(精校版)2017年全国三卷理科数学高考真题及答案解析
2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017高考全国3卷理科数学试题及答案
2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则AB 中元素的个数为()A .3B .2C .1D .0 【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A .12B .22C .2D .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πxy O7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为() A .5 B .4 C .3 D .2【答案】D【解析】程序运行过程如下表所示:S Mt 初始状态 0 100 1第1次循环结束 100 10- 2第2次循环结束 90 1 3此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()ABC.3D .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a ==A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3 B. CD .2【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:()A O D x yB P CE0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y =,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0112x μθ==+,01y λθ==+. 两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sin ϕ,cos ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小. 由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向, CA 为z 轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)a =,||1a =. B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)b =,||1b =. 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,||2AB '=.设AB '与a 所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)cos sin |a AB θθαθ--⋅=∈'. 故ππ[,]42α∈,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)cos |AB bb AB b AB βθθθ'⋅='-⋅='.当AB '与a 夹角为60︒时,即π3α=, sin3πθα=. ∵22cos sin 1θθ+=,∴|cos |θ=∴1cos cos |2βθ==.∵π[0,]2β∈.∴π=3β,此时AB '与b 夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A +=,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A+=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅=△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.⑵①当200n ≤时:,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max 520Y =,当300n =时取到. ③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ,AB BD . (1)证明:平面ACD 平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆为等边三角形 ∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:OD =,OB = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为1n ,平面AEC 的法向量为2n ,DB C ED A BC EO则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得(13,1,n =220AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得(20,1,n = 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7n n n n θ⋅==⋅20.(12分)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M 的方程.【解析】⑴显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OBx x y y ⋅=+ 12(2)(2)my my =++21212(1)2()4m y y m y y =++++ 24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. ⑵若圆M 过点P ,则0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ ==则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ,求m 的最小值.【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+=0,M 为l 3与C 的交点,求M 的极径.【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k=+ ……②①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y += ……③联立曲线C 和3l 224x y x y ⎧+=⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ=即M.23.[选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦. 综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i )z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x —y )5的展开式中x 3y 3的系数为 A .—80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .—24B .—3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分.13.若x,y满足约束条件y020xx yy-≥⎧⎪+-≤⎨⎪≥⎩,则z34x y=-的最小值为__________.14.设等比数列{}n a满足a1 + a2 = –1,a1–a3 = –3,则a4 = ___________.15.设函数10()20xx xf xx+≤⎧=⎨>⎩,,,,则满足1()()12f x f x+->的x的取值范围是_________。
2017高考全国3卷理科数学试题与答案
2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题 5分,共 60分)1.已知集合 A ( x, y) x 2 y 2 1 , B( x, y) y x ,则 AB 中元素的个数为()A . 3B . 2C . 1D . 0【答案】 B221 上所有点的集合, B 表示直线 yx 上所有点的集合,【解析】 A 表示圆 x y 故 A B 表示两直线与圆的交点,由图可知交点的个数为2,即 A B 元素的个数为2,故选 B.2.设复数 z 满足 (1 i) z 2i ,则 z ()1 B .2 C . 2D . 2A .22【答案】 C2i 2i 1 i 2i 2 122 ,故选 C.【解析】由题, z1 i 1 ii 1 ,则 z 121 i23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳【答案】 A【解析】由题图可知, 2014年8月到 9月的月接待游客量在减少,则 A 选项错误,故选 A.4. ( x y)(2 x y)5 的展开式中 x 3 y 3 的系数为()A .B .C . 40D . 80【答案】 C【解析】由二项式定理可得,原式展开中含x 3 y3的项为x 22 x 23y 33240x 333 3C 5y C 5 2xyy,则 x y 的系数为 40,故选 C.225x ,且与椭圆5.已知双曲线C :x2y 2 1( a 0 , b 0 )的一条渐近线方程为 yx 2 y 2ab21 有公共焦点.则 C 的方程为()123A . x 2 y 2 1B . x 2 y 21C . x 2 y 21D . x 2 y 218104 55443【答案】 B【解析】 ∵双曲线的一条渐近线方程为y5 x ,则 b5 ① 又∵ 椭圆x 2y 22 a21 与双曲线有公共焦点,易知 c 3 ,则 a 2b 2 c29 ②123x2y2由①② 解得 a 2,b5 ,则双曲线 C 的方程为1,故选 B.456.设函数 f ( x)πcos(x) ,则下列结论错误的是()38πA . f (x) 的一个周期为2πB . y f ( x) 的图像关于直线 x对称3C . f ( xπ π ) 的一个零点为 xD . f (x) 在 ( , π) 单调递减【答案】 D 62【解析】函数 fx cos xπ的图象可由 y cosx 向左平移π个单位得到,3 3 如图可知, f x在 π, π 上先递减后递增, D 选项错误,故选 D.2y- Ox67.执行右图的程序框图,为使输出S 的值小于 91,则输入的正整数N的最小值为() A . 5 B .4 C .3 D . 2【答案】 D【解析】程序运行过程如下表所示:SM t 初始状态 0 100 1 第1次循环结束 100 10 2 第2次循环结束 90 1 3此时 S 90 91 首次满足条件,程序需在 t 3 时跳出循环,即 N2 为满足条件的最小值,故选 D.8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为()A .πB .3π ππ4C .D .【答案】 B241 2【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径23 , r122则圆柱体体积 Vπ 23πrh,故选 B.49.等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则a n前 6项的和为()A . 24B . 3C . 3D . 8【答案】 A【解析】 ∵ a n为等差数列,且 a 2 , a 3 , a 6 成等比数列,设公差为 d .则 a 32 a 2 a 6 ,即 a 12d 2a 1 d a 15d又∵ a 1 1 ,代入上式可得 d 2 2d 0又∵ d 0 ,则 d 2∴ S 66a 1 6 5 d 1 6 6 5 224 ,故选 A.2 222xya b 0A 1A 2A 1 A 210.已知椭圆 C : a 2 b 21( )的左、右顶点分别为, ,且以线段 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为()A .6B .3C .21 33D .33【答案】 A【解析】 ∵ 以 A 1 A 2 为直径为圆与直线 bx ay2ab 0 相切,∴圆心到直线距离d 等于半径,∴ d2aba22又∵ a0,b0 ,则上式可化简为 a 2 3b 2 ∵ b 2 a 2c 2,可得 a 23 a2c2,即 c22a 23∴ ec 6,故选Aa311.已知函数 f ( x) x 2 2xa(e x 1e x 1 ) 有唯一零点,则a()1 1 1A . 2B . 3C . 2D . 1【答案】 C【解析】由条件,f ( x) 22xx 1e x 1x a(e) ,得:f (2x) (2 x) 2 2(2x) a(e 2 x 1e (2 x ) 1 )x 2 4 x 4 42x a(e 1 x e x 1 )22 x x 1e x 1x a(e ) ∴ f (2x) f (x) ,即 x 1 为 f (x) 的对称轴,由题意, f (x) 有唯一零点,∴ f ( x) 的零点只能为 x 1 ,即 f (1) 12 2 1 a(e 1 1e 1 1) 0 ,解得 a 1.212.在矩形 ABCD 中, AB 1, AD2 ,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若APABAD ,则的最大值为()yA . 3B . 2 2P gC . 5D . 2BC【答案】 A【解析】由题意,画出右图.设 BD 与 C 切于点 E ,连接 CE .E以 A 为原点, AD 为 x 轴正半轴,xA(O)DAB 为y轴正半轴建立直角坐标系,则 C 点坐标为 (2,1) . ∵|CD| 1,|BC | 2.22.∴BD 1 25 ∵ BD 切 C 于点 E .∴CE ⊥BD .∴ CE 是 Rt △ BCD 中斜边 BD 上的高 .1 |BC| |CD|2 S △ BCD 22 2 2|EC ||BD | 5 5|BD |5即 C 的半径为 25 .5∵P 在 C 上.∴ P 点的轨迹方程为 ( x 2)2( y 1)245 .设 P 点坐标(x 0, y 0),可以设出 P 点坐标满足的参数方程如下:2x 0 2 5 cos 2y 0 15 sin而 AP (x 0 , y 0 ) , AB (0,1) , AD (2,0) .∵ AP AB AD (0,1) (2,0) (2 , )∴115,y 01 2 5 sin .x 05cos52两式相加得:1 2 5sin15cos552( 2 5 )2 ( 5 )2 sin( )5 5 2 sin( ) ≤ 3(其中 sin5, cos2 5 )55当且仅当π2 k π, kZ 时,取得最大值 3.2二、填空题:(本题共4小题,每小题 5分,共 20分)x y ≥ 0,13.若 x , y 满足约束条件xy 2 ≤ 0, 则 z 3x 4 y 的最小值为 ________.y ≥ 0,【答案】 1【解析】由题,画出可行域如图:目标函数为 z 3 x 4 y ,则直线 3 zz 值越小.yx 纵截距越大, 由图可知: z 在 A 1,1 4 4处取最小值,故 z min 3 1 4 1 1 .x y 2 0yA(1,1)B x(2,0)x y 014.设等比数列 a n满足 a 1 a 21 , a 1 a 33 ,则 a4 ________.【答案】 8【解析】a n 为等比数列,设公比为 q .a 1 a 2 1a 1 a 1 q 1 ① a 1 a 33 ,即 a 1 a 1 q 2 3 ② , 显然 q 1, a 1 0 ,②得 1 q3 ,即 q2 ,代入 ① 式可得 a 1 1 ,①a 4 a 1q 3 138 .2f (x)x 1,x ≤ 0, f ( x1115.设函数 2x , x 0,则满足 f (x))的 x 的取值范围是 ________.2【答案】1 ,4【解析】fxx 1,x ≤ 0, f x f x1 1 1 1 f x2 x , x 02,即 f x2由图象变换可画出yf x1 与 y1 fx的图象如下:2yyf (x 1)2( 1,1)4 4x1 122y 1 f (x)由图可知,满足 f x1 1 1 f x 的解为,.2416. a , b 为空间中两条互相垂直的直线,等腰直角三角形 ABC 的直角边 AC 所在直线与a ,b 都垂直,斜边①当直线 AB 与 a 成②当直线 AB 与 a 成AB 以直线 AC 为旋转轴旋转,有下列结论: 60 角时, AB 与 b 成 30 角;60 角时, AB 与 b 成 60 角;③直线 AB 与 a 所成角的最小值为45 ; ④直线 AB 与 a 所成角的最大值为60 .其中正确的是 ________(填写所有正确结论的编号)【答案】 ②③【解析】由题意知, a 、 b 、AC 三条直线两两相互垂直,画出图 形如图 .不妨设图中所示正方体边长为 1,故|AC| 1, AB2,斜边 AB 以直线 AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心, 1为半径的圆 .以 C 为坐标原点,以 CD 为 x 轴正方向, CB 为 y 轴正方向,CA 为 z 轴正方向建立空间直角坐标系.则 D(1,0,0) , A(0,0,1) ,直线 a 的方向单位向量 a(0,1,0) , | a | 1 .B 点起始坐标为 (0,1,0) ,直线 b 的方向单位向量 b (1,0,0) , | b | 1 .设 B 点在运动过程中的坐标B (cos ,sin,0) , 其中 为 BC 与CD 的夹角, [0,2 π) . 那么 AB '在运动过程中的向量 AB ( cos, sin ,1) , | AB | 2 .设 AB 与 a 所成夹角为[0, π] ,2则cos 故设AB( cos , sin ,1) (0,1,0)2| sin| [0,2] .a AB22π π[ ,] ,所以③正确,④错误.4 2与 b 所成夹角为π[0, ],2AB bcosb AB(cos,sin,1) (1,0,0) .b AB2| cos |2当AB与 a 夹角为60π时,即3,sin2cos 2 cos 2 12 .∵ cos2sin 2322 1,∴ | cos| 2 .2∴ cos2| cos| 1 .22π∵[0, ]. 2π∴=,此时AB与b夹角为60.3∴② 正确,①错误.三、解答题:(共70分.第 17-20题为必考题,每个试题考生都必须作答.第22, 23题为选考题,考生根据要求作答)(一)必考题:共60分.17.( 12分)ABC 的内角A,B,C的对边分别为a,b,c,已知sin A 3 cos A 0 ,a 2 7 ,b 2.( 1)求 c;( 2)设D为 BC 边上一点,且AD AC ,求△ ABD 的面积.【解析】(1)由 sin A 3 cos A0 得2sin A π0 ,3即 A πkπk Z ,又A0, π,3∴ A ππ,得A2π33.1由余弦定理222.又∵a 27, b 2,cosAa b c 2 bc cos A代入并整理22得 c25 ,故c 4 .1(2)∵ AC2, BC27, AB 4 ,2 2 22 7 .由余弦定理 cosCab c2ab 7∵ AC AD ,即 △ACD 为直角三角形,则 ACCD cosC ,得 CD 7 .由勾股定理 AD CD 223 .AC 又 A2π DAB2π π π,则32 ,36 S △ ABD1AD AB sinπ3 .2618.( 12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4元,售价每瓶 6元,未售出的酸奶降价处理, 以每瓶 2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为 500 瓶;如果最高气温位于区间 20 ,25 ,需求量为 300瓶;如果最高气温低于 20,需求量为 200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 10 ,1515 ,2020 ,25 25 ,3030 ,3535 ,40天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.( 1)求六月份这种酸奶一天的需求量 X (单位:瓶)的分布列; ( 2)设六月份一天销售这种酸奶的利润为 Y (单位:元).当六月份这种酸奶一天的进货量 n (单位:瓶)为多少时, Y 的数学期望达到最大值?【解析】 ⑴易知需求量 x 可取 200,300,500P X 2 16 1200 3 530 P X 36 2300 3 530 P X 25 7 4 2500 3 .30 5则分布列为:X 200 300 500P122555⑵① 当 n ≤ 200 时: Y n 6 4 2n ,此时 Y max 400 ,当 n 200 时取到 .②当 2004 2n 1 2 n 200 2 n ≤ 300 时: Y 2005 58 800 2n 6n 800n5 55此时 Y max 520 ,当 n 300 时取到 .③当 300n ≤ 500 时,Y1200 2n200223002n 30022n 25553200 2n5此时 Y 520.④当 n ≥ 500 时,易知 Y 一定小于 ③ 的情况 .综上所述:当 n 300 时, Y 取到最大值为 520 .19.(12分)如图,四面体 ABCD 中,△ABC 形.?ABD ?CBD ,AB= BD.(1)证明:平面 ACD ^ 平面 ABC ;(2)过 AC 的平面交BD于点E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分.求二面角D- AE- C的余弦值.是正三角形,△ACD 是直角三角DECB【解析】⑴取 AC 中点为 O ,连接 BO , DO ;A DABC 为等边三角形∴ BO AC E∴ AB BC CAB BCOBD BD ABDCBD .B ABDDBC∴ AD CD ,即ACD 为等腰直角三角形,ADC A为直角又 O 为底边 AC 中点∴DO AC令 AB a ,则 AB AC BC BD a易得:OD 2, OB3 a a22222∴ OD OB BD由勾股定理的逆定理可得DOB2即OD OBOD ACOD OB z AC OBO OD平面 ABC D AC平面 ABCOB平面 ABC又∵OD 平面ADC平面 ADC C E由面面垂直的判定定理可得平面 ABC ⑵由题意可知V D ACE V B ACE即B , D 到平面ACE的距离相等即E为 BD中点以 O 为原点, OA 为x轴正方向,OB 为y轴正方向, OD 为 z 轴正方向,设 AC a ,建立空间直角坐标系,则O 0,0,0 , Aa a3,0,0 , D 0,0,,B 0,a,0222OB yAx3 a,E 0, a,44a3a a a a易得: AE,a,, AD,0, , OA,0,0244222设平面 AED的法向量为 n1,平面 AEC 的法向量为n2,AE n 1 03,1, 3则n 1 ,解得 n 1 ADAE n 2 0 0,1, 3OA n 2,解得 n 2若二面角 D AE C 为,易知为锐角,则 cosn 1 n 27n 1 n 272lC于 A ,B 两点,圆 M 是以2012分)已知抛物线 C : y = 2x2 0)的直线 交 .(,过点( , 线段 AB 为直径的圆.( 1)证明:坐标原点 O 在圆 M 上;( 2)设圆 M 过点 P ( 4, - 2 ),求直线 l 与圆 M 的方程.【解析】 ⑴显然,当直线斜率为 0 时,直线与抛物线交于一点,不符合题意.设 l : x my 2 , A( x 1 , y 1 ) , B( x 2 , y 2 ) , 联立:y 22 x得 y 22my 40 ,x my24 m216 恒大于 0 , y 1 y 22m , y 1 y 24 .uuruuurOA OBx 1 x 2 y 1 y 2(my 1 2)( my 2 2)(m 2 1)y 1 y 2 2m( y 1 y 2 ) 4 uur uuur 4( m 2 1) 2 m(2 m) 4∴ OA OB ,即O 在圆 M 上.uuur uur⑵若圆 M 过点 P ,则 AP BP(x 1 4)( x 2 4) ( y 1 2)( y 2 2) 0(my 1 2)( my 2 2) ( y 1 2)( y 2 2) 0(m 2 1)y 1 y 2 (2 m 2)( y 1y 2 ) 8 02m 10 解得 m 1或 1化简得 2m21①当 m时, l : 2xy4 0 圆心为 Q(x 0 , y 0 ) ,2y 0y 1y 2 1, x 01y 0 29 ,22249 22半径 r|OQ |142则圆 M : ( x 9 )2 ( y 1 )2 854 2 16②当 m 1 时, l : x y 2 0 圆心为 Q(x 0 , y 0 ) ,y 0 y 1 y 2 1 , x 0 y 0 2 3 , 2半径 r|OQ |32 12则圆 M : ( x 3)2 ( y 1)21021.( 12分)已知函数 f (x)x 1 a ln x .( 1)若 f (x) ≥ 0 ,求 a 的值;( 2)设 m 为整数,且对于任意正整数 n , (1 + 1 1 1m ,求 m 的最)(1 + 2 ) 鬃?(1 n ) <2 2 2小值.【解析】 ⑴ f (x) x 1 a ln x , x 0则 f ( x)1 a xa,且 f (1) 0当 a ≤ 0 x x上单调增, 所以 0x 1时, f x 0 , f x 在 0 , 时, f x0 ,不满足题意;当 a 0 时,当 0 x a 时, f (x) 0 ,则 f (x) 在 (0, a) 上单调递减;当 x a 时, f ( x) 0 ,则 f (x) 在 (a,) 上单调递增.①若 a 1 , f (x) 在 (a,1) 上单调递增 ∴ 当 x (a,1) 时 f ( x) f (1) 0 矛盾 ②若 a 1 , f (x) 在 (1,a) 上单调递减 ∴ 当 x (1,a) 时 f ( x)f (1) 0 矛盾③若 a1 , f ( x) 在 (0,1) 上单调递减, 在 (1,) 上单调递增 ∴ f (x) ≥ f (1)0 满足题意综上所述 a 1 .⑵ 当 a 1 时 f ( x) x 1 ln x ≥ 0 即 ln x ≤ x 1则有 ln( x 1) ≤ x 当且仅当 x0 时等号成立∴ ln(11 1 , kN *k)k22一方面: ln(11 ) ln(11 ... ln(11 1 1 ...1 1 ,2 2 )n )22n 1n 122222即 (111 1e .)(122 )...(12 n)2另一方面: (11 11 (1 1 1 )(1 1 1352)(1 2 )...(1 2 n ) )(1 2 2 3 ) 642 2 2 2 当 n ≥3 时, (1 1 1 1 (2,e))(1 2 2 )...(12 n )2 ∵ m *(1 1 1 1 m ,N , )(1 2 )...(1 2 n )2 2∴ m 的最小值为 3 .22. [选修 4-4:坐标系与参数方程 ] ( 10分)在直角坐标系 xOy 中,直线 l的参数方程为x t ,( t 为参数),直线l的参数方程ykt,xm,为m( m 为参数),设 l 与 l 的交点为 P ,当 k 变化时, P 的轨迹为曲线 C .y,k( 1)写出 C 的普通方程:( 2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 l : cos( nis ) ,M 为 l 与 C 的交点,求 M 的极径.【解析】 ⑴将参数方程转化为一般方程l 1 : y k x 2⋯⋯ ① l 2 : y1 x2 ⋯⋯ ②k① ② 消 k 可得: x 2y 24即 P 的轨迹方程为 x 2 y 2 4 ; ⑵将参数方程转化为一般方程l 3 : x y 2 0⋯⋯ ③联立曲线 C 和 l 3x y2x2y24x3 22解得2y2x cos5 由sin 解得y即 M 的极半径是 5 .23. [选修 4-5:不等式选讲 ](10分)已知函数 f ( x) | x | | x | .( 1)求不等式 f ( x) 的解集;( 2)若不等式 f ( x) x x m 的解集非空,求 m 的取值范围.3, x ≤ 1【解析】 ⑴ f x| x1| | x2| 可等价为 f x2x 1, 1x 2 .由 f x ≥ 1 可得:3,x ≥ 2①当 x ≤ 1 时显然不满足题意; ②当 1 x 2时, 2x 1≥1 ,解得 x ≥1 ;③当 x ≥ 2 时, f x 3 ≥ 1 恒成立 .综上, f x1的解集为 x | x ≥ 1 .⑵不等式 f x ≥ x 2x m 等价为 f xx 2x ≥ m ,令 g xf xx 2 x ,则 g x ≥ m 解集非空只需要g xmax ≥ m .x 2 x 3, x ≤ 1而 g xx 2 3 x 1, 1 x 2 .2x 3, x ≥ 2x①当 x ≤ 1 时, gxmaxg13 1 15 ;2②当 1 x 2 时, g xmaxg 333 3 1 5 ;222 4③当 x ≥ 2 时, g x maxg 22 22 3 1 .综上, g xmax5,故 m5 .44。
2017年全国卷3高考理科数学含答案详解
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是 A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则AB 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12BCD .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.BCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .C.D .2二、填空题:本题共4小题,每小题5分,共20分。
2017年全国卷3高考理科数学含答案详解
2017年全国卷3高考理科数学含答案详解绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22x y y x│,则A I B(,)=│,B={}+=(,)1x y x y中元素的个数为A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,则∣z∣=A.12B.2C.2D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x+y)(2x-y)5的展开式中x3y3的系数为A.-80 B.-40 C.40D.805.已知双曲线C :22221x y a b -= (a >0,b>0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4 C .π2 D .π49.等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为 A .-24 B .-3 C .3 D .810.已知椭圆C :22221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C .23D .1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r =λAB u u u r +μAD u u u r ,则λ+μ的最大值为A .3B .2C 5D .2二、填空题:本题共4小题,每小题5分,共20分。
2017新课标全国卷3高考理科数学试题(卷)与答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2017年全国卷3理科数学试题及答案解析
A B 游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5B.4C.3D.2AP=λAB+μAD,则λ19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.20.(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.11+)2n )(﹤45π=sin 6AB AD AC AD =23,所以BAC 200,300,500,由表格数据知OA 的方向为OA为单位长,建-(1,0,0),(0,3,0),(1,0,0),(0,0,1)A B C D()()1,0,1,2,0,0,1,AD AC AE ⎛=-=-=- ⎝设()=x,y,z n 是平面DAE 的法向量,则0,即0,AD AE ⎧=⎪⎨=⎪⎩n n 0,0,AC AE ⎧=⎪=m 同理可得)013,,-77=n m n m 所以二面角AE -C 的余弦值为)(112x ,y ,B x 可得22y my -1212-4==-14y x,圆M 的半径0AP BP =,故)2200y ++=11或2m =-.y -2=0,圆心的极坐标方程为()()22240<<2cossin ,-=≠()()2224+-2=0cossin cossin⎧-=⎪⎨⎪⎩得()=2+cos sin cos sin-.13tan =-,从而2291=,=1010cos sin代入()222-=4cossin 得2=5,所以交点M 的极径为解:()3<12112,x f x x ,x --⎧⎪=--≤≤⎨A. AB. BC. CD. DA. 0.1 mol 的中,含有0.6N A个中子B. pH=1的H3PO4溶液中,含有0.1N A个C. 2.24 L(标准状况)苯在O中完全燃烧,得到0.6N个CO分子A. 电池工作时,正极可发生反应:2Li S+2Li++2e-=3Li S12.短周期元素W、X、Y和Z在周期表中的相对位置如表所示,这四种元素原子的最外层电子数之和为21。
【数学】2017年高考真题——全国Ⅲ卷(理)(精校解析版)
2017年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学一、选择题1.(2017·全国Ⅲ理,1)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3B .2C .1D .02.(2017·全国Ⅲ理,2)设复数z 满足(1+i)z =2i ,则|z |等于( ) A .12B .22C . 2D .23.(2017·全国Ⅲ理,3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.(2017·全国Ⅲ理,4)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80B .-40C .40D .805.(2017·全国Ⅲ理,5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=16.(2017·全国Ⅲ理,6)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π单调递减7.(2017·全国Ⅲ理,7)执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .28.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB.3π4C.π2D.π49.(2017·全国Ⅲ理,9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项和为( ) A .-24B .-3C .3D .810.(2017·全国Ⅲ理,10)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A .63B .33C .23D .1311.(2017·全国Ⅲ理,11)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .112.(2017·全国Ⅲ理,12)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2C. 5D .2二、填空题13.(2017·全国Ⅲ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.14.(2017·全国Ⅲ理,14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.15.(2017·全国Ⅲ理,15)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.16.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 三、解答题17.(2017·全国Ⅲ理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A + 3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.18.(2017·全国Ⅲ理,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?19.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.20.(2017·全国Ⅲ理,20)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.21.(2017·全国Ⅲ理,21)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值.22.(2017·全国Ⅲ理,22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.23.(2017·全国Ⅲ理,23)[选修4—5:不等式选讲]已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.参考答案一、选择题 1.【答案】B【解析】集合A 表示以原点O 为圆心,1为半径的圆上的所有点的集合, 集合B 表示直线y =x 上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以A ∩B 中元素的个数为2. 故选B. 2.【答案】C【解析】方法一 由(1+i)z =2i ,得z =2i 1+i =1+i ,∴|z |= 2. 故选C.方法二 ∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i , ∴|z |= 2. 故选C. 3.【答案】A【解析】对于选项A ,由图易知月接待游客量每年7,8月份明显高于12月份,故A 错误; 对于选项B ,观察折线图的变化趋势可知,年接待游客量逐年增加,故B 正确; 对于选项C ,D ,由图可知显然正确. 故选A. 4.【答案】C【解析】因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40. 故选C. 5.【答案】B 【解析】由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B. 6.【答案】D【解析】A 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确;B 项,因为f (x )=cos ⎝⎛⎭⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C 项,f (x +π)=cos ⎝⎛⎭⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确;D 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的递减区间为⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎡⎦⎤2k π+2π3,2k π+5π3(k ∈Z ),所以⎝⎛⎭⎫π2,2π3是f (x )的单调递减区间,⎣⎡⎭⎫2π3,π是f (x )的单调递增区间,D 项错误. 故选D. 7.【答案】D【解析】假设N =2,程序执行过程如下: t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91,符合题意. ∴当N =2时成立.显然2是最小值. 故选D. 8.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知, r ,R 及圆柱的高的一半构成直角三角形. ∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =π×⎝⎛⎭⎫322×1=3π4.故选B. 9.【答案】A【解析】由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6,可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×(-2)2=-24.故选A. 10.【答案】A【解析】由题意知,以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13, ∴e =c a =a 2-b 2a =1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63. 故选A. 11.【答案】C【解析】方法一 f (x )=x 2-2x +a (e x -1+e-x +1)=(x -1)2+a [e x -1+e-(x -1)]-1,令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.故选C.方法二 f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 故选C. 12.【答案】A【解析】建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5, EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0). ∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A. 二、填空题 13.【答案】-1【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0表示的可行域如图阴影部分所示.由z =3x -4y ,得y =34x -14z .平移直线y =34x ,易知经过点A 时,z 有最小值.由⎩⎪⎨⎪⎧ x -y =0,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1,∴A (1,1). ∴z min =3-4=-1. 14.【答案】-8【解析】设等比数列{a n }的公比为q . ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,① a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8. 15.【答案】⎝⎛⎭⎫-14,+∞ 【解析】由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.16.【答案】②③【解析】依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误. 三、解答题17.解 (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理,得28=4+c 2-4c ·cos 2π3, 即c 2+2c -24=0,解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.18.解 (1)由题意知,X 所有的可能取值为200,300,500, 由表格数据知,P (X =200)=2+1630×3=0.2,P (X =300)=3630×3=0.4,P (X =500)=25+7+430×3=0.4.则X 的分布列为(2),因此只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此EY =2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此EY =2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n .所以当n =300时,Y 的数学期望达到最大值,最大值为520元. 19.(1)证明 由题设可得△ABD ≌△CBD . 从而AD =CD ,又△ACD 为直角三角形, 所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角DACB 的平面角, 在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0),由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12, 故AE →=⎝⎛⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0.设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z =0,令x 1=1,则n 1=(1,33,1). ⎩⎪⎨⎪⎧AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 1=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角DAEC 的平面角为θ,易知θ为锐角, 则cos θ=|n 1·n 2||n 1||n 2|=77.20.(1)证明 设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x ,可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)解 由(1)可得y 1+y 2=2m , x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. 21.解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,故x =a 是f (x )在x ∈(0,+∞)上的唯一极小值点也是最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0, 令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n ,从而ln ⎝⎛⎭⎫1+12+ ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n <e ,而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n >⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123=13564>2,所以m 的最小值为3.22.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2); 消去参数m ,得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2),消去k ,得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5, 所以l 3与C 的交点M 的极径为 5. 23.解 (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1, 解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围是⎝⎛⎦⎤-∞,54.。
2017高考全国3卷理科数学试题以及答案
2017高考全国3卷理科数学试题以及答案2017年普通高等学校招生全国统一考试(全国)理科数学(试题)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y=+=,{}(,)B x y y x==,则A B中元素的个数为()A.3 B.2 C.1D.02.设复数z满足(1i)2iz+=,则z=()A.12B.22C.2D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .805.已知双曲线22221x yC a b -=:(0a >,0b >)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为()A .221810x y -=B .22145x y -=C .22154x y-= D .22143x y-=6.设函数π()cos()3f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为() A .5 B .4 C .3D .1311.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .112.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .2二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.14.设等比数列{}na 满足121a a +=-,133a a -=-,则4a =________.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒. 其中正确的是________(填写所有正确结论的编号)三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 30A A =,27a =,2b =. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温[)1015,[)1520, [)2025, [)2530, [)3035, [)3540, 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ,AB BD .(1)证明:平面ACD 平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值.DABCE20.(12分)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M的方程.21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ,求m 的最小值.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m m y k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+20,M 为l 3与C 的交点,求M 的极径.23.[选修4-5:不等式选讲](10分)已知函数()||||=+1--2.f x x x(1)求不等式()f x≥1的解集;(2)若不等式()f x x x m2≥-+的解集非空,求m的取值范围.2017年普通高等学校招生全国统一考试(全国)理科数学(答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22=+=,{}A x y x y(,)1==,则A B中元B x y y x(,)素的个数为()A.3 B.2 C.1D.0【答案】B【解析】A表示圆221+=上所有点的集合,B表示x y直线y x=上所有点的集合,故A B表示两直线与圆的交点,由图可知交点的个数为2,即A B元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =()A .12B .2C .2D .2 【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5y =,且与椭圆221123x y +=有公共焦点.则C 的方程为()A .221810x y -=B .22145x y -=C .22154x y-=D .22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为5y ,则5b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229ab c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减 【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫ ⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πxyO7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为() A .5 B .4 C .3 D .2 【答案】D【解析】程序运行过程如下表所示:SM t初始状态 0 100 1第1次循环结束 10010- 2第2次循环结束 901 3 此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=- ⎪⎝⎭则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}na 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}na 前6项的和为() A .24- B .3- C .3 D .8【答案】A【解析】∵{}na 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326aa a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220dd +=又∵0d ≠,则2d =- ∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A 6B 3C 2D .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222ab d aa b==+又∵0,0a b >>,则上式可化简为223a b =∵222ba c=-,可得()2223aa c=-,即2223c a =∴6c e a =A 11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x xx a --+=-++,得: 221(2)1211211(2)(2)2(2)(e e )4442(e e )2(ee)x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .2 【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x轴正半轴,AB为y 轴正半轴建立直角坐标系,则C 点坐标为(2,1). ∵||1CD =,||2BC =. ∴22125BD +∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.()A O DxyBPCE12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 255.∵P 在C 上. ∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标0(,)x y ,可以设出P 点坐标满足的参数方程如下:0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而0(,)AP x y =,(0,1)AB =,(2,0)AD =. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴01512x μθ==+,02155y λθ==. 两式相加得:222515152552()())552sin()3λμθθθϕθϕ+=+=++=++≤(其中5sin ϕ,25cos ϕ)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________. 【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y=-,则直线344zy x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.A B (1,1)(2,0)x y -=20x y +-=yx14.设等比数列{}na 满足121a a+=-,133a a-=-,则4a =________.【答案】8- 【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②,显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩xx x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f =-y由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒. 其中正确的是________(填写所有正确结论的编号)【答案】②③【解析】由题意知,a b AC、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故||1AC=,2AB=,斜边AB以直线AC为旋转轴旋转,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆.以C为坐标原点,以CD为x轴正方向,CB为y轴正方向,CA为z轴正方向建立空间直角坐标系.则(1,0,0)D,(0,0,1)A,直线a的方向单位向量(0,1,0)a=,a=.||1B点起始坐标为(0,1,0),直线b的方向单位向量(1,0,0)b=,b=.||1设B点在运动过程中的坐标(cos,sin,0)',Bθθ其中θ为B C'与CD的夹角,[0,2π)θ∈.那么'AB在运动过程中的向量(cos,sin,1)'=--,ABθθAB'=.||2设AB'与a所成夹角为π[0,]α∈,2则(cos ,sin ,1)(0,1,0)22cos sin |a AB θθαθ--⋅=∈'.故ππ[,]42α∈,所以③正确,④错误.设AB '与b所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)2cos |AB b b AB b AB βθθθ'⋅='-⋅='.当AB '与a夹角为60︒时,即π3α=,12sin 22232πθα=.∵22cos sin 1θθ+=, ∴2|cos |θ=.∴21cos cos |2βθ==.∵π[0,]2β∈.∴π=3β,此时AB '与b 夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 30A A =,27a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 30A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭, 即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A=+-⋅.又∵127,2,cos 2a b A ===-代入并整理得()2125c +=,故4c =. (2)∵2,27,4AC BC AB ===,由余弦定理22227cos 2a b c C ab +-=∵AC AD ⊥,即ACD △为直角三角形, 则cos AC CD C =⋅,得7CD . 由勾股定理223AD CD AC =-=又2π3A =,则2πππ326DAB ∠=-=,1πsin 326ABDS AD AB =⋅⋅=△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温[)1015,[)1520, [)2025, [)2530, [)3035, [)3540, 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】⑴易知需求量x 可取200,300,500 ()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.则分布列为:X200 300 500 P 15 25 25⑵①当200n ≤时:()642Y n n =-=,此时max400Y=,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=此时max520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n -=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况. 综上所述:当300n =时,Y 取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ,AB BD .(1)证明:平面ACD 平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值.DBCE【解析】⑴取AC中点为O,连接BO,DO ;ABC∆为等边三角形 ∴BO AC ⊥∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆.∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ==== 易得:2OD =,3OB =∴222OD OB BD+=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面DBC EODABC EyOz⑵由题意可知V V D ACEB ACE--=即B ,D 到平面ACE 的距离相等即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系, 则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,3,0B ⎛⎫ ⎪ ⎪⎝⎭,3,4a E ⎛⎫⎪ ⎪⎝⎭易得:3,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭设平面AED 的法向量为1n ,平面AEC 的法向量为2n , 则110AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得(13,1,3n =2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得(20,1,3n =-若二面角D AE C --为θ,易知θ为锐角, 则12127cos n n n n θ⋅==⋅20.(12分)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M的方程.【解析】⑴显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y x x my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y ym+=,124y y =-.1212OA OBx x y y ⋅=+12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. ⑵若圆M 过点P ,则0AP BP ⋅=1212(4)(4)(2)(2)0x x y y --+++=1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为0(,)Q x y ,120122y y y +==-,0019224xy =-+=,半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为0(,)Q x y ,12012y y y +==,0023xy =+=,半径22||31r OQ ==+则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ,求m 的最小值. 【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f = 当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增. ①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意 综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立 ∴11ln(1)22k k+<,*k ∈N一方面:221111111ln(1)ln(1)...ln(1) (11)2222222n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n+++<. 另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n+++>+++=> 当3n ≥时,2111(1)(1)...(1)(2,e)222n+++∈ ∵*m ∈N ,2111(1)(1)...(1)222nm +++<, ∴m 的最小值为3.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m m y k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+20,M 为l 3与C 的交点,求M 的极径.【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……① ()21:2l y x k=+ ……②①⨯②消k可得:224x y -= 即P的轨迹方程为224x y -=;⑵将参数方程转化为一般方程 3:20l x y += ……③联立曲线C 和3l 22204x y x y ⎧+⎪⎨-=⎪⎩解得322x y ⎧=⎪⎪⎨⎪=⎪⎩由cos sin x y ρθρθ=⎧⎨=⎩解得5ρ=即M 5.23.[选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2.(1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意; ②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m≥等价为()2-+f x x x m≥,令()()2g x f x x x=-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .—40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b 〉0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
2017年理科数学全国III卷参考答案(精校版)
绝密★启用前2017年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学参考答案一、选择题1.B2.C3.A4.C5.B6.D7.D8.B9.A 10.A 11.C 12.A 二、填空题13. -1 14. -8 15.∞1(-,+)416. ②③ 三、解答题 17.解:(1)由已知得tanA=π2A=3在 △ABC 中,由余弦定理得2222844cos+2-24=03c 6c c c c c π=+-=-,即解得(舍去),=4 (2)有题设可得ππ∠∠=∠-∠==,所以26CAD BAD BAC CAD故△ABD 面积与△ACD 面积的比值为π=g g g 1sin 26112AB AD AC AD 又△ABC的面积为⨯⨯∠=∆142sin 2BAC ABD18.解:(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +=== ()363000.490P X ===()25745000.490P X ++===.因此X 的分布列为,因此只需考虑200500n ≤≤ 当300500n ≤≤时,若最高气温不低于25,则Y=6n-4n=2n若最高气温位于区间[)20,,25,则Y=6×300+2(n-300)-4n=1200-2n; 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n ×0.4+(1200-2n )×0.4+(800-2n) ×0.2=640-0.4n 当200300n <≤时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n ×(0.4+0.4)+(800-2n)×0.2=160+1.2n 所以n=300时,Y 的数学期望达到最大值,最大值为520元。
(完整word版)2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017全国卷3理科数学试题与参考答案解析[WORD版]
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的、填写清楚,将条形码准确粘贴在条形码区域。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =A. []2,3B. (][),23,-∞+∞UC. [)3,+∞D. (][)0,23,+∞U 【答案】D【解析】易得(][),23,S =-∞+∞U ,(][)0,23,S T ∴=+∞I U ,选D 【考点】解一元二次不等式、交集 (2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i - 【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算 (3)已知向量13,2BA ⎛⎫= ⎪ ⎪⎝⎭u u u r ,BC u u u r =(3,12),则ABC ∠ A. 30° B. 45° C. 60° D.120° 【答案】A【解析】法一:332cos 11BA BC ABC BA BC ⋅∠===⨯⋅u u u r u u u ru u u r u u u r ,30ABC ∴∠=o 法二:可以B 点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC ∠=∠=∴∠=o o o 【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C o ,B 点表示四月的平均最低气温约为5C o .下面叙述不正确的是A. 各月的平均最低气温都在0C o 以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20C o 的月份有5个 【答案】D【解析】从图像中可以看出平均最高气温高于20C o 的月份有七月、八月,六月为20C o 左右,故最多3个 【考点】统计图的识别 (5)若3tan 4α=,则2cos 2sin 2αα+= A.6425 B. 4825 C. 1 D. 1625【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++ 【考点】二倍角公式、弦切互化、同角三角函数公式xyCAB(6)已知4213332,3,25a b c ===,则A. b a c <<B. a b c <<C. b c a <<D. c a b << 【答案】A【解析】422123333324,3,255a b c =====,故c a b >> 【考点】指数运算、幂函数性质(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A. 3B. 4C. 5D. 6 【答案】B 【解析】列表如下 a4 2 6 -2 4 2 6 -2 4 b6 4 6 4 6 s 0 6 10 16 20 n1234【考点】程序框图(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A.31010 B. 1010 C.1010- D. 31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,25910cos 10225A +-==-⨯ 【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+C. 90D. 81 【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为DCAB2332362354⨯⨯+⨯⨯+⨯+【考点】三视图、多面体的表面积(10)在封闭的直三棱柱ABC -A 1B 1C 1有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB.9π2C. 6πD. 32π3【答案】B【解析】由题意知,当球为直三棱柱的接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,接圆的半径为2, 又1322AA =<⨯,所以接球的半径为32,即V 的最大值为34932R ππ=【考点】接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE的中点,则C 的离心率为 A.13B.12C.23D. 34【答案】A 【解析】易得,2ON OB a MF MF AF a cMF BF a c OE ON AO a-=====+ 12a a c a ca c a a c --∴=⋅=++13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规01数列”共有( ) A .18个B .16个C .14个D .12个【答案】C 【解析】86011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin y x x =的图像可由函数sin y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π【解析】sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭Q ,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++= 【解析】法一:11'()33f x x x-=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++= 法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x∴=-∴=-,故切线方程为210x y ++= 【考点】奇偶性、导数、切线方程(16)已知直线l:30mx y m ++与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =,则||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,3AB OA OF ==∴=Q ,即3=,m ∴= ∴直线l 的倾斜角为30°3CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和S n =1+λa n ,其中λ≠0. (1) 证明{}n a 是等比数列,并求其通项公式; (2) 若53132S =,求λ. 【答案】(1) ;(2) 【解析】解:(1) 1,0n n S a λλ=+≠Q 0n a ∴≠当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=- 即()11n n a a λλ--=,0,0,10,n a λλ≠≠∴-≠Q 即1λ≠即()1,21n n a n a λλ-=≥-, ∴{}n a 是等比数列,公比1q λλ=-,当n =1时,1111S a a λ=+=, 即111a λ=- 1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S =则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--1λ∴=-【考点】等比数列的证明、由n S 求通项、等比数列的性质 (18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii yy =-=∑7≈2.646.参考公式:()()nii tt y y r --=∑ 回归方程y a bt =+)))中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y btt ==--=-∑∑$,$a y bt =-$ 【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】(1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑7()()0.99nii i itt y y t ynt yr ---≈∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系(2) 121()()2.890.10328()nii i nii tt y y btt ==--==≈-∑∑$ $ 1.330.10340.92ay bt =-=-⨯≈$ 所以y 关于t 的线性回归方程为$0.920.10y a bt t =+=+$ 将9t =代入回归方程可得,$1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归 (19)(本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【答案】(1) 见解析;(2)【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN , 由N 为PC 中点知//TN BC ,122TN BC ==. ......3分 又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB . ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥Q 面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则()())()0,0,00,0,42,01,20,2,0A P CN M ⎫⎪⎪⎝⎭、、、、()1,2,0,2,4,1,2AN PM PN N ⎫⎫∴==-=-⎪⎪⎪⎪⎝⎭⎝⎭u u u r u u u u r u u u r故平面PMN 的法向量()0,2,1n =r4cos ,52AN n ∴<>==u u u r r∴直线AN 与平面PMN【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(1) 见解析;(2) 21y x =- 【解析】(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---. 记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k aa a a ab ---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 及AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△PAR ≌△FAR ,∴∠PAR =∠FAR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠PAF =2∠PAR , ∴∠FQB =∠PAR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x , 则1111,2222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而2a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分【考点】抛物线、轨迹方程(21)(本小题满分12分)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.【答案】见解析【解析】(1) ()()'2sin 21sin f x a x a x =---(2) 当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-. ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩.(3) 由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
2017年全国卷3理科数学理科综合试题及答案解析
1绝密★启用前2017年普通高等学校招生全国统一考试全国卷3理科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的。
A . 3B . 2C . 12 .设复数z 满足(1+i)z=2i ,则I z I =3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8月份D .各年1月至6月的月接待游客量相对 7月至12月,波动性更小,变化比较平稳2 2x y1231.已知集合A= (x, y)l x 2B=(x, y) yx,则 A lB 中元素的个数为4. (x + y )(2 x -y )5的展开式中x3 y 3的系数为-80-40C . 4080已知双曲线2x ~2 C : a 2 y_b 21(a > 0,b > 0)的一条渐近线方程为 5x2,且与椭圆有公共焦点,则C 的方程为2x2L 12x2y1 2x2I 1 2x2y1 A . 8 10B . 45C . 54D . 436. 设函数f(x)=cos(x+ 3 ),则下列结论错误的是8A . f(x)的一个周期为-2 nB . y=f(x)的图像关于直线 x= 3对称D . f(x)在(2 ,兀单调递减S 的值小于91,则输入的正整数 N 的最小值为A . 5B . 4C . 3D . 2&已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为3n nnA .nB . 4C . 2D . 49 . 等差数列 K 的首项为1,公差不为0.若 a2, a3, a6成等比数列,则*n 前6项的和为A . -24B . -3C . 3D . 82 2与告110 .已知椭圆C : a 直径的圆与直线bxb ay,(a>b>0)的左、右顶点分别为A1 , A2,且以线段A1A2为2ab相切,则C 的离心率为辽1A . 3 B.3C . 3D . 3 11. 已知函数f(x)2x 2x .x 1X 1 \a(ee)有唯一零点,则a=C . f(x+ n)—个零点为x= 6 7.执行下面的程序框图,为使输出111A .2B . 3C . 2D . 1uuu12.在矩形 ABCD 中,AB=1 , AD=2 , 动点P 在以点C 为圆心且与 BD 相切的圆上.若APuuuuuur-AB +AD , 则 +的最大值为A . 3B . 2 2C .5D . 2二、填空题:本题共 4小题,每小题 5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若 z=1+2i,则 4i zz 1
(A)1
(B) -1
(B)(- ,2] [3,+ ) (D)(0,2] [3,+ )
(C) i
(D)-i
(3)已知向量 BA (1 , 2 ) , BC ( 3 , 1), 则 ABC=
22
22
(A)300
(B) 450
(C) 600
(D)1200
(20)(本小题满分 12 分)
已知抛物线 C: y2 2x 的焦点为 F,平行于 x 轴的两条直线
B 两点,交 C 的准线于 P,Q 两点. (I)若 F 在线段 AB 上,R 是 PQ 的中点,证明 AR∥FQ; (II)若△PQF 的面积是△ABF 的面积的两倍,求 AB 中点的轨迹方程.
l1,l2 分别交 C 于 A,
(I)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明 (II)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量。
(19)(本小题满分 12 分) 如图,四棱锥 P-ABCD 中,PA⊥地面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段 AD 上一点,AM=2MD,N 为 PC 的中点. (I)证明 MN∥平面 PAB; (II)求直线 AN 与平面 PMN 所成角的正弦值.
的图像至少向右平移_____________个单位长
word 版本整理分享
范文 范例 指导 学习
(15)已知 f(x)为偶函数,当 是_______________。
(16)已知直线
时, 与圆
,则曲线 y=f(x),在带你(1,-3)处的切线方程 交于 A,B 两点,过 A,B 分别做 l 的垂线与 x 轴交于 C,
D 两点,若
,则
__________________.
三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分 12 分)
已知数列 的前 n 项和
,
,其中 0
(I)证明 是等比数列,并求其通项公式
(II)若
S5
31 32
,求
(18)(本小题满分 12 分) 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图
中 0 的个数不少于 1 的个数.若 m=4,则不同的“规范 01 数列”共有
(A)18 个
(B)16 个
(C)14 个
(D)12 个
二、填空题:本大题共 3 小题,每小题 5 分
(13)若 x,y 满足约束条件
则 z=x+y 的最大值为_____________.
(14)函数 度得到。
的图像可由函数
(A)18 36 5
(B) 54 18 5
(C)90 (D)81
(10) 在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球,若
AB BC,AB=6,BC=8,AA1=3,则 V 的最大值是
(A)4π
(B) 9 2
( C ) 6π
(D) 32 3
(11)已知 O
为坐标原点,F
是椭圆
C1
的参数方程为
x y
C:
x2 a2
y2 b2
1(a
b
0) 的左焦点,A,B 分别为
C 的左,右顶点.P 为 C
上一点,且 PF⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的
离心率为
(A) 1 3
(B) 1 2
(C) 2 3
(D) 3 4
(12)定义“规范 01 数列”{an}如下:{an}共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m ,a1, a2 , , ak
如图,⊙O 中 AB 的中点为 P,弦 PC,PD 分别交 AB 于 E,F 两点.
(I)若∠PFB=2∠PCD,求∠PCD 的大小; (II)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G,证明 OG⊥CD.
23.(本小题满分 10 分)选修 4-4:坐标系与参数方程
在直角坐标系
xOy
中,曲线
Hale Waihona Puke word 版本整理分享范文 范例 指导 学习
(21)(本小题满分 12 分)设函数 f(x)=acos2x+(a-1)(cosx+1),其中 a>0,记
(Ⅰ)求 f'(x);
(Ⅱ)求 A;
(Ⅲ)证明
≤2A.
的最大值为 A.
请考生在[22]、[23]、[24]题中任选一题作答。作答时用 2B 铅笔在答题卡上把所选题目题号后的方框涂黑。 如果多做,则按所做的第一题计分。 22.(本小题满分 10 分)选修 4-1:几何证明选讲
(D) 16 25
(A)3 (B)4 (C)5 (D)6
word 版本整理分享
范文 范例 指导 学习
(8)在 △ABC 中, B π ,BC 边上的高等于 1 BC ,则 cos A
4
3
(A) 3 10 10
(B) 10 10
(C) 10 10
(D) 3 10 10
(9)如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为
(5)若 tan 3 ,则 cos2 2sin 2 4
(A) 64 25
(B) 48 25
(C) 1
4
3
1
(6)已知 a 23 , b 44 , c 253 ,则
(A) b a c (B) a b c (C) b c a (D) c a b
(7)执行下图的程序框图,如果输入的 a=4,b=6,那么输出的 n=
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中
A 点表示十月的平均最高气温约为 150C,B 点表示四月的平均最低气温约为 50C。下面叙述不正确的是
(A) 各月的平均最低气温都在 00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于 200C 的月份有 5 个
范文 范例 指导 学习
2016 年普通高等学校招生全国统一考试
理科数学
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 S= S x (x 2)(x3) 0,T xx 0 ,则 S T=
(A) [2,3]
(C) [3,+ )