 油、玉米油、葵花籽油、红花油、橄榄油、 棕榈油及不含芥酸的菜籽油。
•组成特点:主要由低级不饱和脂肪酸组成 (油酸和亚油酸),且饱和脂肪酸含量少于 20%,高不饱和脂肪酸含量极少,且不存 在三饱和脂肪酸甘油酯。
5. 亚麻酸类
• 来源:一年生植物的种籽,豆油、麦胚 油、亚麻籽油、苏子油、大麻子油。 • 组成特点:除含有油酸、亚油酸外,还含 有大量亚麻酸。 6. 动物脂肪 • 来源:家畜中贮存脂肪 • 组成特点:C16~C18脂肪酸含量高, 不饱和度中等,不饱和脂肪酸几乎完全是 油酸和亚油酸,含有大量完全饱和的三甘 油酯。

食品营养学-3 脂类

食品营养学-3 脂类
vegetable oils (margarines, shortenings, and biscuits))
10.3μm 966/cm
一、脂类的分类及功能
TFAs的产生(Occurrence of TFAs) • 天然的反式脂肪酸(From PUFAs by bacteria in the first stomach
(rumen) of ruminant animals)
• 油脂的氢化(From industrial hydrogenation, and deodorization of
Maxima 1660–1630 and 730–650/cm 1680–1670 and 980–865/cm 990–980 and 968–950/cm 990–984/cm 989/cm 991/cm 994/cm
Fig. 3 triolein, trielaidin and trist第ea三rin章在脂氯类仿中的红外吸收光谱. (Adapted from Feuge et al., 1951)
生理功能
脂肪 甘油三酯
类脂 糖酯、胆 固醇及其 酯、磷脂
95﹪ 5﹪
脂肪组织、1. 储脂供能
血浆
2. 提供必需脂酸
3. 促脂溶性维生素吸收
4. 热垫作用
5. 保护垫作用
6. 构成血浆脂蛋白
生物膜、 1. 维持生物膜的结构和功能
神经、 2. 胆固醇可转变成类固醇激
血浆
素、维生素、胆汁酸等
3. 构成血浆脂蛋白
第三章 脂类
一、脂类的分类及功能
共轭亚油酸(CLA)
抗癌作用 减肥作用 调节免疫功能的作用 防止动脉粥样硬化作用 对骨质的积极作用 防治糖尿病作用

第三章3 脂类

第三章3 脂类

• 多不饱和脂肪酸摄入过多:
– 使体内有害的氧化物、过氧化物等增加(一)磷脂:
– 指甘油三酯中一个或两个脂肪酸被含磷酸的其它基团所 取代的一类脂类物质。其中最重要的磷脂是卵磷脂 (1ecithin),它是由一个含磷酸胆碱基团取代甘油三酯中 一个脂肪酸而形成的。
脂肪酸的分类及其功能
• 脂肪酸是分子由1~30个碳原子的链烃和羧基( COOH)组成的脂族羧酸。是组成脂肪的基本单 位。
按碳链长度分类:
长链脂肪酸 (>14C) 中链脂肪酸 (8~12C) 短链脂肪酸 (<6C)
• 按饱和程度分类:
– 饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸
脂肪酸的分类(二)
甘油三酯的生理功能
• 提供脂溶性维生素 (A、D、E、K)并促进其消化吸收。 • 增加饱腹感:脂肪进入十二指肠时,刺激产生肠胃抑素, 使胃肠蠕动受到抑制。 • 改善食物感官性状:改变食物的色、香、味、形,促进食 欲。 • 提供必需脂肪酸:亚油酸、-亚麻酸。 • 维持体温正常,保护脏器作用:皮下脂肪组织可隔热保温 ;脂肪组织对脏器有支撑和衬垫作用,保护内部器官免受 外力伤害。 • 内分泌作用:脂肪组织分泌瘦素、肿瘤坏死因子、白细胞 介素等,参与机体的代谢、免疫、生长发育等生理过程。
公共营养师课程
三、 脂类(lipids)
脂类的分类
• 脂类是脂肪和类脂的总称。 • 共同特点:难溶于水,易溶于有机溶剂。 •
脂类 类脂 磷脂 (phospholipids) 固醇类 (sterols)
脂肪 (甘油三酯) (triglycerides)
甘油三酯及其功能
• • • • 是三分子脂肪酸与一分子甘油所形成的酯。 也称脂肪或中性脂肪。 通常将来自动物性食物的甘油三酯称为脂; 来自植物性食物的甘油三酯称为油。

脂类

脂类

二.脂肪的生理功能:
1. 提供能量: 2. 构成机体组织:如 磷脂、糖脂 等; 3. 提供人体必需脂肪酸(EFA); 4. 维持体温; 5. 保护各种器官和关节; 6. 增进饱腹感及摄入食物的口感。
2013-8-4 第三章 脂类 4
一个人脂肪占体重的百分比
年龄 19-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60+ 优秀 18.9% 18.9% 19.7% 21.0% 22.6% 24.3% 26.6% 27.4% 27.6%
第三章 脂类
42
13.蜜橘
含有丰富的维生素C,多吃可以提高肝脏解毒能力,加速 胆固醇转化,降低血清胆固醇和血脂的含量。
2013-8-4
第三章 脂类
43
14.红薯
2013-8-4
第三章 脂类
44
15.南瓜
2013-8-4
第三章 脂类
45
思考题:
1. 有人说胆固醇是一种有害的物质,这 种说法对吗?为什么? 2. 如何评价脂肪的营养价值? 3. 什么是必需脂肪酸?对人体有哪些作 用?
2013-8-4
第三章 脂类
16
天然脑黄金 1、鱼:
2013-8-4
第三章 脂类
17
2、核桃:
2013-8-4
第三章 脂类
18
3、牛奶:
2013-8-4
第三章 脂类
19
4、鸡蛋:
2013-8-4
第三章 脂类
20
5、南瓜:
2013-8-4
第三章 脂类
21
6、葵花子:
2013-8-4
第三章 脂类

第三章脂类

第三章脂类
7
营养学上最具价值的脂肪酸有两类:
n-3 (ω-3)系列UFA
降血脂 降胆固醇 n-6 (ω-6)系列UFA 预防心血 管疾病
CH3-(CH2)n-CH2-COOH 甲基端 羧基端
8
2、必需脂肪酸(essential fatty acid, EFA)
(1)概念:
是指人体不可缺少而自身不能合成,必须由食 物供给的脂肪酸。(如亚油酸、亚麻酸等)
其他营养素如胡萝卜素、维生素和生育酚等,从而降低 营养价值, 氧化产生的过氧化物和其他氧化产物与其他营养素相 互作用,从而降低营养素的利用率。
24
18
2、磷脂功能:

细胞膜的重要组成成分;
促进细胞内外物质交换;
作为乳化剂有利于脂肪的吸收、转运和代谢 血浆脂蛋白的重要组成成分,稳定脂蛋白的作用。 防止动脉硬化,磷脂与胆盐、胆固醇一起形成胶 粒,利于胆固醇排出 造成细胞膜结构受损,毛细血管的脆性和通透 性增加,引起水代谢紊乱,产生皮疹。
5
(“trans-”为反式之意,“cis-...”为顺式的脂肪酸)
6
饱和脂肪酸 (SFA)
脂肪酸
不饱和脂肪酸 (UFA)
单不饱和脂肪酸 (MFA)
多不饱和脂肪酸 (PUFA)
ω-3系脂肪酸 亚麻酸(ALA)
ω-6系脂肪酸
亚油酸(LA)
EPA (eicosapentaenoia acid )
DHA (docosahexaenoic acid)
② 必需脂肪酸能量占总热能3%,膳食脂肪参考摄入量 65g,饱和脂肪20g,胆固醇<300mg 。 (三)脂肪酸比例(p69 表3-19) ① S:M:P=1:1:1
② (n-6):(n-3)=(4~6):1

第三章 脂类

第三章 脂类

CH2OH H2N CH CH OH CH CH C13
鞘氨醇
CH2OH RCOONH CH CH OH CH CH C13
第三节 复合脂类
复合脂是由简单脂和一些非脂物质如磷酸、含 氮碱基等共同组成的。 磷脂主要包括甘油磷脂和鞘磷脂两大类,后者 用鞘氨醇取代了前者的甘油。
一、甘油磷脂 磷脂结构通式 卵磷脂 脑磷脂
甘油磷脂又称磷酸甘油酯,是磷脂酸的衍 生物。甘油磷脂结构通式如下:
O R2 O C O O C R1 O O P O X O磷脂通式 磷脂酸
使1克油脂完全皂化所需的氢氧化钾的毫 克数称为皂化值。 平均分子量=3×56×1000÷皂化值 式中56是KOH的分子量,因为三酰甘油中 含三个脂肪酸,所以乘以3。
肥皂是高级脂肪酸钠(或钾),既含有极性 的-COO-Na+基团,易溶于水;又含有非 极性的烃基,易溶于脂类,所以肥皂是乳化 剂,可是油污分散在水中而被除去。 当用含较多钙、镁离子的硬水洗涤时,由于 脂肪酸钠转变为不溶的钙盐或镁盐而沉淀, 肥皂的去污能力就大大降低。
(2)加成反应 双键可以与氢、卤素等进行加成反应。 氢化:
– 在高温、高压和金属镍催化下,双键与氢加 成,转化为饱和脂肪酸。称为“油脂的硬 化”。 – 人造黄油的主要成分就是氢化的植物油。某 些高级糕点的松脆油也是适当加氢硬化的植 物油。棉籽油氢化后形成奶油。 – 油容易酸败,不利于运输,海产的油脂有臭 味,氢化也可解决这些问题。
(三)有些脂类具有重要生物活性
1. 肾上腺皮质激素和性激素的本质是类固醇; 2. 各种脂溶性维生素也是不可皂化脂; 3. 介导激素调节作用的第二信使有的也是脂类, 如二酰甘油、肌醇磷脂等; 4. 前列腺素、血栓素、白三烯等具有广泛调节活 性的分子是20碳酸衍生物。

3 第三章脂类

3 第三章脂类
结构脂质:如构成生物膜的磷脂; 结构脂质:如构成生物膜的磷脂; 贮存脂质:机体贮能。三酰甘油(与糖相比,不用携带结合水?) 贮存脂质:机体贮能。三酰甘油(与糖相比,不用携带结合水?) 防护和保温功能:皮下缓冲保温、蜡质保湿防水、 防护和保温功能:皮下缓冲保温、蜡质保湿防水、防蒸发 活性脂质: 活性脂质: 营养代谢及调节功能:供给机体必需的脂肪酸和脂溶性维生素、 营养代谢及调节功能:供给机体必需的脂肪酸和脂溶性维生素、 激素类(类固醇类)、电子传递体( 激素类(类固醇类)、电子传递体(CoQ)。 )、电子传递体 ) 作为膜表面物质,与细胞识别、种特异性和组织免疫有关: 作为膜表面物质,与细胞识别、种特异性和组织免疫有关:糖脂 类;胞内信号
生物化学


生物体内的脂质按在水和水界面的行为可分为二大类: 生物体内的脂质按在水和水界面的行为可分为二大类:
非极性脂:不具备容积可溶性或界面可溶性,如长链脂肪酸、 非极性脂:不具备容积可溶性或界面可溶性,如长链脂肪酸、 醇等 极性酯:除醇和脂肪酸以外,还含有磷脂,鞘磷脂等。 极性酯:除醇和脂肪酸以外,还含有磷脂,鞘磷脂等。
生物化学


附:磷脂的通性和主要功能
电荷和极性: 兼性离子形式,净电荷各不相同; 电荷和极性:呈兼性离子形式,净电荷各不相同; 水解作用:弱碱或强碱可致其不同程度水解; 水解作用:弱碱或强碱可致其不同程度水解; 氧化作用:含的不饱和脂肪酸易被氧化成过氧化物聚合体; 氧化作用:含的不饱和脂肪酸易被氧化成过氧化物聚合体; 磷脂分子中含有亲水性的磷酸酯基和亲脂性的脂肪酸链, 磷脂分子中含有亲水性的磷酸酯基和亲脂性的脂肪酸链,是 优良的两亲性分子。 优良的两亲性分子。 磷脂分子在水溶液中,由于水分子的作用, 磷脂分子在水溶液中,由于水分子的作用,能够形成双层脂 膜结构或微团结构。 膜结构或微团结构。 磷酸甘油二脂在水溶液中主要是形成双层脂膜, 磷酸甘油二脂在水溶液中主要是形成双层脂膜,这种性质使 它具有形成生物膜(双层脂膜)的特性。 它具有形成生物膜(双层脂膜)的特性。

生物化学-3-脂类

生物化学-3-脂类

2.活性氧(reactive oxygen)
(1)活性氧:氧或含氧的高反应活性分子 如O2. , H2O2,1O2等统称为活性氧。 (2)普通氧和几种重要的活性氧 普通氧 超氧阴离子自由基 羟基自由基 过氧化氢 单线态氧。
3.自由基链反应(chain reaction)
包括3个阶段:引发、增长、终止。 (详见下图…)
二、 脂肪酸
• 脂肪酸的种类
脂肪酸(fatty acid, FA):由一条长的烃链(“尾”) 和一个 末端羟基(“头”)组成的羧酸。 饱和脂肪酸(saturated FA):烃链不含双键(和三键)。
不饱和脂肪酸(polyunsaturated FA):含一个或多个双键。 不同脂肪酸之间的主要区别在于烃链的长度(碳原子数 目)、双键的数目和位臵。
又可分为 甘油三酯 蜡
复合脂质(compound lipid):除脂肪酸和醇外,含其他 非脂分子。
又可分为 磷脂
衍生脂质(derived lipid):由单纯脂肪酸和复合脂质衍 生而来或关系密切。 取代烃
固醇类 萜 其他脂质
糖脂
2.按脂质在水中和水界面上的行为不同:
非极性脂质:不具有溶剂可溶性,也不具有界面 可溶性。 I类极性脂质:具有界面可溶性,不具有溶剂可溶 性,能掺入膜,但自身不能形成膜。 II类极性脂质(磷脂和鞘糖脂):是成膜分子,能 形成双分子层和微囊。 III类极性脂质(去污剂):是可溶性脂质,虽具有 界面可溶性,但形成的单分子层不稳定。
• 醚甘油磷脂
缩醛磷脂 (plasmalogen) 血小板活化因子(PAF)
• 鞘磷脂
鞘磷脂(sphingomyelin)即鞘氨醇磷脂(phosphosphingolipid) ,由鞘氨醇(sphingosine)、脂肪酸、磷酰胆碱组成。

食品生物化学第三章脂类

食品生物化学第三章脂类
2.对血清脂质的调节作用 调节血清脂质水平意味着能降低胆固醇水平,
保护肝脏,也能改善记忆力,加强免疫力以及抗 脂肪肝的活力。
3.有益大脑 脑神经细胞中卵磷脂的含量约占其质量的17%-
20%。卵磷脂的供应保证 人体内合成“乙酰胆碱”, “乙酰胆碱”是大脑内的一种信息传导物质,从而 提高脑细胞的活性化程度,提高记忆与智力水平。
(1)煎炸油
油脂反复高温加热后,其中的不饱和脂肪 酸经高温加热后所产生的聚合物-二聚体、 三聚体,毒性较强。大部分油炸、烤制食 品,尤其是炸薯条中含有高浓度的丙烯酰 胺,俗称丙毒,是一种致癌物质。
(2)油脂的酸败
油脂暴露在空气中会自发进行氧化 作用而产生异味的现象称作酸败。
油脂的不饱和成分受空气中氧、水分或霉菌的作用发生自动氧 化,生成过氧化物进而降解为挥发性醛、酮、羧酸的复杂混合 物,并产生难闻的气味,俗称哈喇。
PG:没食子酸丙酯。对热比较稳定。PG对猪油的抗 氧化作用较BHA和BHT强些。毒性较低。
TBHQ:特丁基对苯二酚。是较新的一类酚类抗氧化剂,其抗 氧化效果较好,是一种安全高效食用油脂抗氧化剂
茶多酚类即从茶叶中提取的抗氧化物质,含有4种组分:表没食子 儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯以及 儿茶素。它的抗氧化能力比VE、VC、BHT、BHA强几倍。
(5)同质多晶体
相同的化学组成,在不同的热力学条件下却能形成 不同的晶体结构,表现出不同的物理、化学性质。 研究脂肪同质多晶现象方法有X-射线衍射,红外, 偏振光等。
4、化学性质
化学结构
(1) 酯
化学反应
水解反应
检测指标
酸值、 酸价
酸值: 中和1克油脂中游离脂肪酸所需氢氧化钾毫克数。 鉴定油脂纯度,分解程度以及酸败程度的指标

第三章 脂类

第三章 脂类
牛肉中的肌氨酸含量比任何 、牛肉富含肌氨酸 其它食品都高,这使它对增长肌肉、增强力量特 别有效。 8、牛肉含丙胺酸: 丙胺酸的作用是从饮食的蛋白 牛肉含丙胺酸 丙胺酸: 质中产生糖分。如果机体对碳水化合物的摄取量 质中产生糖分。如果机体对碳水化合物的摄取量 不足,丙胺酸能够使饮食中的蛋白质转化为糖来 不足,丙胺酸能够使饮食中的蛋白质转化为糖来 供给肌肉所需的能量以缓解不足。
11
(二)脂类氧化对食品营养价值的影响
1. 将降低必需脂肪酸的含量 2.还可破坏其它脂类营养素如胡萝卜素、维生素等 还可破坏其它脂类营养素如胡萝卜素、 3.脂类氧化所产生的过氧化物和其它氧化产物,还 脂类氧化所产生的过氧化物和其它氧化产物, 可进一步与食品中的其它营养素如蛋白质等相互作 形成氧化脂蛋白等,从而降低蛋白质的利用率。 用,形成氧化脂蛋白等,从而降低蛋白质的利用率。
12
(三)脂类氧化和降解产物的生物学作用
•常温下氧化的脂类,当用其对动物进行吸收试验时,发现 常温下氧化的脂类,当用其对动物进行吸收试验时, 常温下氧化的脂类 试验动物淋巴的脂类中无明显的过氧化物。 试验动物淋巴的脂类中无明显的过氧化物。这表明过氧化 物很少被吸收。 物很少被吸收。 •高温氧化的脂类对机体可有多种危害。 高温氧化的脂类对机体可有多种危害。 高温氧化的脂类对机体可有多种危害 分子间的聚合物主要是影响肠道吸收和破坏了必需脂肪酸, 分子间的聚合物主要是影响肠道吸收和破坏了必需脂肪酸, 从而降低了脂类和食品的营养价值。一般未见有毒作用。 从而降低了脂类和食品的营养价值。一般未见有毒作用。 •至于不连续的油炸用油和反复高温氧化的油脂可产生有毒 至于不连续的油炸用油和反复高温氧化的油脂可产生有毒 物质。 物质。 •一般说来,脂类氧化对动物的影响不大。 一般说来,脂类氧化对动物的影响不大。 一般说来

食品化学_脂质3部分

食品化学_脂质3部分
第三章: 第三章: 脂类
食品化学 曲文娟 江苏大学 9/23/2011
油脂自动氧化 (Lipid autoxidation)
自动氧化:脂类分子与氧之间的反应,引起脂类氧化变质、 自动氧化:脂类分子与氧之间的反应,引起脂类氧化变质、 食品败坏的主要原因,降低食品的营养价值, 食品败坏的主要原因,降低食品的营养价值,某些氧化产 物甚至具有毒性。有限度的氧化是需要的, 物甚至具有毒性。有限度的氧化是需要的,产生典型的香 气。 脂肪自动氧化的特征 特征。 脂肪自动氧化的特征。 油脂的自动氧化可分 个阶段 链引发(Initiation), 链传递 个阶段: 油脂的自动氧化可分3个阶段:链引发 (Propagation), 链终止 链终止(Termination) 油脂自动氧化实质是自由基反应 自由基反应(free radical reactions). 油脂自动氧化实质是自由基反应
抑制油脂自动氧化的方法
水分活度对油脂自动氧化的影响比较复杂。 ⑤ 水分活度 水分活度对油脂自动氧化的影响比较复杂。 过高过低的水分活度都可加速氧化过程。水分过低时, 过高过低的水分活度都可加速氧化过程。水分过低时, 增加了油脂与氧的接触,有利于氧化的进行; 增加了油脂与氧的接触,有利于氧化的进行;当水分增 加时,溶氧量增加,氧化速度也加快。实验表明, 加时,溶氧量增加,氧化速度也加快。实验表明,当水 分活度控制在0.3~ 食品中油脂的氧化速度最低。 分活度控制在 ~0.4 时,食品中油脂的氧化速度最低。 值得指出的是,冷冻食品常常还存在油脂的氧化。 值得指出的是,冷冻食品常常还存在油脂的氧化。这是 由于,冷冻状态下,水分以冰晶形式析出, 由于,冷冻状态下,水分以冰晶形式析出,使油脂失去 水膜的保护。 水膜的保护。 特别是过渡金属离子, ⑥ 金属离子 特别是过渡金属离子,能缩短自动氧化过 程中的诱导期,是助氧化剂,能加速氧化过程。因此, 程中的诱导期,是助氧化剂,能加速氧化过程。因此, 油脂在加工、贮藏时都要注意避免金属离子的引入。 油脂在加工、贮藏时都要注意避免金属离子的引入。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章脂类提要一、概念脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂单纯脂脂肪酸的俗名、系统名和缩写、双键的定位三、油脂的结构和化学性质(1)水解和皂化脂肪酸平均分子量=3×56×1000÷皂化值(2)加成反应碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。

(3)酸败蜡是由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。

四、磷脂(复合脂)(一)甘油磷脂类最常见的是卵磷脂和脑磷脂。

卵磷脂是磷脂酰胆碱。

脑磷脂是磷脂酰乙醇胺。

卵磷脂和脑磷脂都不溶于水而溶于有机溶剂。

磷脂是兼性离子,有多个可解离基团。

在弱碱下可水解,生成脂肪酸盐,其余部分不水解。

在强碱下则水解成脂肪酸、磷酸甘油和有机碱。

磷脂中的不饱和脂肪酸在空气中易氧化。

(二)鞘氨醇磷脂神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。

脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。

磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。

非皂化脂(一)萜类是异戊二烯的衍生物多数线状萜类的双键是反式。

维生素A、E、K等都属于萜类,视黄醛是二萜。

天然橡胶是多萜。

(二)类固醇都含有环戊烷多氢菲结构固醇类是环状高分子一元醇,主要有以下三种:动物固醇胆固醇是高等动物生物膜的重要成分,对调节生物膜的流动性有一定意义。

胆固醇还是一些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。

植物固醇是植物细胞的重要成分,不能被动物吸收利用。

1,酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。

2.固醇衍生物类胆汁酸是乳化剂,能促进油脂消化。

强心苷和蟾毒它们能使心率降低,强度增加。

性激素和维生素D3. 前列腺素结合脂1.糖脂。

它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。

脑苷脂由一个单糖与神经酰胺构成。

神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂,结构复杂。

2.脂蛋白根据蛋白质组成可分为三类:核蛋白类、磷蛋白类、单纯蛋白类,其中单纯蛋白类主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。

血浆脂蛋白根据其密度由小到大分为五种:乳糜微粒主要生理功能是转运外源油脂。

极低密度脂蛋白(VLDL) 转运内源油脂。

低密度脂蛋白(LDL) 转运胆固醇和磷脂。

高密度脂蛋白(HDL) 转运磷脂和胆固醇。

极高密度脂蛋白(VHDL) 转运游离脂肪酸。

脑蛋白脂不溶于水,分为A、B、C三种。

top第一节概述一、脂类是脂溶性生物分子脂类(lipids)泛指不溶于水,易溶于有机溶剂的各类生物分子。

脂类都含有碳、氢、氧元素,有的还含有氮和磷。

共同特征是以长链或稠环脂肪烃分子为母体。

脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。

极性脂的主体是脂溶性的,其中的部分结构是水溶性的。

二、分类1.单纯脂单纯脂是脂肪酸与醇结合成的酯,没有极性基团,是非极性脂,又称中性脂。

三酰甘油、胆固醇酯、蜡等都是单纯脂。

蜡是由高级脂肪酸和高级一元醇形成的酯。

2.复合脂复合脂又称类脂,是含有磷酸等非脂成分的脂类。

复合脂含有极性基团,是极性脂。

磷脂是主要的复合脂。

3.非皂化脂包括类固醇、萜类和前列腺素类。

不含脂肪酸,不能被碱水解,称为非皂化脂。

类固醇又称甾醇,是以环戊烷多氢菲为母核的一种脂类。

胆固醇是人体内最重要的类固醇,它因有羟基而属于极性脂。

萜类是异戊二烯聚合物,前列腺素是二十碳酸衍生物。

4.衍生脂指上述物质的衍生产物,如甘油、脂肪酸及其氧化产物,乙酰辅酶A。

5.结合脂类脂与糖或蛋白质结合,形成糖脂和脂蛋白。

三、分布与功能(一)三酰甘油是储备能源三酰甘油主要分布在皮下、胸腔、腹腔、肌肉、骨髓等处的脂肪组织中,是储备能源的主要形式。

三酰甘油作为能源储备有以下优点:1.可大量储存在三大类能源物质中,只有三酰甘油能大量储备。

体内糖原的储量少(不到体重的1%),储存期短(不到半天),而三酰甘油储量可高达体重的10-20%以上,并可长期储存。

2.功能效率高由于脂肪酸的还原态远高于其他燃料分子,所以体内氧化三酰甘油的功能价值可高达37Kj/g,而氧化糖和蛋白质分别只有17和16Kj/g。

3.占空间少可以无水状态存在。

而1克糖原可以结合2克水,所以1克无水的脂肪储存的能量是1克水合的糖原的6倍多。

4.还有绝缘保温、缓冲压力、减轻摩擦振动等保护功能。

(二)极性脂参与生物膜的构成磷脂、糖脂、胆固醇等极性脂是构成人体生物膜的主要成分。

他们构成生物膜的水不溶性液态基质,规定了生物膜的基本特性。

膜的屏障、融合、绝缘、脂溶性分子的通透性等功能都是膜脂特性的表现,膜脂还给各种膜蛋白提供功能所必须的微环境。

脂类作为细胞表面物质,与细胞的识别、种特异性和组织免疫等有密切关系。

(三)有些脂类及其衍生物具有重要生物活性肾上腺皮质激素和性激素的本质是类固醇;各种脂溶性维生素也是不可皂化脂;介导激素调节作用的第二信使有的也是脂类,如二酰甘油、肌醇磷脂等;前列腺素、血栓素、白三烯等具有广泛调节活性的分子是20碳酸衍生物。

(四)有些脂类是生物表面活性剂磷脂、胆汁酸等双溶性分子(或离子),能定向排列在水-脂或水-空气两相界面,有降低水的表面张力的功能,是良好的生物表面活性剂。

例如:肺泡细胞分泌的磷脂覆盖在肺泡壁表面,能通过降低肺泡壁表面水膜的表面张力,防止肺泡在呼吸中萎陷。

缺少这些磷脂时,可造成呼吸窘迫综合征,患儿在呼吸后必须用力扩胸增大胸内负压,使肺泡重新充气。

胆汁酸作为表面活性剂,可乳化食物中脂类,促进脂类的消化吸收。

(五)作为溶剂一些脂溶性的维生素和激素都是溶解在脂类物质中才能被吸收,他们在体内的运输也需要溶解在脂类中。

如维生素A、E、K、性激素等都是如此。

第二节单纯脂一、脂肪酸(一)特性动植物中的脂肪酸比较简单,都是直链的,可含有多至六个双键,而细菌的脂肪酸最多只有一个双键。

细菌的脂肪酸比较复杂,可有支链或含有环丙烷环,如结核酸就是饱和支链脂肪酸。

植物中可能含有三键、环氧基及环丙烯基等。

人体及高等动物体内的脂肪酸有以下特点:1.是由偶数碳原子构成的一元酸,最多见的是C16、C18、C22等长链脂肪酸。

2.碳链无分支。

3.分为饱和脂肪酸和不饱和脂肪酸。

不饱和脂肪酸的双键都呈顺式构型,有多个双键的脂肪酸称为高度不饱和脂肪酸或多不饱和脂肪酸。

相邻双键之间都插入亚甲基,不构成共轭体系。

(二)分类和命名1.脂肪酸的俗名、系统名和缩写脂肪酸的俗名主要反映其来源和特点。

系统名反映其碳原子数目、双键数和位臵。

如:硬脂酸的系统名是十八烷酸,用18:0表示,其中“18”表示碳链长度,“0”表示无双键;油酸是十八碳烯酸,用18:1表示,“1”表示有一个双键。

反油酸用18:1Δ9,trans表示。

2.双键的定位双键位臵的表示方法有两种,原来用Δ编号系统,近来又规定了ω或(n)编号系统。

前者按碳原子的系统序数(从羧基端数起),用双键羧基侧碳原子的序数给双键定位。

后者采用碳原子的倒数序数(从甲基端数起),用双键甲基侧碳原子的(倒数)序数给双键定位。

这样可将脂肪酸分为代谢相关的4组,即ω3、ω6、ω7、ω9,在哺乳动物体内脂肪酸只能由该族母体衍生而来,各族母体分别是软油酸(16:1,ω7)、油酸(18:1,ω9)、亚油酸(18:2,ω6)和α亚麻酸(18:3,ω3)哺乳动物体内能合成饱和脂肪酸和单不饱和脂肪酸,不能合成多不饱和脂肪酸,如亚油酸、亚麻酸等。

我们把维持哺乳动物正常生长所必需的而体内又不能合成的脂肪酸称为必需脂肪酸。

(三)反应脂肪酸常见的反应有两个:活化硫酰化,生成脂酰辅酶A。

这是脂肪酸的活性形式。

不饱和脂肪酸的双键可以氧化,生成过氧化物,最后产生自由基。

对人体有害。

二、油脂(一)油脂的结构油脂是由一分子甘油与一至三分子脂肪酸所形成的酯。

根据脂肪酸数量,可分为单酰甘油、二酰甘油和三酰甘油(过去称为甘油三酯)。

前两者在自然界中存在极少,而三酰甘油是脂类中含量最丰富的一类。

通常所说的油脂就是指三酰甘油。

若三个脂肪酸相同,则称简单三酰甘油,命名时称三某脂酰甘油,如三硬脂酰甘油,三油酰甘油等。

如三个脂肪酸不同,则称为混合三酰甘油,命名时以α、β和α’分别表示不同脂肪酸的位臵。

天然油脂多数是多种混合三酰甘油的混合物,简单三酰甘油极少,仅橄榄油中含三油酰甘油较多,约占70%。

(二)油脂的性质1.物理性质油脂一般无色、无味、无臭,呈中性。

天然油脂因含杂质而常具有颜色和气味。

油脂比重小于1,不溶于水而溶于有机溶剂(丁酸酯可溶)。

在乳化剂如胆汁酸、肥皂等存在的情况下,油脂能在水中形成乳浊液。

在人体和动物的消化道内,胆汁酸盐使油脂乳化形成乳糜微粒,有利于油脂的消化吸收。

因为不饱和脂肪酸的熔点比相应的饱和脂肪酸低,所以一般三酰甘油中,不饱和脂肪酸含量较高者在室温时为液态,俗称油,如棉籽油的不饱和脂肪酸占75%。

而饱和脂肪酸含量高的三酰甘油在室温时通常为固态,俗称脂,如牛脂中饱和脂肪酸占60-70%。

天然油脂都是多种油脂的混合物,没有固定的熔点和沸点,通常简称为油脂。

硬脂酸熔点为70℃,油酸熔点为14℃。

相应的,三硬脂酸甘油酯的熔点是60℃,而三油酸甘油酯的熔点是0℃。

如油脂中1,3位的脂肪酸不同,则具有旋光性,一般按照L-型甘油醛的衍生物命名。

油脂是脂肪酸的储备和运输形式,也是生物体内的重要溶剂,许多物质是溶于其中而被吸收和运输的,如各种脂溶性维生素(A、D、E、K)、芳香油、固醇和某些激素等。

2.化学性质油脂的化学性质与组成它的脂肪酸、甘油以及酯键有关。

(1)水解和皂化油脂能在酸、碱、蒸汽及脂酶的作用下水解,生成甘油和脂肪酸。

当用碱水解油脂时,生成甘油和脂肪酸盐。

脂肪酸的钠盐和钾盐就是肥皂。

因此把油脂的碱水解称为皂化。

使1克油脂完全皂化所需的氢氧化钾的毫克数称为皂化值。

根据皂化值的大小可以判断油脂中所含脂肪酸的平均分子量。

皂化值越大,平均分子量越小。

式中56是KOH的分子量,因为三酰甘油中含三个脂肪酸,所以乘以3。

肥皂是高级脂肪酸钠(或钾),既含有极性的-COO -Na+基团,易溶于水;又含有非极性的烃基,易溶于脂类,所以肥皂是乳化剂,可是油污分散在水中而被除去。

当用含较多钙、镁离子的硬水洗涤时,由于脂肪酸钠转变为不溶的钙盐或镁盐而沉淀,肥皂的去污能力就大大降低。

(2)加成反应含不饱和脂肪酸的油脂,分子中的碳-碳双键可以与氢、卤素等进行加成反应。

氢化:在高温、高压和金属镍催化下,碳-碳双键与氢发生加成反应,转化为饱和脂肪酸。

相关文档
最新文档