【精心整理】平行线的性质知识点总结、例题解析
七年级初一下学期数学 专题02 平行线的性质(知识点串讲)(解析版)
专题02 平行线的性质知识网络重难突破知识点一 平行线的性质(1)两条平行线被第三条直线所截,同位角相等; 简单说成:两直线平行,同位角相等. 几何语言表述:(如图)a b Q P12∠∠∴=(两直线平行,同位角相等)(2)两条平行线被第三条直线所截,内错角相等; 简单说成:两直线平行,内错角相等. 几何语言表述:(如图)a b Q P32∠∠∴=(两直线平行,内错角相等)(3)两条平行线被第三条直线所截,同旁内角互补; 简单说成:两直线平行,同旁内角互补. 几何语言表述:(如图)a b Q P34180∠∠︒∴+=(两直线平行,同旁内角互补)注意:①任意两条直线被第三条直线所截,构成的同位角、内错角不一定相等,构成的同旁内角也不一定互补; ②特别注意前提条件“两直线平行”,只有两直线平行,才有同位角相等,内错角相等,同旁内角互补.典例1(2018春•建邺区期末)如图,直线//a b ,三角板的直角顶点放在直线b 上,若165∠=︒,则2∠= .【解答】解:已知直线//a b,3165∴∠=∠=︒(两直线平行,同位角相等),∠=︒(已知),490234180∠+∠+∠=︒(已知直线),∴∠=︒-︒-︒=︒.2180659025故答案为:25︒.典例2(2019春•鼓楼区期中)如图,一个人从A点出发沿北偏东30︒方向走到B点,若这个人再从B点沿南偏东15︒方向走到C点则ABC∠等于()A.15︒B.30︒C.45︒D.165︒【解答】解:由题意可知301545∠=︒+︒=︒ABC故选:C.典例3(2019春•秦淮区期中)把一张对边互相平行的纸条折成如图那样,EF 是折痕,若32EFB ∠=︒,则D FD ∠'的度数为 .【解答】解:EF Q 是折痕,32EFB ∠=︒,//AC BD '', 32C EF GEG ∴∠'=∠=︒, 64C EG ∴∠'=︒,//CE FD Q ,64D FD EGB ∴∠'=∠=︒.故答案为:64︒. 典例4(2019春•秦淮区期中)如图,//AB CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,35EGF ∠=︒,求EFG ∠的度数.【解答】解://AB CD Q ,35EGF ∠=︒, 35AEG EGF ∴∠=∠=︒,180EFG AEF ∠+∠=︒. EG Q 平分AEF ∠,223570AEF AEG ∴∠=∠=⨯︒=︒, 180********EFG AEF ∴∠=︒-∠=︒-︒=︒.知识点二 平行线的判定与性质综合两直线平行的条件与性质经常结合在一起考查,它们虽然与同位角、内错角和同旁内角都有关系,但是已知和结论不同:两直线平行的条件是由角的数量关系确定直线的位置关系; 两直线平行的性质是由直线的位置关系确定角的数量关系。
平行线的性质归纳总结
平行线的性质归纳总结平行线是几何学中一个重要的概念,它们具有一系列独特的性质和规律。
在本文中,我们将对平行线的性质进行归纳总结。
一、平行线的定义和符号表示平行线是指在同一个平面内永不相交的两条直线。
我们可以用符号"||" 表示平行线。
二、平行线的性质1. 垂直的平行线若一条直线与另外两条不同的直线相交,且与其中一条直线垂直,那么另外两条直线是平行的。
例如:若直线l与直线m相交,直线l与直线n垂直,那么直线m与直线n是平行的。
2. 平行线的性质1:同向性若两条平行线与同一直线相交,折角之间的关系保持不变。
例如:若直线l与直线m平行,直线m与直线n相交,则角A与角B是对应角,角A与角C是内错角。
3. 平行线的性质2:内角性质当两条平行线被一条截线所切分时,内错角互补,即它们的和等于180度。
180度。
4. 平行线的性质3:外角性质当两条平行线被一条截线所切分时,外错角相等。
例如:若直线l与直线m平行,直线n为截线,则角A = 角C。
5. 平行线的性质4:同位角当两条平行线被一条截线所切分时,同位角相等。
例如:若直线l与直线m平行,直线n为截线,则角A = 角D。
6. 平行线的性质5:内错角当两条平行线被一条截线所切分时,内错角相等。
例如:若直线l与直线m平行,直线n为截线,则角B = 角C。
7. 平行线的性质6:同旁内角当两条平行线被一条截线所切分时,同旁内角互补,即它们的和等于180度。
例如:若直线l与直线m平行,直线n为截线,则角B + 角D = 180度。
8. 平行线的性质7:同旁外角当两条平行线被一条截线所切分时,同旁外角相等。
9. 平行线的性质8:错综对应角若两条平行线被多条截线所切分,那么对应角相等。
例如:若直线l与直线m平行,直线n和直线p均为截线,则角A = 角E,角B = 角F,角C = 角G。
10. 平行线的性质9:平行线之间的距离两条平行线之间的距离是恒定的,且等于它们之间任意一点到两条平行线的距离。
平行线的性质(基础)知识讲解
平行线的性质(基础)知识讲解【学习目标】1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;2. 了解并掌握平行线的性质定理的探究过程;3. 了解平行线的判定与性质的区别和联系•【要点梳理】要点一、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等•(简记为:两直线平行,同位角相等)•定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等)•定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)"同位角相等、内错角相等”、"同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、平行线的性质定理的探究过程1. 两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).因为a // b,所以/ 1 = Z 2 (两直线平行,同位角相等),又/ 3=/ 1 (对顶角相等)所以/ 2=/3.2. 两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).所以/ 3=/ 2 (两直线平行,内错角相等)又/ 3+/仁180°(补角的定义),所以/ 2+/仁180° .要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性•要点三、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系•平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典型例题】类型一、平行线的性质公理、定理的应用1. 如图所示,如果AB// DF, DE// BC,且/ 1 = 65。
七年级数学下《平行线的性质》知识点总结归纳
七年级数学下《平行线的性质》知识点总结归纳一、平行线的性质1.同位角相等:两条平行线被一条横截线所截,形成的同位角相等。
2.内错角相等:两条平行线被一条横截线所截,形成的内错角相等。
3.同旁内角互补:两条平行线被一条横截线所截,形成的同旁内角互补,即角度和为180°。
二、性质的应用1.计算平行线的距离:利用平行线的性质,可以计算两条平行线之间的距离。
2.判断角度大小:利用平行线的性质,可以判断两条直线之间的角度大小。
3.解决实际问题:平行线的性质在实际生活中有广泛的应用,如建筑、机械制造等领域。
三、注意事项1.平行线的性质是在同一平面内,两条不相交的直线所具备的属性。
因此,确定两条线是否平行,首先需要确定它们是否在同一平面内。
2.平行线的性质需要通过横截线来体现,因此在证明或应用性质时,需要明确横截线的位置。
3.在实际应用中,需要根据具体情境判断两条线是否平行,并选择适当的方法来解决问题。
四、相关定理与概念1.平行线的判定定理:同位角相等、内错角相等、同旁内角互补等。
2.垂直线的性质:垂直于同一条直线的两条直线互相平行。
3.平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
五、易错点提醒1.学生在应用性质时,容易出现混淆,将判定定理和性质混淆使用。
需要明确的是,判定定理用于判断两条直线是否平行,而性质用于说明平行线之间的关系或推导其他结论。
2.对于同旁内角互补的理解,学生容易出现误区,认为同旁内角之和为90°而非180°。
需要强调的是,同旁内角互补是指它们的角度和为180°,不是90°。
3.在实际解决问题时,学生容易忽略题目中的限制条件或隐藏条件,导致解题错误。
需要提醒学生认真审题,注意细节,以免出现不必要的错误。
平行线的性质及平移(基础)知识讲解.doc
平行线的性质及平移(基础)知识讲解责编:某老师【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、图形的平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,各组对应点的连线平行(或在同一条直线上)且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1.(2015•泰安)如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°【思路点拨】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,同旁内角互补解答.【答案】B .【解析】解:∵AB ∥CD ,∠1=58°,∴∠EFD=∠1=58°,∵FG 平分∠EFD ,∴∠GFD=∠EFD=×58°=29°,∵AB ∥CD ,∴∠FGB=180°﹣∠GFD=151°.【总结升华】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.举一反三:【变式】如图,已知1234//,//l l l l ,且∠1=48°,则∠2= ,∠3= ,∠4= .【答案】48°,132°,48°类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】(2015•河北模拟)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4 B.5 C.10 D.无法判断【答案】B.解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE=S△ABD=5.类型三、图形的平移3.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.4.(湖南益阳)如图所示,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________.【答案】30°【解析】根据平移的特征可知:∠EBD=∠CAB=50°而∠ABC=100°所以∠CBE=180°-∠EBD-∠ABC=180°-50°-100°=30°【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△BED.则有AC=BE,AB=BD,BC=DE,∠A=∠EBD,∠C=∠E,∠ABC=∠BDE.举一反三:【变式】 (上海静安区一模)如图所示,三角形FDE经过怎样的平移可以得到三角形ABC()A.沿EC的方向移动DB长B.沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型四、平行的性质与判定综合应用5.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+ ∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
【精心整理】平行线的性质知识点总结、例题解析
平行线的性质知识点总结、例题解析知识点1【平行线的性质】(1)性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等.∵AB∥CD∴∠2=∠3(2)性质2:两条平行线被地三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补.∵AB∥CD∴∠2+∠4=180°(3)性质3:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等。
∵AB∥CD∴∠1=∠2【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。
【答案】∠ADE=80°;∠AEC=124°【例题2】如图,平行线AB。
CD被直线AE所截,若∠1=110°,则∠2等于()A、70B、80C、90D、110【答案】A【例题3】如图,已知AB∥CD,∠1=150°,∠2=______【答案】30°【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______【答案】35°【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______°【答案】50 ,50 ;【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________【答案】10°【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF【答案】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【例题8】如图,已知AB∥CD,∠B=40°CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数。
七年级下册数学平行线的判定及性质
(一)主要常识点:1.两直线平行的剖断办法办法一 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行简称:同位角相等,两直线平行办法二 两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行简称:内错角相等,两直线平行办法三 两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行 几何符号说话:∵∠3=∠2∴ AB ∥CD (同位角相等,两直线平行)∵∠1=∠2∴ AB ∥CD (内错角相等,两直线平行)∵∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同窗们留意书写的次序以及前因效果,平行线的剖断是由角相等,然后得出平行.平行线的剖断是写角相等,然后写平行.断定下列说法是否准确,假如不准确,请赐与纠正:⑴不订交的两条直线确定平行线.⑵在统一平面内不相重合的两条直线,假如它们不服行,那么这两条A B C DEF 1 2 3 4直线必定订交.⑶过一点可以且只可以画一条直线与已知直线平行如图,依据下列前提,可以剖断哪两条直线平行,并解释剖断的依据是什么?,同位角相等;,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号说话:∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等)∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)3.两条平行线的距离如图,直线AB ∥CD,EF ⊥AB 于E,EF ⊥CD 于F,则称线段EF 的长度为两平行线AB 与CD 间的距离.4.命题: ⑴命题的概念: 断定一件工作的语句,叫做命题.⑵命题的构成A B C DEF 1 2 3 4 A EG BC FH D每个命题都是题设.结论两部分构成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“假如……,那么……”的情势.具有这种情势的命题中,用“假如”开端的部分是题设,用“那么”开端的部分是结论.有些命题,没有写成“假如……,那么……”的情势,题设和结论不显著.对于如许的命题,要经由剖析才干找出题设和结论,也可以将它们改写成“假如……,那么……”的情势.留意:命题的题设(前提)部分,有时也可用“已知……”或者“若……”等情势表述;命题的结论部分,有时也可用“求证……”或“则……”等情势表述.5.平行线的性质与剖断①平行线的性质与剖断是互逆的关系同位角相等;内错角相等;两直线平行同旁内角互补.个中,由角的相等或互补(数目关系)的前提,得到两条直线平行(地位关系)这是平行线的剖断;由平行线(地位关系)得到有关角相等或互补(数目关系)的结论是平行线的性质.1=∠B,求证:∠2=∠C∥DF,DE∥BC,∠1=65°,,原图形的外形和大小完整雷同.②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点③衔接各组对应点的线段平行且相等2.平移的特点:①经由平移之后的图形与本来的图形的对应线段平行(或在统一向线上)且相等,对应角相等,图形的外形与大小都没有产生变更. ②经由平移后,对应点所连的线段平行(或在统一向线上)且相等. 典范例题:如图,△ABC 经由平移之后成为△DEF,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______.⑶点_____的对应点是点F;⑷线段AB 的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______.⑺____的对应角是∠F.(二)试题精选:1.如图(4),给出下列论断:①AD∥BC:②AB∥CD;③∠A=∠C.以上个中两个作为题设,另一个作为结论,用“假如……,那么……”情势,写出一个你以为准确的命题是___________.(4) (5) (6)2.如图(5),直线AB.CD.EF 订交于统一点O,并且∠BOC=23∠AOC,∠DOF=13∠AOD,那么∠FOC=______度. 3.如图(6),直线a.b 被C 所截,a⊥L 于M,b⊥L 于N,∠1=66°,则∠2=________.4. 如图,图中的内错角的对数是()A. 2对B. 3对C. 4对D. 5对A DB EC F5.假如两个角的双方分离平行,而个中一个角比另一个角的4倍少30 ,那么这两个角是()A. 42138 、B. 都是10C. 42138 、或4210 、D. 以上都不合错误针对性演习:1.已知:如图,∠=∠∠=∠123,,B AC DE //,且B.C.D 在一条直线上.求证:AE BD //2.已知:如图,∠=∠CDA CBA ,DE等分∠CDA ,BF 等分∠CBA ,且∠=∠ADE AED .求证:DE FB // 3.已知:如图,∠+∠=∠=∠BAP APD 18012 ,. 求证:∠=∠E F A E 3 1 2 4 B C D D F C A E B A B 1 E F 2 C P D。
平行线的性质知识点总结
平行线的性质知识点总结平行线是我们在几何学中经常遇到的概念,它具有一些独特的性质和特点。
本文将对平行线的性质进行总结,帮助读者更好地理解和运用这些知识点。
一、定义和标记方式平行线是在同一个平面上,永不相交的两条直线。
我们通常用符号"//"来表示两条平行线,例如AB//CD。
二、判断平行线的方法平行线的判断方法有以下几种:1. 同位角相等法则:如果两条直线被一条横截线所截,且同位角相等,则这两条直线平行。
2. 内错角相等法则:如果两条直线被一条横截线所截,且内错角相等,则这两条直线平行。
3. 外错角相等法则:如果两条直线被一条横截线所截,且外错角相等,则这两条直线平行。
4. 平行线特性法则:如果两条直线的斜率相等或两条直线的倾斜角相等,则这两条直线平行。
三、平行线的性质1. 平行线与转角线的夹角关系:当两条直线被一条横截线所截,且转角线与一个平行线垂直,那么它与另一条平行线也垂直。
2. 平行线与同位角的关系:同位角是指两条直线被一条横截线所截,且位于同一侧的内角。
对于平行线来说,同位角相等。
3. 平行线与内错角的关系:内错角是指两条直线被一条横截线所截,且位于同一侧的相对角。
对于平行线来说,内错角相等。
4. 平行线与外错角的关系:外错角是指两条直线被一条横截线所截,且位于不同侧的相对角。
对于平行线来说,外错角相等。
5. 平行线向平面的投影:如果一条直线与一个平面平行,那么这条直线在这个平面上的投影与原直线平行。
6. 平行线间的距离关系:平行线间的距离是沿垂直于这两条平行线的线段的长度。
四、平行线的应用平行线的性质在几何学中有着广泛的应用,特别是在解决角度、线段关系和图形相似性等问题时。
以下是一些典型的应用场景:1. 平行线用于证明两条线段相等或不相等。
2. 平行线用于证明某个角是直角或等角。
3. 平行线用于证明图形的相似性。
4. 平行线用于推导和证明其他几何性质和定理。
总结起来,平行线是在同一个平面上永不相交的两条直线,具有一系列独特的性质。
平行线的性质及平移知识讲解
平行线的性质及平移知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【典型例题】类型一、平行线的性质1、如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C. 116°D.97°【答案】B.【解析】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.【总结升华】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是举一反三:【变式】如图所示,已知a∥b∥c,∠1=105°,∠2=140°,则∠3的度数是( )A.75°B.65°C.55°D.50°【答案】B类型二、两平行线间的距离2、下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、命题3.判断下列语句是否是命题,如果是,请写出它的题设和结论.(1)同位角相等;(2)对顶角相等;(3)画一条5厘米的线段.【答案与解析】解:(1)是命题,这个命题的题设是:如果两个角是同位角;结论是:这两个角相等,这个命题是一个错误的命题,即假命题.(2)是命题,这个命题的题设是:两个角是对顶角;结论是:这两个角相等,这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.【总结升华】命题必须对某件事情作出“是什么”或“不是什么”的判断,如疑问句、反问句等不是命题,值得注意的是错误的命题也是命题.判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.举一反三:【变式】下列命题是假命题的是()A.锐角小于90°B.平角等于两直角C.若a>b,则a2>b2 D.若a2≠b2,则a≠b 【答案】C类型四、平移4.如图所示,①、②两图中,哪个图形中的一个三角形可以经过另一个三角形平移得到?【答案与解析】解:图①DE和AC平行,但不相等,DE和BC相等,但不平行,不符合平移的特征,无论怎样平移其中一个三角形也得不到另一个三角形.图②符合平移的特征,三角形PQR沿射线PM方向移动PM长即可得到三角形MNO.所以,图②中一个三角形可以经过另一个三角形平移得到.【总结升华】平移变换的实质是图形沿直线运动,它的形状、大小都不发生变化,否则就不是平移变换.举一反三:【变式】如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20cm.解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.5、如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为( )A.600m2B.551m2C.550m2D.500m2【答案】B类型五、平行的性质与判定综合应用②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填入“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【答案与解析】解:三个论断分别可以组成①②⇒③;①③⇒②;②③⇒①三种不同情形的命题,选择其中任何一个即可.以①②⇒③为例,说明如下已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,∠B=∠E,AB∥DE,试说明BC∥EF.理由叙述:因为AB∥DE,所以∠B=∠CKD.又因为∠B=∠E,所以∠E=∠CKD,所以BC∥EF.【总结升华】此类问题具有较强的灵活性,解决这类题的基本思路是先写出可能的结果,再判断其是否正确.举一反三:【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .【答案】115°(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N 与∠MP1 P2+∠P2ND的关系,并证明你的结论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的结论.【答案与解析】解:(1)75°;(2)结论:∠AMP1+∠P1 P2N=∠MP1 P2+∠P2ND证明:如图,分别过P1,P2作P1Q1∥AB,P2Q2∥AB.又∵AB∥CD,∴∠AMP1=∠1,∠2=∠3,∠4=∠P2ND.∴∠AMP1+∠P1 P2N=∠AMP1+∠3+∠4=∠1+∠2+∠P2ND=∠MP1 P2+∠P2ND.【总结升华】通过作平行线,问题便迅速得到解决.举一反三:【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ) .A.120°B.130°C.140°D.150°【答案】D;提示:如图,过点B作BE∥AM.。
平行线的性质及尺规作图(基础)知识讲解
平行线的性质及尺规作图(基础)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念.3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.(2015秋•昌邑市期末)已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】(2015•泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则() .A.S1>S2B.S1=S2C.S1<S2D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°【答案】C【解析】过点C作CD∥AB,∵CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵EF∥AB∴EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
初中数学知识归纳平行线的性质与判定
初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。
平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。
本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。
一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。
同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。
例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。
根据同位角性质,可知∠A = ∠B = ∠C。
2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。
内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。
例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。
根据内错角性质,可知∠A = ∠B。
3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。
同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。
例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。
根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。
二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。
例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。
2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。
例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。
3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。
七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习
专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。
平行线及其判定知识点总结、例题解析
平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。
1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。
如果a∥b,b∥c,那么a∥c。
【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。
【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。
其中正确的有()。
A、1个;B、2个;C、3个;D、4个。
【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。
平行线的判定和性质知识点详解
平行线的判定和性质知识点详解平行线是在同一个平面上,永不相交的两条直线。
在平行线的判定和性质中,我们会涉及到直线和角的相关概念以及它们之间的关系。
1.同位角平行线判定:如果两条直线与一条横截线相交,且同位角相等,则这两条直线是平行线。
同位角是指两条直线被横截线所形成的内外两对相似角。
2.顶角平行线判定:如果两条直线被一条直线所截断,使得内侧的两个顶角互补,则这两条直线是平行线。
顶角是指两条直线被截断所形成的内外两个相交角。
3.对顶角平行线判定:如果两条直线被一条直线所截断,使得对顶角互补,则这两条直线是平行线。
对顶角是指两条直线被截断所形成的相对两侧的相交角。
平行线的性质如下:1.同位角性质:同位角是两条平行线被横截线所形成的内外两对相似角。
性质有:同位角相等;同位角的对应角相等;同位角的内外两个对顶角互补。
2.内错角性质:内部错位的两个角,分别在两对同位角之间,互为补角。
3.外错角性质:外部错位的两个角,分别在两对同位角之间,互为补角。
4.顶角性质:顶角是两条平行线被一条截断线所形成的内外两个相交角。
性质有:顶角相等;顶角的对应角相等;顶角的内外两个对位角互为补角。
5.对顶角性质:对顶角是两条平行线被一条截断线所形成的相对两侧的相交角。
性质有:对顶角互为补角。
6.互补角性质:互补角是指两个角的和为90度。
在平行线中,同位角和对位角都是互补角。
7.直角性质:如果一条直线垂直于一条平行线,则它与这条平行线的对位角都是直角。
8.平行线之间的距离性质:平行线之间的距离在任意两点之间是相等的。
总结起来,平行线的判定方法包括同位角平行线判定、顶角平行线判定和对顶角平行线判定。
而平行线的性质包括同位角性质、内错角性质、外错角性质、顶角性质、对顶角性质、互补角性质、直角性质以及平行线之间的距离性质等。
这些性质可以帮助我们在解决平行线相关问题时更加便捷地推导和证明结论。
平行线的性质知识点及练习题
平行线的性质知识点及练习题1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。
几何符号语言:∵AB ∥CD∴∠1=∠2〔两直线平行,内错角相等〕∵AB ∥CD ∴∠3=∠2〔两直线平行,同位角相等〕∵AB ∥CD ∴∠4+∠2=180°〔两直线平行,同旁内角互补〕2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,那么称线段EF 的长度为两平行线AB 与CD 间的距离。
注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,那么垂线段GH 的长度也就是直线AB 与CD 间的距离。
3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两局部组成。
题设是事项;结论是由事项推出的事项。
命题常写成“如果……,那么……〞的形式。
具有这种形式的命题中,用“如果〞开场的局部是题设,用“那么〞开场的局部是结论。
有些命题,没有写成“如果……,那么……〞的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……〞的形式。
注意:命题的题设〔条件〕局部,有时也可用“……〞或者“假设……〞等形式表述;命题的结论局部,有时也可用“求证……〞或“那么……〞等形式表述。
4、平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。
其中,由角的相等或互补〔数量关系〕的条件,得到两条直线平行〔位置关系〕这是平行线的判定;由平行线〔位置关系〕得到有关角相等或互补〔数量关系〕的结论是平行线的性质。
典型例题:∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B 〔〕∴DE ∥BC 〔同位角相等,两直线平行〕 ∴∠2=∠C 〔两直线平行,同位角相等〕注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数A B C DEF 1 2 3 4 A EG B C FH D A D F BE C 1 2 3解答:∵DE ∥BC 〔〕∴∠2=∠1=65°〔两直线平行,内错角相等〕∵AB ∥DF 〔〕∴AB ∥DF 〔〕∴∠3+∠2=180°〔两直线平行,同旁内角互补〕∴∠3=180°-∠2=180°-65°=115°平行线的性质练习题一、选择题:(每题3分,共12分)1、如图1所示,AB ∥CD,那么与∠1相等的角(∠1除外)共有( ) D C B A 1ED C BA O F E D C BA (1) (2) (3) 〔4〕2、如图2所示,DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )°°°°3、以下说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4、如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,那么∠BOF 为( )°°°°二、填空题:(每题3分,共12分)5、如图4所示,n m //,∠2=50°,那么∠1= °,∠3= °,∠4= °6、把命题“邻补角的平分线互相垂直〞改写成“如果……,那么……。
初中数学的解析平行线的性质与判定解析
初中数学的解析平行线的性质与判定解析解析平行线是初中数学中的一个重要概念,它在几何图形的性质与判定中扮演着关键的角色。
本文将对解析平行线的性质进行探讨,并介绍几种判定解析平行线的方法。
一、解析平行线的性质1. 定义:解析平行线是在坐标平面上,两条直线的斜率相等且不相交的直线。
若两条直线的斜率分别为k1和k2,且k1=k2,则这两条直线是解析平行线。
2. 性质1:解析平行线的斜率相等。
也就是说,如果两条线的斜率相等,那么它们是解析平行线。
3. 性质2:解析平行线的方向相同。
即两条解析平行线在平面上的指向是相同的,要么都是向上,要么都是向下。
4. 性质3:解析平行线不会相交。
如果两条直线的斜率相等且不相交,那么它们是解析平行线。
二、解析平行线的判定方法1. 判定一:使用斜率判定法。
如果两条直线的斜率相等,则它们是解析平行线。
2. 判定二:使用截距判定法。
如果两条直线的截距相等且斜率不相等,则它们是解析平行线。
3. 判定三:使用点判定法。
如果两条直线上的两个点对应的x坐标和y坐标比值相等且斜率不相等,则它们是解析平行线。
三、解析平行线的应用举例1. 例题一:已知直线L1的方程为y=2x+3,直线L2过点P(-1,4)且与L1平行,求L2的方程。
解:由于L1的斜率为2,根据性质1可知,L2的斜率也为2。
又L2过点P(-1,4),代入直线方程y=2x+b中,得到4=2*(-1)+b,解得b=6。
因此,L2的方程为y=2x+6。
2. 例题二:已知直线L1的方程为2x-y+1=0,直线L2与L1平行,且L2经过点P(3,-1),求L2的方程。
解:将直线L1的方程转换为斜率截距形式,得到y=2x+1。
由性质2可知,L2的斜率也为2。
又L2经过点P(3,-1),代入直线方程y=2x+b 中,得到-1=2*3+b,解得b=-7。
因此,L2的方程为y=2x-7。
四、总结解析平行线是指在坐标平面上,两条直线的斜率相等且不相交的直线。
第三讲 平行线的性质
例3 A B C a b 1 2 3 第三讲 平行线的性质一、知识要点二回顾: 1、平行线的性质:性质1:两直线平行, ;性质2:两直线平行, ; 性质3:两直线平行, 。
2、几何符号语言:(如右图) ∵AB ∥CD ∴∠1=∠2(两直线平行, )∵AB ∥CD ∴∠3=∠ (两直线平行, )∵AB ∥CD ∴∠4+∠ =180°(两直线平行, )注意:1、书写的顺序以及前因后果,平行线的性质是由两直线平行,然后得出角相等。
所以平行线的性质书写的顺序是先写平行,然后写角相等或角互补。
2、平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。
3、平行线的传递性:若a ∥b ,a ∥c ,则b ∥c 。
几何符号语言:(如右上图)∵a ∥b ,a ∥c ∴b ∥c (平行线的传递性)4、在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线互相垂直。
几何符号语言:(如右图)∵a ⊥c ,b ⊥c ∴a ∥b二、典型例题讲析:题型一: 根据条件,填写判断的依据:例1:如图(1)∵AB ∥ED ∴∠1=∠ (两直线平行, )(2)∵AC ∥DF ∴∠3=∠ (两直线平行, )(3)∵AB ∥ED ∴∠A+∠ =1800(两直线平行, )题型二:根据角相等或互补关系,判定直线平行例2:已知:如图,∠1=∠2,且BD 平分∠ABC .求证:AB ∥CD .题型三:根据平行线的性质证明角相等或互补关系以及求角的度数例3:、如图11,已知a b ∥,170∠= ,240∠= ,则3∠= .例4:如图所示,AB ∥CD,AD ∥BC,试说明∠A =∠CA B C D E F1 2 3 4 D C B A例5:已知:如图, A B ∥CD ,直线EF 分别交A B 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P ,求证∠P= 90题型四:平行线的性质与判定的综合运用例6:如图,直线EF 交直线AB 、CD 于点M 、N,∠EMB=∠END,MG 平分∠EMB,NH平分∠END 。
平行线的性质知识点总结2024
引言概述:平行线是几何学中一个重要的概念,指两条直线在同一个平面内不相交且永远保持等间距的性质。
平行线的性质在几何学中有广泛的应用,并且对于解决一些几何问题具有重要的指导意义。
本文将对平行线的性质进行总结和详细解释。
正文内容:一、平行线的定义和判定1.平行线的定义:平行线是在同一个平面上,不相交且永远保持等间距的两条直线。
2.平行线的判定方法:a.同位角相等判定法:当两条直线被一条横截线所切,同位角相等时,这两条直线平行。
b.内错角相等判定法:当两条直线被一条横截线所切,内错角相等时,这两条直线平行。
c.同斜率判定法:当两条直线的斜率相等时,这两条直线平行。
d.同平行线判定法:两条直线都与一条直线平行时,这两条直线平行。
二、平行线的性质1.平行线的基本性质:a.平行线上的任意两条线段都平行且等长。
b.两个平行线被一条横截线所截,对应的同位角相等。
c.两个平行线被一条横截线所截,内错角相等。
d.平行线与截线之间的余角互补。
2.平行线的性质与面积关系:a.平行线截割的平行四边形具有相等的面积。
b.平行线截割的三角形与其平行线的相似三角形的比例为1:1。
3.平行线的性质与角度关系:a.平行线与直线交叉相交时,形成对顶角互补。
b.平行线与直线交叉相交时,形成内错角互补。
c.平行线与直线交叉相交时,形成同位角相等。
4.平行线的性质与平行四边形:a.平行线截割的平行四边形具有相等的对角线长度。
b.平行线截割的平行四边形具有相等的内角和。
5.平行线的性质与平行线束:a.平行线束是指多条平行线在平面上的集合。
b.平行线束中的平行线两两平行。
结论:平行线在数学和几何学中具有重要的性质和应用。
通过平行线的定义和判定方法,我们可以判断两条直线是否平行。
而平行线的性质又能够帮助我们解决各种几何问题,包括计算面积、求解角度等。
因此,熟练掌握平行线的性质对于理解和应用几何学具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质知识点总结、例题解析
知识点1【平行线的性质】
(1)性质1:两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等.
∵AB∥CD
∴∠2=∠3
(2)性质2:两条平行线被地三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补.
∵AB∥CD
∴∠2+∠4=180°
(3)性质3:两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等。
∵AB∥CD
∴∠1=∠2
【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。
【答案】∠ADE=80°;∠AEC=124°
【例题2】如图,平行线AB。
CD被直线AE所截,若∠1=110°,则∠2等于()
A、70
B、80
C、90
D、110
【答案】A
【例题3】如图,已知AB∥CD,∠1=150°,∠2=______
【答案】30°
【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______
【答案】35°
【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______°
【答案】50 ,50 ;
【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________
【答案】10°
【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF
【答案】证明:∵AB∥CD,
∴∠BAC=∠DCA.(两直线平行,内错角相等)
∵AE∥CF,
∴∠EAC=∠FCA.(两直线平行,内错角相等)
∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,
∴∠BAE=∠DCF.
【例题8】如图,已知AB∥CD,∠B=40°CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数。
【答案】解:∵AB∥CD,∠B=40°
∴∠BCE=180°-∠B=180°-40°=140°,
∵CN是∠BCE的平分线,
∴∠BCN=70°,
∵CM⊥CN,
∴∠BCM=20°.
知识点2【判定与性质的区别及综合应用】
平行线的“判定”和“性质”有什么不同
⚠️平行线的判定:已知角的关系,推出平行的关系。
(推平行,用判定)
⚠️平行线的性质:已知平行关系,推导出角的关系。
(知平行,用性质)
【例题9】如图,已知:∠1=∠2,∠D=50°,求∠B的度数。
【答案】解:∵∠1=∠2,∠2=∠EHD,
∴∠1=∠EHD,
∴AB∥CD;
∴∠B+∠D=180°,
∵∠D=50°,
∴∠B=180°﹣50°=130°.
【例题10】如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E。
求证:AD∥BC
【答案】解:∵ AB//CD
∴∠BAE =∠CFE
又AE 平分∠BAD
∴∠BAE =∠EAD
∴∠CFE =∠EAD
又∵∠CFE= ∠E
∴∠EAD= ∠E
∴AD//BC
知识点3【平行线中的拐点问题】
1、平行线中常见的“拐点”模型
①点在两平行线之间(燕尾型、铅笔型)
②点在两平行线之外(锄头型、牛角型)
以上模型中的三个角(∠B、∠D、∠E)都有特殊的数量关系。
2、解题方法:做辅助线
辅助线:过拐点做已知直线的平行线,即逢“拐点”作平行。
一般而言,有几个“拐点”就需要做几条平行线。
①作辅助线(过拐点处作平行线)
②找特殊角(找相等的角或互补的角)。
③解决问题(找到数量关系)
⚠️在拐点处作平行线,可使问题转化,从而构造出一些相等的角或互补的角,使已知与未知
一目了然,达到解题的目的。
类型一:含一个拐点的平行线问题
【例题11】如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3=________
【答案】100°
【例题12】如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点AB分别在直线l1、l2上,若∠1=65°,则∠2的度数是__________
【答案】25°
【例题13】如图所示,l1∥l2,AB⊥l1,∠ABC=130°,那么∠α的度数为()
A、60°
B、50°
C、40°
D、30°
【答案】C(过B点做l1的平行线)
【例题14】如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()
A、20°
B、30°
C、 40° D。
、70°
【答案】B解析:如图,过C向右作CM∥AB
∵AB∥DE,
∴AB∥DE∥CM
∵∠ABC=70°,∠CDE=140°
∴∠BCM=70°,∠DCM=180°-140°=40°
∴∠BCD=∠BCM-∠DCM=70°-40°=30°
【例题15】探究题
(1)小明遇到了下面的问题:如图AB∥CD,点P在AB,CD内部,探究∠APC,∠A,∠C之间的数量关系并证明。
(2)如图2,若AC∥BD。
点P在AB、CD外部∠APC,∠A,∠C,的数量关系是否发生变化?请证明。
【答案】(1)∠APC=∠A+∠C
(2)变化,∠APC=∠C-∠A
类型二:含多个拐点的平行线问题
【例题16】如下图,直线m∥n,∠A=125°,∠B=85°,则∠1+∠2=__________
【答案】30°
【例题17】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=_________
【答案】如图,∵l1∥l2,
∴∠3=∠1=40°,
∵∠α=∠β,
∴AB∥CD,
∴∠2+∠3=180°,
∴∠2=180°-∠3=180°-40°=140°.
知识点4【命题、定理、证明】
1、命题:判断一件事情的语句叫做命题。
(1)一句话,只要对一件事情做出了判断,无论对错,都叫做命题。
如:相等的角是对顶角。
⚠️如果一个句子没有对某一件事情作出任何判那么它就不是命题。
如:画线段AB=CD。
⚠️命题是陈述句。
问句和感叹句都不是命题
(2)命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。
通常命题可写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论。
(3)如果题设成立,结论一定成立,这样的命题是正确的命题,叫做真命题;
如果题设成立,结论不一定成立,这样的命题是错误的命题,叫做假命题。
2、定理:真命题的一种,通常由公理(基本事实)推导得出。
我们学过的定理:补角的性质:同角或等角的补角相等;余角的性质:同角或等角的余角
相等;对顶角的性质:对顶角相等;垂线的性质:过一点有且只有一条直线与已知直线垂直;平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行;平行线的判定定理;平行线的性质定理。
3、证明:一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。
(假命题只需要举一个反例即可说明)
【例题18】判断下列语句是否是命题. 如果是,请写出它的题设和结论.
(1)两直线平行,同旁内角互补。
(2)等角的补角相等。
(3)同位角相等。
(4)相等的角是对顶角。
(5)画一个60°的角.
【答案】
(1)如果两直线平行,那么同旁内角互补;题设:两直线平行,结论:同旁内角互补。
(2)两种改法①如果两个角相等,那么这两个角的补角相等。
题设:两个角相等,结论:这两个角的补角相等;②如果两个角是等角的补角,那么这两个角相等。
题设:两个角是等角的补角,结论:这两个角相等。
(3)如果两个角是同位角,那么这两个角相等。
题设:两个角是同位角,结论:这两个角相等。
(4)如果两个角相等,那么这两个角是对顶角。
题设:两个角相等,结论:这两个角是对顶角。
【例题19】下列句子哪些是命题?如果是,指出是真命题还是假命题。
(1)猪有四只脚。
(2)内错角相等。
(3)画一条直线。
(4)四边形是正方形。
(5)你吃饭了吗?(6)相等的角是对顶角。
(7)对顶角相等。
【答案】命题:1、2、4、6、7,真命题:1、7,假命题:2、4、6.。