最新《二次函数顶点式》教学设计汇编

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

《二次函数》教案

《二次函数》教案

《二次函数》教案《二次函数》教案篇一通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知例题学习:P166例1、例2(略)在教师的`引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业课本P一⑦0习题的第1、4大题。

学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)壹伍.4.1提公因式法例题1.因式分解的定义2.提公因式法《二次函数》教案篇二教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

二次函数的顶点式

二次函数的顶点式

二次函数的顶点式一、教学目标:22h)-=a(xc+bx+通过配方化成顶点式、经历把二次函数的一般式1y=axy+k 的过程,推导出顶点坐标公式,并求其开口方向、对称轴、顶点坐标与最值。

2、在探索过程中,学生经历了知识的产生过程,从而培养勇于探究、积极进取的精神。

二、重难点:重点:将二次函数一般式通过配方化成顶点式,并求其有关性质。

难点:运用配方法把二次函数一般式化成顶点式。

三、教学过程:(一)承上启下,自然导入通过提问的方式进行复习,讲完第3、4题后,引导学生回忆二次函数y=a(x2+kh)的性质,再出示:-(二)提出问题,启发思考2-4x+5化成y=y师:下面,我们思考一个问题:如何把二次函数=xa(x-2+k的形式? h)生:两边加上一次项系数一半的平方。

生:不对,这里只有一边。

生:加上并减去就可以了。

出示:师:看看,解答过程正确吗?12+1,这里是完全平方差公式。

y=(x-2) 学生很快发现了:应该是师:我们总结一下:二次项系数是1的二次函数应该如何配方?生:加上并减去一次项系数一半的平方。

(三)探索——我行师:如果二次项系数不是1呢?出示课件:学生进入了思考、讨论的状态……待学生完成后,出示:2-6x+5?3x师:我们把它这个结果化简一下,看能否得到y=学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?生:没有把二次项系数提取出来,配方时二次项系数要先化为1。

师:对!二次项系数要先化为1,这是用配方法的前提条件。

做错的同学请重新做一遍。

接着出示:2-6x+5?y师:这个解答过程正确吗?我们把结果化简一下,看能否得到=3x 学生马上运算,不一会儿就纷纷表示:不能。

师:错在哪里?2。

1 没有乖以-生:运用乘法分配率时,3出示:2师:同学们,自己总结:在配方的时候应注意什么问题。

请做以下一道题:,又应该怎么做?改为-3师:这道题将系数3 学生进入了思考、讨论的状态……待学生完成后,出示:师:同学们,看看,这种做法有多少个错误。

人教版九年级数学上册第二十二章二次函数大单元教学设计

人教版九年级数学上册第二十二章二次函数大单元教学设计
1.基础知识巩固:
(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,详细内容包括:二次函数的定义、图像及性质,二次函数的顶点式和一般式,二次函数的图像变换,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的图像及性质。

2. 学会使用顶点式和一般式表示二次函数,并能进行图像变换。

3. 能够运用二次函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:二次函数的定义、图像及性质,二次函数的顶点式和一般式。

难点:二次函数图像的变换,以及在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示一个抛物线的运动轨迹,让学生观察并思考,激发兴趣。

2. 知识讲解:a. 引入二次函数的定义,解释二次项、一次项和常数项。

b. 介绍二次函数的图像及性质,通过示例让学生理解并掌握。

c. 讲解二次函数的顶点式和一般式,并进行图像变换的推导。

3. 例题讲解:讲解典型例题,分析解题思路,强调注意事项。

4. 随堂练习:布置一些典型练习题,让学生巩固所学知识。

5. 小组讨论:针对实际问题,让学生分组讨论,提出解决方案。

六、板书设计1. 二次函数的定义、图像及性质。

2. 二次函数的顶点式和一般式。

3. 图像变换的推导过程。

4. 典型例题及解题思路。

七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 4x + 3。

b. 将二次函数y = (x 1)^2 + 2向左平移3个单位,求新函数的表达式。

c. 某抛物线的顶点坐标为(2, 3),且过点(0, 6),求抛物线的解析式。

2. 答案:a. 顶点坐标:(2, 1),对称轴:x = 2。

b. 新函数的表达式:y = (x 4)^2 + 2。

c. 抛物线的解析式:y = (x 2)^2 3。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了二次函数的定义、图像及性质。

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选一、教学内容本节课选自人教版初中数学教材八年级下册第十七章《二次函数》。

具体内容包括:二次函数的定义、图像及性质,以及二次函数在实际问题中的应用。

二、教学目标1. 知识与技能:使学生掌握二次函数的定义,能熟练绘制二次函数的图像,了解二次函数的性质,并能运用二次函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等过程,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生的合作意识和探究精神。

三、教学难点与重点1. 教学难点:二次函数图像的性质及其应用。

2. 教学重点:二次函数的定义、图像及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 导入:通过展示生活中抛物线的实例,如拱桥、篮球投篮等,引出本节课的研究对象——二次函数。

2. 新课导入:讲解二次函数的定义,板书定义并解释相关术语。

3. 图像绘制:引导学生通过观察、分析、归纳,掌握二次函数图像的绘制方法。

5. 例题讲解:选取具有代表性的例题,讲解解题思路,强调关键步骤。

6. 随堂练习:布置相关练习题,让学生当堂巩固所学知识,及时解答学生疑问。

7. 实践应用:设计实际问题,让学生运用二次函数知识解决问题,提高学生的应用能力。

六、板书设计1. 二次函数定义2. 二次函数图像绘制方法3. 二次函数图像性质4. 例题及解题步骤5. 随堂练习题七、作业设计1. 作业题目:y = x^2,y = 2x^2,y = x^2某公园的拱桥形状为抛物线,桥的最高点距离水面6米,桥长20米,求桥的最低点距离水面的高度。

2. 答案:(1)略(2)最低点距离水面4米八、课后反思及拓展延伸1. 课后反思:本节课学生掌握了二次函数的定义、图像及性质,但部分学生在绘制图像和解决实际问题时仍存在困难,需要在今后的教学中加强训练。

2. 拓展延伸:引导学生探究二次函数与一次函数、反比例函数的关系,为学习高中阶段的导数知识打下基础。

九年级数学上册《二次函数与一元二次方程》教案、教学设计

九年级数学上册《二次函数与一元二次方程》教案、教学设计
2.教学过程:
(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

详细内容包括:二次函数的定义与性质,二次函数的图像,二次函数的顶点式及其应用,二次方程与二次不等式的联系,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的性质及其图像特点。

2. 学会使用二次函数顶点式解析二次函数,并能解决相关问题。

3. 能够建立二次方程与二次不等式之间的关系,运用二次函数解决实际问题。

三、教学难点与重点教学难点:二次函数顶点式的应用,二次方程与二次不等式的联系。

教学重点:二次函数的定义,性质,图像及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:直尺,圆规,铅笔,橡皮,草稿纸。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示二次函数在实际问题中的应用,如抛物线运动,引导学生思考二次函数的基本概念。

2. 基本概念讲解(15分钟)讲解二次函数的定义,性质,图像,让学生掌握二次函数的基本知识。

3. 例题讲解(15分钟)选取典型例题,通过讲解与解析,让学生学会使用二次函数顶点式解决问题。

4. 随堂练习(10分钟)设计相关练习题,让学生及时巩固所学知识。

5. 知识拓展(5分钟)引导学生探讨二次方程与二次不等式之间的关系。

六、板书设计1. 二次函数定义2. 二次函数性质3. 二次函数图像4. 二次函数顶点式5. 二次方程与二次不等式的关系七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标:y = x^2 4x + 3(2)解下列二次方程:x^2 5x + 6 = 0(3)已知二次函数y = x^2 + 2x + 3,求该函数的最大值。

答案:(1)顶点坐标为(2,1)(2)解为x = 2或x = 3(3)最大值为4八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解二次函数在实际问题中的应用,激发学生的学习兴趣。

初中数学人教版九年级上册:第22章《二次函数》全章教案

初中数学人教版九年级上册:第22章《二次函数》全章教案

初中数学人教版九年级上册实用资料第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-1x2(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1(2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题.22.1.2二次函数y=ax2的图象和性质通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.重点从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.难点画二次函数y=ax2的图象.一、引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1(2)y=2x2+7(3)y=x-2(4)y=3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.二、教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.二次函数y=ax2(a≠0)的图象和性质图象(草图) 开口方向顶点对称轴最高或最低点最值a>0当x=____时,y有最____值,是________.a<0当x=____时,y有最____值,是________.活动4:达标检测(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.作业布置教材第32页练习.22.1.3二次函数y=a(x-h)2+k的图象和性质1.经历二次函数图象平移的过程;理解函数图象平移的意义.2.了解y=ax2,y=a(x-h)2,y=a(x-h)2+k三类二次函数图象之间的关系.3.会从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.重点从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.难点对于平移变换的理解和确定,学生较难理解.一、复习引入二次函数y=ax2的图象和特征:1.名称________;2.顶点坐标________;3.对称轴________;4.当a>0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外);当a<0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外).二、合作学习在同一坐标系中画出函数y=12x2,y=12(x+2)2,y=12(x-2)2的图象.(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数y =ax 2和y =a(x -h)2图象之间的关系1.结合学生所画图象,引导学生观察y =12(x +2)2与y =12x 2的图象位置关系,直观得出y =12x 2的图象――→向左平移两个单位y =12(x +2)2的图象.教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如: (0,0)――→向左平移两个单位(-2,0); (2,2)――→向左平移两个单位(0,2); (-2,2)――→向左平移两个单位(-4,2).②也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程. 2.用同样的方法得出y =12x 2的图象――→向右平移两个单位y =12(x -2)2的图象.3.请你总结二次函数y =a(x -h)2的图象和性质.y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象. 函数y =a(x -h)2的图象的顶点坐标是(h ,0),对称轴是直线x =h.4.做一做 (1)(2)填空:①抛物线y =2x 2向________平移________个单位可得到y =2(x +1)2;②函数y =-5(x -4)2的图象可以由抛物线________向________平移________个单位而得到.四、探究二次函数y =a(x -h)2+k 和y =ax 2图象之间的关系1.在上面的平面直角坐标系中画出二次函数y =12(x +2)2+3的图象.首先引导学生观察比较y =12(x +2)2与y =12(x +2)2+3的图象关系,直观得出:y =12(x+2)2的图象――→向上平移3个单位y =12(x +2)2+3的图象.(结合多媒体演示) 再引导学生观察刚才得到的y =12x 2的图象与y =12(x +2)2的图象之间的位置关系,由此得出:只要把抛物线y =12x 2先向左平移2个单位,在向上平移3个单位,就可得到函数y=12(x +2)2+3的图象. 2.做一做:请填写下表:函数解析式 图象的对称轴图象的顶点坐标y =12x 2 y =12(x +2)2 y =12(x +2)2+33.总结y =a(x -h)2+k 的图象和y =ax 2图象的关系y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象――→当k >0时,向上平移k 个单位当k <0时,向下平移|k|个单位y =a(x -h)2+k 的图象.y =a(x -h)2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k). 口诀:(h ,k)正负左右上下移(h 左加右减,k 上加下减)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而减小,当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.4.练习:课本第37页 练习五、课堂小结1.函数y =a(x -h)2+k 的图象和函数y =ax 2图象之间的关系.2.函数y =a(x -h)2+k 的图象在开口方向、顶点坐标和对称轴等方面的性质. 六、作业布置教材第41页 第5题22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2课时)第1课时 二次函数y =ax 2+bx +c 的图象和性质1.掌握用描点法画出二次函数y =ax 2+bx +c 的图象.2.掌握用图象或通过配方确定抛物线y =ax 2+bx +c 的开口方向、对称轴和顶点坐标. 3.经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及配方的过程,理解二次函数y =ax 2+bx +c 的性质.重点通过图象和配方描述二次函数y =ax 2+bx +c 的性质. 难点理解二次函数一般形式y =ax 2+bx +c(a ≠0)的配方过程,发现并总结y =ax 2+bx +c 与y =a(x -h)2+k 的内在关系.一、导入新课1.二次函数y=a(x-h)2+k的图象,可以由函数y=ax2的图象先向________平移________个单位,再向________平移________个单位得到.2.二次函数y=a(x-h)2+k的图象的开口方向________,对称轴是________,顶点坐标是________.3.二次函数y=12x2-6x+21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?二、教学活动活动1:通过配方,确定抛物线y=12x2-6x+21的开口方向、对称轴和顶点坐标,再描点画图.(1)多媒体展示画法(列表,描点,连线);(2)提出问题:它的开口方向、对称轴和顶点坐标分别是什么?(3)引导学生合作、讨论观察图象:在对称轴的左右两侧,抛物线从左往右的变化趋势.活动2:1.不画出图象,你能直接说出函数y=-x2+2x-3的图象的开口方向、对称轴和顶点坐标吗?2.你能画出函数y=-x2+2x-3的图象,并说明这个函数具有哪些性质吗?(1)在学生画函数图象的同时,教师巡视、指导;(2)抽一位或两位同学板演,学生自纠,老师点评;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?活动3:对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?(1)组织学生分组讨论,教师巡视;(2)各组选派代表发言,全班交流,达成共识,抽学生板演配方过程;教师课件展示二次函数y=ax2+bx+c(a>0)和y=ax2+bx+c(a<0)的图象.(3)引导学生观察二次函数y=ax2+bx+c(a≠0)的图象,在对称轴的左右两侧,y随x 的增大有什么变化规律?(4)引导学生归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性质.活动4:已知抛物线y=x2-2ax+9的顶点在坐标轴上,求a的值.活动5:检测反馈1.填空:(1)抛物线y=x2-2x+2的顶点坐标是________;(2)抛物线y=2x2-2x-1的开口________,对称轴是________;(3)二次函数y=ax2+4x+a的最大值是3,则a=________.2.写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=3x2+2x;(2)y=-2x2+8x-8.3.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该图象具有哪些性质.4.抛物线y=ax2+2x+c的顶点是(-1,2),则a,c的值分别是多少?答案:1.(1)(1,1);(2)向上,x=12;(3)-1;2.(1)开口向上,x=-13,(-13,-13);(2)开口向下,x=2,(2,0);3.对称轴x=-1,当m>0时,开口向上,顶点坐标是(-1,3-m);4.a=1,c=3.三、课堂小结与作业布置课堂小结二次函数y=ax2+bx+c(a≠0)的图象与性质.作业布置教材第41页第6题.第2课时用待定系数法求二次函数的解析式1.掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2.能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性.3.能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质.重点二次函数的解析式和利用函数的图象观察性质.难点利用图象观察性质.一、复习引入1.抛物线y=-2(x+4)2-5的顶点坐标是________,对称轴是________,在________________侧,即x________-4时,y随着x的增大而增大;在________________侧,即x________-4时,y随着x的增大而减小;当x=________时,函数y最________值是________.2.抛物线y=2(x-3)2+6的顶点坐标是________,对称轴是________,在________________侧,即x________3时,y随着x的增大而增大;在________________侧,即x________3时,y随着x的增大而减小;当x=________时,函数y最________值是________.二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(-3,0),B(1,0),C(0,-2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x=3,且图象经过点(1,0)和(5,0).说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例2已知函数y=x2-2x-3,(1)把它写成y=a(x-h)2+k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y<0,其对应的图象应在x轴的下方,自变量x就有相应的取值范围.例3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a________0;b________0;c________0;b2-4ac________0.说明:二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的符号的关系:系数的符号图象特征a的符号a>0 抛物线开口向____a<0 抛物线开口向____的符号-b2a-b2a>0 抛物线对称轴在y轴的____侧b=0 抛物线对称轴是____轴-b2a<0 抛物线对称轴在y轴的____侧c的符号c>0 抛物线与y轴交于____c=0 抛物线与y轴交于____c<0 抛物线与y轴交于____三、课堂小结本节课你学到了什么?四、作业布置教材第40页练习1,2.22.2二次函数与一元二次方程1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.3.会用计算方法估计一元二次方程的根.重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.一、复习引入1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.2.二次函数y=ax2+bx+c(a≠0)的图象和性质:(1)顶点坐标与对称轴;(2)位置与开口方向;(3)增减性与最值.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-b2a时,函数y有最小值4ac-b24a.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-b2a时,函数y有最大值4ac-b24a.二、新课教学探索二次函数与一元二次方程:二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x +2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x 轴没有交点.举例:求二次函数图象y =x 2-3x +2与x 轴的交点A ,B 的坐标.结论:方程x 2-3x +2=0的解就是抛物线y =x 2-3x +2与x 轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax 2+bx +c =0的两个根是x 1,x 2,则抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别是A(x 1,0),B(x 2,0).例1 已知函数y =-12x 2-7x +152,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y 轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x 在什么范围内时,y 随着x 的增大而增大?何时y 随着x 的增大而减少;并求出函数的最大值或最小值.三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系. 五、作业布置教材第47页 第3,4,5,6题.22.3 实际问题与二次函数(2课时)第1课时 用二次函数解决利润等代数问题能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y =ax 2+bx +c(a ≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.重点把实际生活中的最值问题转化为二次函数的最值问题. 难点1.读懂题意,找出相关量的数量关系,正确构建数学模型. 2.理解与应用函数图象顶点、端点与最值的关系.一、复习旧知,引入新课1.二次函数常见的形式有哪几种?二次函数y =ax 2+bx +c(a ≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a >0时,图象开口向________,当a <0时,图象开口向________.2.二次函数知识能帮助我们解决哪些实际问题呢?二、教学活动活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?2.如果你是老板,你会怎样定价?3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.活动3:达标检测某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w 最大为1 600元.三、课堂小结与作业布置课堂小结通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?作业布置教材第51~52页习题第1~3题,第8题.第2课时二次函数与几何综合运用能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点应用二次函数解决几何图形中有关的最值问题.难点函数特征与几何特征的相互转化以及讨论最值在何处取得.一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程问题1:教材第49页探究1.用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 为多少米时,场地的面积S 最大?分析:提问1:矩形面积公式是什么? 提问2:如何用l 表示另一边?提问3:面积S 的函数关系式是什么?问题2:如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S ,如何设自变量?提问3:面积S 的函数关系式是什么?答案:设垂直于墙的边长为x 米,S =x(60-2x)=-2x 2+60x.提问4:如何求解自变量x 的取值范围?墙长32 m 对此题有什么作用? 答案:0<60-2x ≤32,即14≤x <30.提问5:如何求最值?答案:x =-b 2a =-602×(-2)=15时,S max =450.问题3:将问题2中“墙长为32 m ”改为“墙长为18 m ”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x 米?则如何表示另一边?答案:设矩形面积为S m 2,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x.提问4:当x =30时,S 取最大值.此结论是否正确?提问5:如何求自变量的取值范围?答案:0<x ≤18.提问6:如何求最值?答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题.2.阅读教材第52~54页.五、课堂小结与作业布置课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页习题第4~7题,第9题.。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步发展估算能力。

(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、能够利用二次函数的图象求一元二次方程的近似根。

教学难点利用二次函数的图象求一元二次方程的近似根。

教学方法学生合作交流学习法。

教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。

但是在图象上我们很难准确地求出方程的解,所以要进行估算。

本节课我们将学习利用二次函数的图象估计一元二次方程的根。

数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

26.2.3求二次函数的表达式——顶点式(教学设计)

26.2.3求二次函数的表达式——顶点式(教学设计)

26.2.3求二次函数的表达式——顶点式一、教材分析:本节内容是义务教育数学课程标准(华师版)九年级下册第一章《二次函数》第2节的第3个知识点《求二次函数的表达式》的第一课时。

本节课是在学习二次函数的表达式和图象性质的基础上的展现,目的为二次函数的实际应用奠基,是本章学习的关键点。

本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,同时还要启迪学生的思维,引导和规范学生学习。

二、学情分析:学生已经学习了二次函数的一般式、顶点式和两根式表达式,二次函数的图象和性质,尤其对特殊类型的二次函数图象已有充分的认识,并初步具备了敢于探究与实践,乐于合作交流,善于总结提升的良好习惯,自主学习的愿望强烈,主动发展的意识浓厚。

教学目标:1、知识与技能:学生能够根据二次函数的图象和性质建立合适的直角坐标系,并会根据条件利用待定系数法,确定函数顶点式,求二次函数的表达式。

2、过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数顶点式的思维过程,体会利用二次函数顶点式,求出二次函数表达式的思想方法。

3、情感、态度和价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,加强学生的理想教育,培养学生积极参与意识,加深学生在生活中学数学,将数学知识服务于生活的学习的理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,真正实现“和谐高效、思维对话”,培养学生的应用意识。

教学重点:用待定系数法确定二次函数顶点式,求二次函数表达式。

教学难点:根据问题设二次函数顶点式,求出函数解析式,解决实际问题。

三、教学过程(一)复习引入1.二次函数的一般式是什么?2.二次函数的顶点式是什么?(二)探究新知问题:如图,某建筑的屋顶设计成横截面为抛物线(曲线AOB)的薄壳屋顶.它的拱宽AB 为4m,拱高CO为 0.8m,试建立适当的直角坐标系,并写出这段抛物线所对应的二次函数关系式?就如何建立平面直角坐标系,让学生通过讨论、交流各自的想法,感受如何建立平面直角坐标系更为合理。

二次函数顶点式的应用教案24

二次函数顶点式的应用教案24

二次函数顶点式的应用教案一、教学目标:知识与技能:1.能熟练的区分抛物线的顶点,熟练的用顶点求抛物线的解析式2.知道二次函数解析式,利用顶点和对称轴,绘画出二次函数图像3.理解并掌握抛物线与x 轴的两交点和顶点所围成三角形的面积过程与方法:通过探究、推理、交流等活动,培养学生推理能力和有条理表达能力;理解抛物线顶点式的应用具体有哪些,并会应用所学知识解决一些实际问题。

情感态度价值观:引导学生对顶点式进行观察、交流、发现,激发学生的好奇心和求知欲,并运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。

二、教学重、难点:重点:能正确区分抛物线的顶点;利用顶点求二次函数解析式;知二次函数解析式,画出函数图像;求抛物线与x 轴的两交点和顶点所围成三角形的面积 难点:在讲解的过程当中,如何让学生彻底的理解并掌握所学的内容,并让学生会用所学知识解决一些实际问题。

三、教学过程:本节课是以复习课的形式讲解,给出例题,让学生进行分析和解答,教师最后引导总结,在引导、归纳和总结的过程当中,一定要牢牢把握解题的重难点,要让学生彻底的理解并掌握所学内容。

例1. 抛物线1)23(22+-=x y 的顶点坐标是( )A. (2,1)B. (2,-1) C ),(132 D. ),(132-解析:初看,该题似乎应选A ,再细看,该解析式和抛物线的顶点式是不同的。

抛物线的顶点式是的形式 k h x a y +-=2)(是 ,其中括号内x 前面的系数是1,而该题括号中x 前面的系数是3,应先将抛物线解析式转化为1)32(182+-=x y ,所以应选C 。

总结一:如何正确区分二次函数解析式的顶点坐标?1、观察二次函数解析式是否是顶点式,如果不是,那么把一般式转化为顶点式,从而求出抛物线顶点坐标2、如果是k h -bx a y 2+=)(的形式,那么一定要把x 前面的系数化为一,从而求出抛物线的顶点坐标。

例2. 已知抛物线的顶点坐标是(2,3),且经过点(5,6),求该抛物线的解析式。

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。

二次函数复习课教学设计

二次函数复习课教学设计

《二次函数》复习课教学设计(1)唐徕回中杨晓梅教学目标:1、掌握抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;2、体会二次函数的系数a、b、c的变化对函数图像的影响,体会到学习数学的乐趣。

3、会求简单的二次函数表达式,能利用二次函数的性质解决实际问题。

重、难点:用二次函数性质的解决问题。

复习方法:自主探究、合作交流复习过程:活动一.:梳理二次函数的性质(学生独立练习,分小组批改)1、二次函数解析式的常用表示方法:(1)顶点式:(2)一般式:3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而, 在对称轴左侧,y随x的增大而4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值练习1 选择填空(1)抛物线y=x2-4x+3的对称轴是( ).A 直线x=1 ; B直线x= -1;C 直线x=2 ; D直线x= -2.(2)抛物线y=3x 2-1的( )A 开口向上,有最高点 ;B 开口向上,有最低点;C 开口向下,有最高点 ;D 开口向下,有最低点.(3)若抛物线y=ax 2+bx+c(a 0)与x 轴交于点A(2,0), B(4,0),则对称轴是( ) A 直线x=2 ; B 直线x=4 ; C 直线x=3 ; D 直线x= -3. (4)关于二次函数y=(x+2)2-3的最大(小)值,叙述正确的是( ) A.当x=2是,有最大值-3; B.当x=-2时,有最大值-3; C.当x=2是,有最小值-3; D.当x=-2时,有最小值-3.【例1】已知抛物线y=ax 2+bx+c 与抛物线y=-x 2-3x+7的形状相同,顶点在直线x=1上,且顶点到x 轴的距离为5,请写出满足此条件的抛物线的解析式. 解: ∵ 抛物线y=ax 2+bx+c 与抛物线y=-x 2-3x+7的形状相同 ∴a=1或-1又 ∵顶点在直线x=1上,且顶点到x 轴的距离为5, ∴ 顶点为(1,5)或(1,-5) ∴其解析式为:(1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5展开成一般式即可.(练习1和例1的目的是巩固二次函数的基本性质)活动二.:探究、讨论二次函数的系数a 、b 、c 的变化对函数图象的影响。

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案

华师大版九下《二次函数》教案一、教学内容本节课我们将学习华师大版九年级下册《二次函数》的第一章节。

具体内容包括:二次函数的定义、图像与性质,以及二次函数的顶点式和一般式的互化。

我们还将探讨二次函数在生活中的实际应用。

二、教学目标1. 理解二次函数的定义,掌握其图像与性质。

2. 学会二次函数顶点式与一般式的互化方法,并能熟练运用。

3. 能够将二次函数应用于解决实际问题。

三、教学难点与重点教学难点:二次函数图像与性质的理解,顶点式与一般式的互化。

教学重点:二次函数的定义,图像与性质,以及实际应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 引入:通过展示生活中常见的抛物线现象,如抛物线运动、拱桥等,引导学生思考抛物线与二次函数之间的关系。

2. 新课导入:讲解二次函数的定义,引导学生回顾一元二次方程,为新课打下基础。

a. 二次函数的定义b. 二次函数的图像与性质c. 二次函数顶点式与一般式的互化3. 例题讲解:讲解典型例题,展示解题思路和方法。

4. 随堂练习:布置与例题类似的练习题,让学生巩固所学知识。

六、板书设计1. 二次函数定义2. 图像与性质a. 开口方向b. 顶点坐标c. 对称轴3. 顶点式与一般式的互化4. 例题及解题思路七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 2x + 1b. 将下列二次函数化为一般式:y = (x 1)^2 + 2c. 某公园的拱桥形状为二次函数图像,已知顶点坐标为(2, 3),开口向上,求该二次函数的解析式。

2. 答案:a. 顶点坐标:(1, 0),对称轴:x = 1b. 一般式:y = x^2 2x + 3c. 二次函数解析式:y = a(x 2)^2 + 3,由于开口向上,a > 0。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义、图像与性质掌握情况较好,但在顶点式与一般式的互化方面存在一定困难,需要在课后加强练习。

《二次函数顶点式》教学设计

《二次函数顶点式》教学设计

二次函数y =(x -h)2+k 的图象学习目标:1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质; 3.会应用二次函数y =a (x -h)2+k 的性质解题. 重点:会画二次函数的顶点式y =a (x -h)2+k 的图象. 难点:掌握二次函数a (x -h)2+k 的性质。

一、课前小测1.函数24(2)y x =-的图象开口向______,顶点是_________,对称轴是_______, 当x =_________时,有最_________值是_________. 2.写出一个顶点坐标为(0,-3),开口向下抛物线解析式__________________. 写出一个顶点坐标为(-3,0),开口向下抛物线解析式__________________. 二、探索新知1、问题一:提出问题,创设情境画出函数y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值观察图象得:(1)函数y =-12 (x +1)2-1的图象开口向______,顶点是_________,对称轴是_______,当x =_________时,有最_________值是_________.(2)把抛物线y =-12 x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12 (x +1)2-1. 3、问题二:应用法则 探索解题.例1.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+3三、作业:A组:1.填表23.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.B组:1.抛物线y=-3 (x+4)2+1中,的图象开口向______,顶点是_________,对称轴是_______,当x=_______时,y有最________值是________.2.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________。

二次函数顶点式公开课教学设计

二次函数顶点式公开课教学设计

二次函数顶点式公开课教学设计2019-2020学年度第一学期校际公开课一、基本信息:学科(版本):新人教版初中数学学校:XXX设计者:XXX二、教学目标:知识与技能:掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用;会用描点法画出y=a(x-h)2+k(a≠0)的图象。

过程与方法:用联系、类比等方法探究数学问题,提高学生数学思维分析能力;使学生在小组合作探究中体会合作与交流的重要性。

情感、态度与价值观:培养学生对数学的兴趣和自信心,激发学生的研究热情。

三、研究者分析:学生在此前已经研究了二次函数y=ax2+k(a≠0)和y=a(x-h)2(a≠0)的图象和性质。

四、教学重难点分析:教学重点:二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用。

教学难点:理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a ≠0)之间的联系。

五、教学准备:XXX白板、班级优化大师等软件。

六、教学过程:教学环节:教学内容1.二次函数y=-2x2的开口、顶点坐标、对称轴和最值。

2.把y=-2x2的图像向上平移3个单位,向左平移2个单位。

3.请猜测一下:二次函数y=-2(x+2)2+3的图象是否可以由y=-2x2平移得到?你认为该如何平移呢?4.画出函数y=-(x+1)2-1的图像,指出它的开口方向、顶点与对称轴。

师生活动:1.抽选学生上台填写答案,教师擦去蒙层检查答案。

2.抽选学生上台移动抛物线,教师做点评。

3.学生回答问题并讨论。

4.学生利用班级优化大师等软件画出函数图象,教师做即时点评。

本次校际公开课的教学目标是通过掌握二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用,以及会用描点法画出y=a(x-h)2+k(a≠0)的图象,提高学生的数学思维分析能力和合作交流能力,培养学生对数学的兴趣和自信心。

在学生已经研究了二次函数y=ax2+k(a≠0)和y=a(x-h)2(a≠0)的图象和性质的基础上,本次教学重点是教授二次函数y=a(x-h)2+k(a≠0)的图象的性质并会应用,教学难点是理解二次函数y=a(x-h)2+k(a≠0)与y=ax2(a ≠0)之间的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y =(x -h)2
+k 的图象
学习目标:
1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质; 3.会应用二次函数y =a (x -h)2+k 的性质解题. 重点:会画二次函数的顶点式y =a (x -h)2+k 的图象.
难点:掌握二次函数a (x -h)2+k 的性质。

一、课前小测
1.函数24(2)y x =-的图象开口向______,顶点是_________,对称轴是_______, 当x =_________时,有最_________值是_________.
2.写出一个顶点坐标为(0,-3),开口向下抛物线解析式__________________. 写出一个顶点坐标为(-3,0),开口向下抛物线解析式__________________.
二、探索新知
1、问题一:提出问题,创设情境
画出函数y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值
观察图象得:
(1)函数y =-12 (x +1)2-1的图象开口向______,顶点是_________,对称轴
是_______,当x=_________时,有最_________值是_________.
(2)把抛物线y=-1
2x
2向_______平移______个单位,再向_______平移_______
个单位,就得到抛物线y=-1
2(x+1)
2-1.
3、问题二:应用法则探索解题.
例1.顶点坐标为(-2,3),开口方向和大小与抛物线y=1
2x
2相同的解析式为
()
A.y=1
2(x-2)
2+3 B.y=
1
2(x+2)
2-3
C.y=1
2(x+2)
2+3 D.y=-
1
2(x+2)
2+3
三、作业:A组:
1.填表
2
3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.
B组:
1.抛物线y=-3 (x+4)2+1中,的图象开口向______,顶点是_________,对称轴是_______,当x=_______时,y有最________值是________.
2.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________。

3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()
A B C D
4.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为___________________________.(任写一个)。

相关文档
最新文档