磁场单元知识结构图

合集下载

电机学中的基本电磁定理

电机学中的基本电磁定理

i2
i3
l
其中 H: 磁场强度,安/米(A/m)
dl
注:若i与l符合右手螺旋关系, 取正号,否则取 负号 。其中大拇指所指为i的方向,四指为l方向。 如图示为: ∑ i = i1 + i2 - i3
当气隙长度δ远远小于两侧 的铁心截面的边长时, 铁心和 气隙中为均匀磁场,则

F Ni H FelFe H
其中 F=Ni:磁路的磁动势 HFelFe:铁心上的磁压降 Hδ δ :气隙上的磁压降
带气隙的铁心磁路
注:i 与 l 符合右手螺旋关系,电机学中习惯大拇指所 指为 l 的方向,四指为多匝线圈中 i 方向。
设有向回路 l 与圆 环的中心圆重合,则沿 着回线 l 磁场强度 H 处 处相等且其方向处处与 回线切线方向相同(称 为均匀磁场),同时闭 合回线所包围的总电流 由通有电流 i 的 N 匝线 圈提供,则:
e blv
运动电势的方向习惯用右手定则确定,如图所示。
2.3. 电磁力定律
载流导体在磁场中要受到电磁力,在导体与磁场 垂直的情况下,若导体中电流为i,导体长度为l,导 体所在处的磁通密度为b,则电磁力为:
f bli
注:电磁力方向由左手定则决定
电机的基本作用原理

三个定律,一个定理 1)安培环路定律(全电流定律):电流在任一导 体中流通,则该导体周围将有磁场产生。 2)电磁感应定律:任一线圈中键链的磁通发生变 化,则在该线圈中将有感应电势产生。


3)电磁力定律:任一载流导体在磁场中将受力的 作用。
4)能量守恒定理:输入能量 = 输出能量 + 损耗能 量
电机的可逆运行原理
机械功率
发电机 电动机

1第一章 地球的磁场

1第一章 地球的磁场

31o 51' 31o 08' 62o18' 60o36' 58o 25' 53o12' 46o 48' 45o31' 46o 48' 41o 33' 43o55' 36o57' 70o14' 35o17' − 15o10' 30o37'
− 1o 25' − 1o03' − 9o55' − 8o58' − 7o49' − 5o10' − 4o02' − 4o40' − 4o12' − 3o02' − 4o09' − 2o50' − 10o57' − 2o41' 0o 25' − 2o33'
四、地磁场的结构与磁异常
(一)地磁场的构成 在地面上观测所得到的地磁场 T 是各种不同成分的磁场之总和。它们的场源分布有的 在地球内部,有的在地面之上的大气层中。按其来源和变化规律不同,可将地磁场分为两部 分:一是主要来源于固体地球内部的稳定磁场 Ts;二是主要起因于固体地球外部的变化磁
二、地磁图与地磁场分布的基本特征
(一)地磁测量和地磁图 地磁场是空间和时间的复杂函数,为了满足地面上定向、航空、航海、资源勘查以及地 磁学本身研究的需要,根据地磁测量的结果定期地编绘出相应的各种图件。完成地磁观测任 务的测点通常为两类:一类是连续地测定地磁要素绝对值及随时间变化场值,此类有固定的 测点,称为地磁台;另一类是野外测点,在这些测点上间断地测定地磁要素绝对值。由这两 类测点组成了某地区、某国家甚至全球范围的地磁测网。当进行全球性的研究时,不可忽略 超过陆地面积四分之三的海域地磁测量。为此,必须充分利用海洋磁测、航空磁测和卫星磁 测,它们可以在短时间内获得大面积或全球范围的磁场三分量(X、Y、Z)及其它地磁要素 的地磁资料。 地磁要素是随时空变化的,要了解其分布特征,必须把不同时刻所观测的数值都归算到 某一特定的日期,国际上将此日期一般选在 1 月 1 日零点零分,这个步骤称之为通化。将经 通化后的某一地磁要素值按各个测点的经纬度坐标标在地图上,再把数值相等的各点用光滑 的曲线连结起来,编绘成某个地磁要素的等值线图,便称为地磁图。 地磁图按要素 T、H、Z、X、Y、 D 及 I 可分别绘制出相应等值线图,按编图范围分 类,有世界地磁图和局部地磁图两种;世界地磁图表示地磁场在全球范围内的分布,通常每 五年编绘一次,图 1-1-2 至图 1-1-6 为 2010 年代的 D、I、H、Z 及 T 等要素的世界地磁图。 我国地磁图每十年编绘一次,自 1950 年至 2000 年已正式出版六期,2010 年地磁图也将正 式编制出版。 根据各地的地磁要素随时间变化的观测资料,还可求出相应要素在各地的年变化平均 值,称为地磁要素的年变率。同样可以编制出相应年代的要素年变率等值线图。这类图件一 般可以适用五年,与地磁图合用可以求得五年中某一年的地磁要素值。由于地磁场存在长期 变化,因此,在使用地磁图时必须注意出版的年代,及相应年代要素的年变率地磁图。 (二)地磁场随地理分布的基本特征 世界地磁图基本上反映了来自地球核部场源的各地磁要素随地理分布的基本特征。 图 1-1-2 是等偏线图。由图可见,等偏线是从一点出发汇聚于另一点的曲线族,明显地 分别汇聚在南、北两磁极区,在这两点上磁北方向可以从 0°变到 360°,即没有固定的磁 偏角。按磁偏角定义,同样在地理两极也是如此。因此,在南北两半球上磁偏角共有四个汇 聚点。全图有两条零偏线(D=0°)分布,将全球分为负偏角区(D<0°)和正偏角区(D>0°)两个 部分。 图 1-1-3 是等倾线图。由图可见,等倾线大致和纬度线平行分布。零倾线在地理赤道附 近,称为磁赤道,但不是一条直线。由磁赤道向北,磁倾角为正,在北极附近有一点(实际 上是一个小区域)I=90°,称为北磁极。磁赤道以南,磁倾角为负,有类似的变化特征,有一个 南磁极。磁南北两极的位置也随时间变化。2010 年两磁极位置是:北磁极为 76°1’N,100°W, 南磁极是 65°8’S,139°E。它们在地球表面上的位置也不是对称的。

带电粒子在匀强磁场中的运动 课件

带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器


B.两粒子都带负电,质量比 =4


1
C.两粒子都带正电,质量比 =

4

1
D.两粒子都带负电,质量比 =

4
A.两粒子都带正电,质量比
1

解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN

2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动

磁电系测量机构

磁电系测量机构

2、1磁电系测量机构考纲要求:1、掌握磁电系测量机构得结构组成及各部分作用。

2、理解磁电系测量机构得工作原理及三种力矩得产生机制。

3、掌握磁电系测量机构得技术特性与应用范围。

知识要点:一、磁电系测量机构得结构(瞧图能说出)1、组成:磁电系测量机构由与构成。

磁电系测量机构得机构示意图2、作用:①永久磁铁得作用:且为磁场;②可动线圈得作用:;③游丝得作用:;3、磁路系统结构形式有:、与。

其中内磁式结构紧凑、受外磁场影响小,今年来得到广泛应用;内外磁式得灵敏度更高,结构更紧凑,受外磁场得影响更小。

二、磁电系测量机构得工作原理1、三种力矩①转动力矩Ma.产生:;b.大小: M = ;c、方向:通过来判断并取决于得方向。

②反作用力矩M fa.产生:;b.大小:M f = ;(D得决定因素有、、)c、方向:与得方向相反。

③阻尼力矩M ea.产生:铝框阻尼:;线路阻尼:;b、大小:与有关,可动部分不动则为;对测量结果影响;c、方向:与相反;d、作用:。

2、M与M f得关系:当M与M f相等时,可动部分达到平衡,此时,M e = , M M f。

3、磁电系测量机构得灵敏度:S = ;(就是一个)所以S得提高方法:从上改善性能,尤其就是。

4、磁电系测量机构得工作原理三、磁电系测量机构得技术特性与应用范围1、技术特性a、准确度;原因:b、灵敏度;c、表盘标度尺刻度;原因:d、过载能力;原因:e、只能测量。

原因:2、应用范围a、用于仪表;b、配可测交流电量;c、配可测交流功率、频率、相位等非电量;d.配可以测量温度;e.配可以测量压力。

典型例题:▲解答磁电系测量机构得技术特性问题,必须紧紧围绕它得结构特点来进行分析。

1、为什么磁电系仪表得准确度高?2、磁电系测量机构只能测量直流电量就是何故?巩固练习:一、填空题1、根据磁电系测量机构得磁路结构不同,磁电系测量机构可分为、与三种,其中结构最紧凑,气隙中磁场最强。

2、磁电系测量机构所能识别得中间过渡量就是信号。

新高中物理知识体系结构图及详解

新高中物理知识体系结构图及详解

欢迎阅读
高中物理学知识的结构体系
高中物理包括必修1、2共7章;选修3-1、2、3、4、5共19章内容。

归纳起来,整个高中物理的知识体系可以分为力学、热学、光学、电磁学(电学和磁学)、原子物理学五大学科部分。

必修1和2属于力学部分;选修3-1、3-2属于电磁学内容;选修3-4主要为光学;选修3-5主要为原子物理学,有3章(机械振动和机械波、动量守恒定律)为力学内容。

除了热学部分是初中物理(选修3-3未学)的主讲内容外,其他都在高中期间得到学习和深化。

力学知识结构体系力学部分包括静力学、运动学和动力学
PART I 静力学
PART II 运动力学
PART III 动力学
热学知识结构体系
热学包括:研究宏观热现象的热力学、研究微观理论的统计物理学,分子动理论是热现象微观理论的基础
电磁学知识结构体系
电磁学包括:电学和磁学两大部分。

包括电性和磁性交互关系,主要研究电磁波、电磁场以及有关电荷、带电物体的动力学,二者很难清晰分割。

电磁场和电磁波
光学知识结构体系
原子物理学知识结构体系
第一章力
直线运动
牛顿运动定律
物体的平衡
.
曲线运动
万有引力定律
机械能
第九章机械振动
机械波。

人教版九年级物理知识点总结:第十九章生活用电

人教版九年级物理知识点总结:第十九章生活用电

第十九章生活用电本章知识结构图:一、家庭电路1.家庭电路的组成、火线和零线:(1)家庭电路的组成:安装顺序是,进户线—>电能表—>总开关(闸刀开关)—>熔断器,开关,插座,用电器。

保险丝(2)试电笔由笔尖金属体、大阻值电阻、氖管、弹簧、笔尾金属体构成,它主要用于辨别火线和零线。

使用时手接触笔尾金属体,笔尖接触导线。

如果氖管发光,则是火线,否则就是零线。

2.三线插头和漏电保护器:(1)三线插头(三孔插座):主要用于用电器的外壳和电源火线之间的绝缘体损坏时,使外壳带电,电流就会流入大地,不至于对人造成伤害。

连接方法是“左零右火上接地”。

(2)漏电保护器:如果站在地上的人不小心接触了火线,电流经过人体流入大地时,“漏电保护器”会迅速切断电流,对人身起到保护作用。

它安装在总开关上。

二、家庭电路中电流过大的原因1.家庭电路中电流过大的原因(1)用电器的总功率过大。

根据公式P=UI,可以得到I=P/U,而家庭电路中的电压是一定的,U=220V,所以用电功率P越大,电路中的电流I就越大。

(2)短路。

由于导线的电阻很小,由欧姆定律可知,电路发生短路时,电路中的电流将会很大。

2.保险丝的作用(1)保险丝一般是用电阻比较大、熔点比较低的铅锑合金制成。

不用铁丝或铜丝等导线替代保险丝,因为它们的熔点较高。

(2)保险丝的作用:当电流过大时,切断电路,起到保护作用。

(3)使用方法是串联在电路中。

(4)保险丝的额定电流等于或者稍大于电路中最大的正常工作电流。

三、安全用电1.人体的安全电压是不高于36V。

2.电压越高越危险。

3.常见的触电事故:(1)家庭电路中,双线触电,单线触电。

(2)高压触电。

(3)急救:立即切断电源,然后进行急救。

4.注意防雷:雷电是大气中一种剧烈的放电现象。

防雷装置:避雷针。

第二十章电与磁本章知识结构图:一、磁现象磁场1.磁现象(1)能吸引铁、钴、镍的性质叫做磁性。

(2)具有磁性的物体叫做磁体。

电磁学知识结构图

电磁学知识结构图
电磁学知识结构图
多个点电荷平衡 定义:E=
F ,E 与 F、q、无关。 q
点电荷场强 E=k
库仑定律
力 的 特 性 电 场 能 的 特 性
公式
F=k
q1q 2 r2
适用于真空中的点 电荷之间
电 场 强 度
矢量性:方向规定为正检验电 荷受力的方向。 单位:牛顿/库仑或伏/米。
Q r2
电荷的 电势能
电势 U= q
永磁体磁场 磁场的 产 生 电流磁场 磁感强度 磁场的 性 质 磁通量
单位:特(牛/安·米)或韦伯/米 2 矢量性:B 的方向即磁场方向, B、F、L 的方向关系由左手定 则确定。 磁感线 意义: ①磁感线的疏密表示磁场 强弱; ②磁感线的方向表示磁场 方向。 大小:ε =BLV 方向:右手定则 大小:ε =n
ε =U+U′
功率形式 Iε =IU+I2r
电 路
1 1 1 R R1 R2
电功 W=IUt 带电粒子在电磁 复合场中的运动
电 阻
欧姆定律
I=
U R
电功率 P=IU 电热 Q=I2Rt
电阻定律
R=ρ
L S
定义 直线电流磁场 通电螺线管磁场
B=
F IL
安培力 F=BIL 方向:左手定则 洛仑兹力 f=BqV 方向:左手定则
t
方向:楞次定律 交变电流 自感与 互 感 自感现象 互感现象 变压器 即时值 U=Umsinω t U= I=Imsinω t
U1 n1 = U 2 n2
有效值f
P 出=P 入(理想变压器)
周期、频率、角频率 T=
单位:伏(焦/库)
电场线 意义:①电场线疏密表示强度 大小;②电场线方向表示正检 验电荷受力方向;③电场线方 向是电势降落最快的方向; ④电场线与等势面处处垂直。

磁共振成像系统原理和功能结构

磁共振成像系统原理和功能结构

磁共振基本原理第一章主要讲述电荷、电流、电磁、磁感应方面的基本概念。

这里将介绍余下章节中将提到的大量的词汇。

你可以快速复习这些概念,但是要注意关键定义和一些重要的概念,因为这些概念有可能在考试中出现。

同时也包括一些对向量和复数关系的解释。

如果你有工程师的背景就请略过这些章节,否则请多花些时间研究2D、3D向量,振幅和相位、矢量和复数方面的知识。

矢量在MRI中有极其重要的作用,因此现在多花些时间学习是值得的。

静电学研究的是静止的电荷,在MRI中几乎没有太大意义。

我们以此作为开场白主要是因为电学和磁学之间有密切的关系。

静电学与静磁场非常相似。

最小的电荷存在于质子(正)和电子(负)中,集中在很小的一团或以量子形式存在。

虽然质子比电子重1840倍,但是他们有同样幅度的电荷。

电荷的单位是库仑,是6.24*1018个电子的总和,这是一个非常大的数量。

一道闪电包含10到50个库仑。

一个电子或质子的电荷为±1.6*10-19库仑。

与一个粒子所拥有的分离的电荷不同,电场是连续的。

关键的概念是相同的电荷相互排斥,不同的电荷相互吸引。

同时,你应该知道电场强度与电荷呈线形变化,和电荷的距离的平方成反比。

换句话说,如果总的电荷数增加,电场的强度也会增加,与电荷的距离越远,电场强度越弱。

将相同的电荷拉近,或将不同的电荷分开都需要能量。

当出现这种情况时,粒子就有做功的势能。

就象拉开或压缩一个弹簧一样。

这种做功的势能叫电动力(emf)。

当一个电荷被移动,并做功时,势能可以转化成动能。

每单位电荷的势能称电势能,它是电荷相对于电场的位置的函数(1/d2)。

电荷位于周边,它尽量要处于一个舒服的位置,但这也不是一件容易做到的事。

它不断地运动、做功。

运动的电荷越多,每个电荷做功越多,总功越大。

运动的电荷叫做电流。

电流的测量单位为安培(A)。

第一个电流图描绘的是电池产生直流电(DC)。

电厂里的发电机产生的是变化的电压,也称为交流电(AC)。

头颅MRI—基础知识知识讲解

头颅MRI—基础知识知识讲解

中央沟
大 脑 外 侧 裂
半卵圆
中心


中央沟
额叶




顶叶


中央沟
额叶
顶叶
脑 放射冠 室
层 面 中 央 沟 位 置
额叶 岛叶
颞叶
枕叶
尾状核 外囊 豆状核
基 底 节
内囊 区

丘脑 枕




大脑外

侧裂












小 脑
枕 叶


枕叶

磁共振成像的读片顺序
1、按时间排列图片; 2、按序列排列图片; 3、先读平扫再读增强; 4、先读T1WI,T2WI,再读其他序列; 5、功能图象只是诊断的参考。
磁共振RI--``00`图`位位线线像下右 上的标记的意义
OAx-轴位 OSag-矢位 OCor-冠位
L-`0`位线左 A-`0`位线前 P-`0`位线后
磁共振图像上的标记的意义
常见磁共振成像扫描序列
SE(FSE)-自旋回波(快速自旋回波) T1WI T2WI
GRE-梯度回波 T2*WI
正常 轴位
T1WI
正常 轴位
T2WI
液体衰减反转恢复序列(Flair)
该序列是近年发展起来的扫描序列, 分为T1Flair和T2Flair两种, T1Flair主要有显著的灰白质对比度, 图像的组织界面清晰。
T2Flai是T2WI序列重要的补充,主要是 通过编制扫描序列中不同的脉冲方式, 达到抑制自由水,突出显示结合水的目 的。

高中物理力学思维导图(可打印)

高中物理力学思维导图(可打印)

力学知识结构图力的概念定义力是物体对物体的作用。

所以每一个实在的力都有施力物体和受力物体三要素大小、方向、作用点矢量性力的矢量性表现在它不仅有大小和方向,而且它的运算符合平行四边形定则。

效果力的作用效果表现在,使物体产生形变以及改变物体的运动状态两个方面。

力的合成与分解一个力的作用效果,如果与几个力的效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力。

由分力求合力的运算叫力的合成;由合力求分力的运算叫力的分解。

重力由地球对物体的吸引而产生。

方向:总是竖直向下。

大小G =mg 。

g 为重力加速度,由于物体到地心的距离变化和地球自转的影响,地球周围各地g 值不同。

在地球表面,南极与北极g 值较大,赤道g 值较小;通常取g=9.8米/秒2。

重心的位置与物体的几何形状、质量分布有关。

任何两个物体之间的吸引力叫万有引力,2RMm GF 。

通常取引力常量G =6.67×10-11牛·米2/千克2。

物体的重力可以认为是地球对物体的万有引力。

弹力弹力产生在直接接触并且发生了形变的物体之间。

支持面上作用的弹力垂直于支持面;绳上作用的弹力沿着绳的收缩方向。

胡克定律F=kx ,k 称弹簧劲度系数。

滑动摩擦力物体间发生相对滑动时,接触面间产生的阻碍相对滑动的力,其方向与接触面相切,与相对滑动的方向相反;其大小f=μN 。

N 为接触面间的压力。

μ为动摩擦因数,由两接触面的材料和粗糙程度决定。

静摩擦力相互接触的物体间产生相对运动趋势时,沿接触面产生与相对运动趋势方向相反的静摩擦力。

静摩擦力的大小随两物体相对运动的“趋势”强弱,在零和“最大静摩擦力”之间变化。

“最大静摩擦力”的具体值,因两物体的接触面材料情况和压力等因素而异。

摩擦力三种常见的力牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

物体的这种性质叫做惯性。

惯性是物体的固有属性,衡量惯性的大小的物理量是质量。

磁性物理第一章磁学基础知识

磁性物理第一章磁学基础知识

17
磁导率的不同定义: 1、起始磁导率μi 2、最大磁导率μmax
3、复数磁导率 ~
4、振幅磁导率μa
lim i
1
0
H0
B H
max
1
0
B
Hmax
~'i''
a
1
0
Ba Ha
18
5、增量磁导率μΔ
1 0
B H
6、可逆磁导率μrev
revlim H0
所有磁导率的值都是H的函数:
19
第二节 磁化状态下磁体中的静磁能量
4
用环形电流描述磁偶极子:
磁矩:μm iA单位:A ∙m2
二者的物理意义:
表j征m磁偶0μ极m子磁性强弱与方向
o 410-7Hm1
电子的轨道运动相当于一个恒定的电流回路,必 有一个磁矩(轨道磁矩),但自旋也会产生磁矩(自 旋磁矩),自旋磁矩是基本粒子的固有磁矩。
5
二、磁化强度 M (magnetization)
21
即,磁偶极子在磁场中磁位能:
U W Ld m lH sin d
mlH cos c, (取 c 0)
jm H
22
∴单位体积中外磁场能(即磁场能量密度)
FU
V
jm H
V J H
0M H 0M H cos
(J/m 3 )
FH 是各向异性的能量
23
二、退磁场与退磁场能量
d
磁矩为零。在外磁场作用下,电子运
动将产生一个附加的运动(由电磁感
O
T
应定律而定),出现附加角动量,感
生出与H反向的磁矩。因此:χd<0,且 | χd|~10-5,与H、T无关。

高中物理《磁场》单元教学设计(2019年7月)

高中物理《磁场》单元教学设计(2019年7月)

2.对课标要求的理解:
从发展学生核心素养的视角解读课标
课标要求通过实验认识磁场;通过实验探究安培力和洛伦兹力的大小和方向的规律; 通过实验研究带电粒子在匀强磁场中的圆周运动,体现重视探究过程,重视引导学生对 实验现象进行分析与归纳,概括实验结果的本质特征,提升学生对实验结果进行定性和 定量分析的能力。
单元教学设计
-----以磁场为例
单元教学设计理念与思路
1 教学内容分析
2 学情分析
3 教学目标
单元教学设 计的框架
4 学习过程设计 5 教学策略设计
6 主要教学活动设计
7 学习评价设计
8 教学反思
单元教学设计框架中各部分的关系
•基于教学内容和学情设计单元教学目标 •单元教学目标是其它环节的设计的依据
3.跨学科概念及教育价值分析:
发展相互作用观念
培养科学思维,发展能力
从隐性知识层 面解读
•教育价值分析
(2)本单元通过实验认识磁场,探究安培力、洛伦兹力的大小和方向,用比值定
义磁感应强度概念、约定磁场的方向,有助于培养学生通过观察实验现象,分析本
质规律的思维习惯;帮助学生理解“场”物质认识方式,发展“物质观念”“能量
•单元认知主线
(1)本单元认知主线梳理: 以类比电场的研究思路展开:磁现象(磁效应)、磁场性质的定量和定性描述、磁 场性质(对电流和运动电荷的作用)、安培力和洛伦兹力的应用。类比电场、点电荷、 电场线、电场强度、电场力,建立磁场、电流元、磁感线、磁感强度、洛伦兹力和安培 力的概念,逐步形成对“场”物质的认识方式,让学生体会认识世界的“大思路”
课标要求通过观察磁电式电表的内部结构,了解磁电式电表的工作原理。通过观察 阴极射线在磁场中的偏转现象,了解带电粒子在磁场中偏转的原因。观察洛伦兹力演示 仪的结构,定性讨论电子束偏转的原理。了解质谱仪和回旋加速器的工作原理。体现重 视物理实验的研究方法、重视知识与生产生活的紧密联系,让学生了解科学知识在人类 发展史上的重要地位和作用,提升科学态度与社会责任。

电工基础知识 (4)

电工基础知识 (4)

三、理解要点
第一节 电磁学槪论
11
〔三〕电场和磁场的根本定律 1.电荷守恒和电流连续性原理 电荷是守恒的,它既不能产生也不能消灭。 2.库仑力定律 两个点电荷之间作用力的大小与两电荷量乘
积成正比,与距离的平方成反比。 3.安培力定律 有关两个电流回路之间磁场力的定律,安培
力定律是研究磁场力的根底。
对单于位纯:电瓦P阻〔性WAt 〕负 U或载I (,kWP) AUII2RU2
t
R
四、掌握重点
第一节 电磁学槪论
14
〔三〕电流的热效应
电流通过导体时产生热的现象。 焦耳定律, Q I 2 Rt QI2Rt W
对于纯电阻性负载,产生的热量与电流做 的功相等, QI2RtUItU2tA
R
单位:焦耳〔J〕。
电压与相电压相等。
四、掌握重点
第一节 电磁学槪论
26 6.三相负载有功功率、无功功率和视在功率
P3U PIPcos3U lIlcos Q3U PIPsin3U lIlsin
S3UPIP 3UlIl
S P2 Q2
一、知识结构
第二节 电力基础知识
27
电力系统
电力系ห้องสมุดไป่ตู้ 与电力网
电力网
电力系统的基本参量和结线图
Em 。
〔四〕电子技术根底
1.PN结的单向导电性
二、了解内容
第一节 电磁学槪论
5
2.二极管 二极管的主要特性是单向导电性。可把交流 电整流为直流电。
3.三极管: 结构:三极管三个电极,三个区、两个PN结。 功能:能起放大、振荡或开关等作用。 三极管有PNP型和NPN型两种。
三、理解要点
第一节 电磁学槪论

电磁知识点资料

电磁知识点资料

电与磁知识点第一节:磁现象1、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。

2、磁体:具有磁性的物质叫做磁体。

3、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。

(任一个磁体都有两个磁极且是不可分割的)可以自由转动的磁体,静止后恒指南北。

为了区别这两个磁极,我们就把指南的磁极叫南极,或称S极;另一个指北的磁极叫北极,或称N极。

4、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。

5、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。

6、磁化:使原来没有磁性的物体得到磁性的过程。

铁棒被磁化后,磁性容易消失,称为软磁体。

钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。

人造磁体就是永磁体。

7、磁场:概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。

磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。

磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

注意:在磁场中的一个位置的磁场方向只有一个。

8、磁感线:概念:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。

方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线。

练习:画出下列各组磁感线方向9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。

(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。

(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。

(4)在空间每一点只有一个磁场方向,所以磁感线不相交。

10、地磁场地磁场:地球周围存在着磁场叫做地磁场。

地磁北极在地理南极附近,地磁南极在地理北极附近。

第一章 磁学基础知识

第一章 磁学基础知识
上世纪 70 年代以后,随着非晶材料和纳米材料的兴 起,又发现了一些新的磁性类型,对它们的研究尚在深化 之中,课程只做初步介绍。
1. 抗磁性(Diamagnetism)
这是19世纪后半叶就已经发现并研究的一类弱磁性。它的 最基本特征是磁化率为负值且绝对值很小,<0, <<1 显示抗磁质在外磁场中产生的磁化强度与磁场反向,在不均匀 的磁场中被推向磁场减小的方向,所以又称逆磁性。典型抗磁 性物质的磁化率是常数,不随温度、磁场而变化。有少数的反 常。 深入研究发现,典型抗磁性是轨道电子在外磁场中受到电 磁作用而产生的,因而所有物质都具有的一定的抗磁性,但只 是在构成原子(离子)或分子的磁距为零,不存在其它磁性的 物质中, 才会在外磁场中显示出这种抗磁性。在外场中显示抗 磁性的物质称作抗磁性物质。除了轨道电子的抗磁性外,传导 电子也具有一定的抗磁性,并造成反常。
原子、离子的磁矩(顺、抗磁) 晶体结构和晶场类型(自旋、轨道贡献) 相邻原子、电子间的相互作用(磁有序)
固 体 磁 性
研究凝聚态物质各种磁性表现的起因是磁性物理的主要 任务,其中强磁性物质在技术领域有着突出作用,所以影响 强磁性物质磁性的机理是我们课程最为关注的。
一. 物质的磁性分类
为了方便研究物质磁性的起因,我们可以按其在磁场
N 是磁化方向的退磁因子。对于非球形样品,沿不同方向磁 化时退磁场能大小不同,这种由形状造成的退磁场能随磁化 方向的变化,通常也称形状各向异性能。退磁能的存在是自
发磁化后的强磁体出现磁畴的主要原因。
对椭球体:
H d N x M x i N y M y j N z M z k 1 2 2 Fd 0 N x M x N y M y N z M z2 2 N x N y N z 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档