稳定同位素技术在环境分析中的应用 ppt课件
合集下载
稳定同位素原理及在矿床学上的应用
= 0 表明样品与标准样品同位素比值一致
千分分馏(1000lnα)和同位素分馏值Δ :相对富集系数值— —指两物质间的同位素组成差别 1000lnα ≈ΔA-B=δA—δB
6
§1.2同位素分馏
从严格意义上讲,在周期表中所有元素 的不同种同位素由于其质量上存在差别, 在自然界的各种物理,化学和生物的反应 和过程中都会发生同位素分馏,这些反应 和过程包括:蒸发作用,扩散作用,吸附 作用,化学反应,生物化学反应等等。
40
原理:水/岩反应导致了热液矿床蚀变 围岩的同位素异常
水岩反应公式:
Wδ
i +Rδ i 水 岩石=
Wδ
f +Rδ f 水 岩石
41
42
§4.3影响成矿溶液重H、O 同位素组成的因素
(1) 成矿溶液的来源 (2)成矿溶液载迁移过程中,由于温 度降低和与通道周围的岩石发生同位 素交换; (3)加入成因不同的流体,会改变成 矿溶液的原始同位素特点; (4)成矿溶液的的化学成份发生变化。
1、根据研究对象和目的,选择有效的研究方法:
• 例:研究火成岩成因,最好选用H、O、Sr 、 Pb等,选择S、C效果就不佳,S、C同位素 研究成矿的物理、化学环境却很有效,H、 O研究成矿来源,热液蚀变,S、O地质测温, 效果较好。
19
2、根据研究对象、目的和研究 方法,采集有效的样品
例如,研究蚀变作用,抗交换能力差的长石, 黑云母能灵敏地反映蚀变的情况,抗交换能力的 矿物(石英、磁铁矿、白云母)往往能提供蚀变
lnα∝ 1/T
高温
低温
我们可以用分馏曲线或函数关系表示,例如,白云母 —H2O 的分馏方程: 103 lnα=2.38(106T-2 )—3.89 只要测定一对同位素平衡矿物对的δ值,就可以利用:
稳定性同位素示踪法
700℃ CuO 、 CaO 使 用 前 用 700℃ 高 温 12烘 干 除 去 CO2 , H2O , 并 在 122 压力下制成棒状 , 备光谱 18Kg/cm 18Kg/cm 压力下制成棒状, 分析
通电予热仪器10分钟,打开光电倍增管高压 通电予热仪器10分钟,打开光电倍增管高压 10分钟
大气中的氮气
大气中的氧气
氮的同位素表
射线种类 β+ β+ ββ半衰期 0.011S 9.96m 7.1S 4.15S 99.635 0.365 自然丰度
同位素
12N
13N
14N
15N
16N
17N
1978年国际纯化学和化学联合会 年国际纯化学和化学联合会IUPAC的命名 年国际纯化学和化学联合会 的命名 法: 1. 结构式 15[N]HCl 结构式: 物质不存在) 物质不存在
4.“Y”型管及内部反应抽气须彻底 , 型管及内部反应抽气须彻底, Y 型管及内部反应抽气须彻底 防其它气体干扰。 防其它气体干扰。
以下在光谱仪上进行, 以下在光谱仪上进行 , 可用液体样 品也可用干样品
(2).杜马法(Dumas) (2).杜马法(Dumas) 杜马法
—光谱分析中常用法 光谱分析中常用法
峰高。 峰高。
求得平均峰高,计算15N丰度。 求得平均峰高, 丰度。 平均峰高
15N实验结果计算 七.
14、15的质量比28、29、30的小10倍 的质量比28 的小10 14、15的质量比28、29、30的小10倍 不参加运算
15N丰度小于5%: 当 丰度小于5
质量为28离子流强度/质量为29 28离子流强度 R = 质量为28离子流强度/质量为29 子流强度
放电管装入燃烧室固定架上 放电管装入燃烧室固定架上。 装入燃烧室固定架上。
同位素C-13简介演示
C-13质谱技术广泛应用于有机化学、药物分析、环境科学等领域,用 于化合物的结构确证、痕量分析和同位素标记物的定量研究。
CHAPTER 04
C-13的研究前沿与展望
C-13在环境科学中的研究
环境示踪
C-13同位素被广泛应用于环境科学中,作为环境示踪剂,用于追 踪碳的来源和迁移路径,揭示碳在生态系统中的循环过程。
植物生理学研究
通过测定植物组织中的C-13同位素丰度,可以研究植物的光 合作用、呼吸作用和水分利用效率等生理过程,为提高农作 物产量和品质提供理论支持。
土壤碳循环研究
利用C-13同位素技术,可以研究土壤有机碳的分解、转化和 固定过程,为农业土壤管理和碳减排策略制定提供科学依据 。
CHAPTER 03
CHAPTER 02
C-13的应用领域
地球科学研究
环境监测
通过测量大气、水体和土壤中的C13同位素丰度,可以追踪碳元素的 循环和迁移转化过程,研究自然环境 和生态系统的变化和污染状况。
地质年代学
利用C-13同位素测定地质样品的年代 ,可以推断地质历史时期的气候变化 、生物演化和地壳运动等信息。
医学领域
的、高选择性的分析方法。
C-13质谱技术
01
定义
C-13质谱技术是利用C-13同位素在质谱中的离子化特性和质量差异进
行分子鉴定和定量分析的方法。
02 03
原理
通过将样品中的C-13同位素离子化,生成具有特征质量数的离子碎片 ,然后利用质谱仪对这些离子进行分离和检测,从而确定分子的结构和 浓度。
应用
糖尿病诊断
C-13同位素可用于糖尿病的诊断和监测。患者口服含有C-13标记葡萄糖的药 物后,通过测量呼出气体中的C-13同位素丰度,可以评估胰岛素分泌和葡萄糖 代谢情况。
CHAPTER 04
C-13的研究前沿与展望
C-13在环境科学中的研究
环境示踪
C-13同位素被广泛应用于环境科学中,作为环境示踪剂,用于追 踪碳的来源和迁移路径,揭示碳在生态系统中的循环过程。
植物生理学研究
通过测定植物组织中的C-13同位素丰度,可以研究植物的光 合作用、呼吸作用和水分利用效率等生理过程,为提高农作 物产量和品质提供理论支持。
土壤碳循环研究
利用C-13同位素技术,可以研究土壤有机碳的分解、转化和 固定过程,为农业土壤管理和碳减排策略制定提供科学依据 。
CHAPTER 03
CHAPTER 02
C-13的应用领域
地球科学研究
环境监测
通过测量大气、水体和土壤中的C13同位素丰度,可以追踪碳元素的 循环和迁移转化过程,研究自然环境 和生态系统的变化和污染状况。
地质年代学
利用C-13同位素测定地质样品的年代 ,可以推断地质历史时期的气候变化 、生物演化和地壳运动等信息。
医学领域
的、高选择性的分析方法。
C-13质谱技术
01
定义
C-13质谱技术是利用C-13同位素在质谱中的离子化特性和质量差异进
行分子鉴定和定量分析的方法。
02 03
原理
通过将样品中的C-13同位素离子化,生成具有特征质量数的离子碎片 ,然后利用质谱仪对这些离子进行分离和检测,从而确定分子的结构和 浓度。
应用
糖尿病诊断
C-13同位素可用于糖尿病的诊断和监测。患者口服含有C-13标记葡萄糖的药 物后,通过测量呼出气体中的C-13同位素丰度,可以评估胰岛素分泌和葡萄糖 代谢情况。
稳定性同位素核酸探针技术DNASIP原理与应用
结论
总之,稳定性同位素核酸探针技术(DNASIP)作为一种新型的DNA检测技术, 具有巨大的应用潜力和发展前景。通过进一步的研究和技术改进,有望在未来的 生物医学领域发挥更加重要的作用。
参考内容
内容摘要
稳定性同位素技术是一种基于同位素比率的独特分析方法,它已经被广泛地 应用于生态学研究。这种技术能够提供关于生物过程、生态系统结构和功能的独 特视角,进一步推动我们对生态系统复杂性的理解。本次演示将探讨稳定性同位 素技术在生态学上的应用,包括食物链分析、生态系统碳循环、水文学研究以及 全球变化影响等方面。
引言
引言
DNA检测技术是生物医学领域中的重要工具,对于法医学、遗传学、疾病诊断 等多个领域都具有重要意义。然而,传统的DNA检测方法存在一定的局限性,如 灵敏度不高、特异性不强等。因此,开发新型的DNA检测技术一直是生物医学领 域的研究重点。近年来,稳定性同位素核酸探针技术(DNASIP)的发明为DNA检 测技术的发展带来了新的突破。
原理部分
原理部分
DNASIP的基本原理是核酸杂交与同位素示踪。在DNASIP中,探针是具有特定 序列的核酸片段,通过与目标DNA序列进行互补性杂交,形成双链DNA分子。这种 杂交过程具有很高的特异性和亲合力,可以有效地将目标DNA序列富集和纯化。 此外,探针上标记有稳定性同位素,如碳-13或氮-15等,这些同位素在质谱分析 中可以被检测出来。
解决方案
ห้องสมุดไป่ตู้
解决方案
稳定同位素探针技术是一种新兴的技术,通过向污染物中添加同位素标记的 化合物,追踪污染物在生物降解过程中的变化,从而了解生物降解的途径和速率。 具体方法包括:
解决方案
1、选择适当的同位素标记化合物,将其与有机污染物混合,使其成为新的标 记污染物;
同位素测年原理与方法PPT课件
88Sr
87Rb→β- → 87Sr
86Sr
84Sr
4
二:化学处理
1:化学分离前必须将岩石样品转化为溶液 即溶样。 岩石、矿物样品能否彻底溶解,是得 到可信的析数据的先决条件。岩石中有 相当一部分微量元素,包括放射成因母 子体元素,分布在难溶副矿物中,保证 其全部溶解是十分重要的。此外,还要 求溶矿过程中引入尽可能少的试剂和污 染。
11
分离Rb、Sr和REE时用强酸性阳 离子交换树脂,活性基团如--S03H,
可交换离子为H+。 分离Pb和U,Th使用强碱性的 阴离子交换树脂,活性基团为碱性 基团,可交换离子为Cl-或NO3-。
• 12
图4.1离子交换示意图
13
14
溶矿 在溶矿中我们已不使用HCLO4 ,因为HCLO4空白较高以及在侵析样品时富集Al与Ca,当往干燥 的样品中加入混合溶剂在干燥的样品中CLO4-离子的存在引起了样品的“胶化”。特别是当残 渣增加的情况下往往会降低铅在溶液中的含量。我们重新提纯的16mol/L HNO2代替HCLO4, 溶解样品用HF和HFO3混合液(每ml样品1:1的HNO2和HF混合液0.2ml)。 首先准确称量约0.50g样品,加入HF与HNO3,浸泡6—10个小时,盖上盖在600C加温2个小时左 右,取下盖子在800C情况下蒸干样品,因为某些氟化物类在稀酸中往往含沉淀,因此蒸干的样 品需要重溶在1 mol/L HNO3中然后蒸干。此步骤反复几次。(以上的步骤需要非常仔细,防 止溶江中的丢失影响同位素结果的测定)。蒸干的样品加入适量的超纯水,在高灵敏度的天平 上把药品分成两份。一份测定同位素组成,一份准确的加入铅与铀的稀释剂测定同位素的含量。 等分后的 样品蒸发完全干燥,然后加入2ml94%CH2OH—6%16mol/L HNO2的混合液 (CH2OH与Pb形成之阴离子),用已处理好的聚四氟乙小棒仔细捣碎残渣以防止包裹元素铅 和铀。然后仔细的把烧杯中的溶液仔细的倒入石英离心管中,用少量的混合液洗一下烧杯把其 溶液合并到石英离心管中,离心分离准确过柱。 2、化学分离 1)阴离子交换 柱高为10cm,直径为0.5cm,底部用高纯的石英作为滤板。把浸泡在94%CH2OH—16% mol/L HNO3,混合液的Dowexlx8阴离子交换树脂装到交换柱上,其树脂高度为5cm。装柱以 后首先 用3ml混合液洗一下树脂床,流干。然后把离心管中的样品液小心的倒入到交换柱中流干。用 8ml70% CH2OH30%(3.3mol/L)HNO2混合液洗去干扰元素(此溶液要用已处理好的10ml石英 烧杯接以便分析U)。最后用8ml0.5 mol/L HNO2 洗下铅(用10ml石英烧杯接)。蒸干样品,加 入0.5ml 1.5NCl,蒸干样品。准确的加入0.25ml 1.5N HCl 。准备过阳柱。 2)阳离子交换 阳离子交换柱的尺寸大小与阴离子交换柱一样,浸泡在4mol/HCl中的 Dowex50×8 装到交换柱 上,树脂高度为2.5cm。用5ml4mol/L HCl洗柱,然后用3ml1.5mol/L HCl淋洗树脂,流干,把阴 离子交换柱下来的 溶液小心地倒入此交换柱中,流干,最后用2ml1.5mol/LHCl洗下Pb(用5ml石 英烧杯),蒸干样品准备上质谱计。 3)铀的离子交换 铀是以氯形成络阴离子吸附在阴离子树脂上与其它元素分离的。只有一个主要的元素Fe与其一 起吸附在树脂上,加入抗坏血酸到HCl溶液中就是为了络合
同位素示踪技术及应用
精选课件 38
二、最佳测量条件的选择
同一台探测仪器对不同量的示踪剂具有不同的 最佳工作条件,在实验准备阶段要检查探测器是否 已调到所用示踪同位素的工作条件,否则需要用一 定量的示踪剂作为放射源(或选用该同位素的标准 源),把探测器的最佳工作条件调整好,并且要保 证探测器性能处于稳定可靠的状态。
精选课件 39
利用卫星跟踪技术开展的主要研究内容有:揭示迁徙路线和重要 停歇地点;寻找新繁殖地和越冬地;利用卫星数据对栖息地及其 利用进行评价;探讨鸟类的迁徙策略.期望该技术能够成为中国 濒危鸟类保护的有效方法,并尽快得到应用.
精选课件 10
微型信号 发生器
信号接收器
精选课件 11
水产专家为中华鲟装“GPS”
➢ 1911年, Hevesy在英国卢瑟福实验室工作期间,因 怀疑女房东总是把剩菜改头换面之后给他吃。于是, 他在剩菜中放上微量的放射性钍(Th),然后在下一 次的菜中检验是否有放射性,结果他每次都能准确 地判断出他所吃的菜是剩菜还是新菜。
精选课件 21
➢ 1923年,Hevesy在丹麦玻尔实 验室工作期间,将豆科植物浸 泡在含有天然放射性核素 210Pb(RaD)和212Pb(ThB)的铅 盐溶液中,研究植物吸收铅的 机制(分布和转移)。结果发现: 铅全部被吸附在根部。
精选课件 18
2 同位素示踪的原理
同位素(及其化合物)与普通元素(及其化合物) 之间的化学性质和生物学性质是相同的,只是核 物理性质不同。
因此,用同位素作为一种标记,制成含有同位 素的标记化合物(如标记食物,药物和代谢物质等) 代替相应的非标记化合物。通过核仪器探测放射 性同位素不断地放出特征射线,就可以随时追踪 它在体内或体外的位置、数量及其转变等。
二、最佳测量条件的选择
同一台探测仪器对不同量的示踪剂具有不同的 最佳工作条件,在实验准备阶段要检查探测器是否 已调到所用示踪同位素的工作条件,否则需要用一 定量的示踪剂作为放射源(或选用该同位素的标准 源),把探测器的最佳工作条件调整好,并且要保 证探测器性能处于稳定可靠的状态。
精选课件 39
利用卫星跟踪技术开展的主要研究内容有:揭示迁徙路线和重要 停歇地点;寻找新繁殖地和越冬地;利用卫星数据对栖息地及其 利用进行评价;探讨鸟类的迁徙策略.期望该技术能够成为中国 濒危鸟类保护的有效方法,并尽快得到应用.
精选课件 10
微型信号 发生器
信号接收器
精选课件 11
水产专家为中华鲟装“GPS”
➢ 1911年, Hevesy在英国卢瑟福实验室工作期间,因 怀疑女房东总是把剩菜改头换面之后给他吃。于是, 他在剩菜中放上微量的放射性钍(Th),然后在下一 次的菜中检验是否有放射性,结果他每次都能准确 地判断出他所吃的菜是剩菜还是新菜。
精选课件 21
➢ 1923年,Hevesy在丹麦玻尔实 验室工作期间,将豆科植物浸 泡在含有天然放射性核素 210Pb(RaD)和212Pb(ThB)的铅 盐溶液中,研究植物吸收铅的 机制(分布和转移)。结果发现: 铅全部被吸附在根部。
精选课件 18
2 同位素示踪的原理
同位素(及其化合物)与普通元素(及其化合物) 之间的化学性质和生物学性质是相同的,只是核 物理性质不同。
因此,用同位素作为一种标记,制成含有同位 素的标记化合物(如标记食物,药物和代谢物质等) 代替相应的非标记化合物。通过核仪器探测放射 性同位素不断地放出特征射线,就可以随时追踪 它在体内或体外的位置、数量及其转变等。
同位素示踪技术在环境生态学研究中的应用
ET - E - 8.57( - - 26.93 ) fT 87.0 (%) T - E - 5.83( - - 26.93 )
• BOX4 生态系统存在着各种气体交换过程,其对生 态功能有重要影响,如CO2的呼吸和水分蒸腾等, 此时根据同位素的质量平衡,由得出keeling方 程可知,通过测定混合气体的同位素值,通过 keeling作图可在大气背景条下求得源气体的 值,实验表明气体转化过程基本不产生同位素分 馏,因此其同位素组成主要取决于来源物质,通 过其值可以对来源物质进行鉴别和确认。以水 汽的蒸散为例,有
0.011204 C ( - 1) 1000 2.14 (‰) 0.0111802
13
0.011204 Ab 100 1.108 0.011204 1
(%)
• BOX2
同位素富集标记技术,可以通过标记物的示踪,在 非破坏的条件下研究其转移和转化过程。在示踪实验中, 将已知数量的标记物引入到一个库中,在一定时间后, 测定在接受库中回收率,根据同位素稀释原理,只要知 道源(A)的原子百分超IA,和实验结束时库(B)的质 量mB和原子百分超IB,则从源运转到库的物质为 mBIB M AB IA
2)
280 0.45 R 52.5 (%) m Fa F 200 1.2 mpa p
• BOX3 陆生植物的水分吸收过程基本不发生同位素 分馏现象,因此植物木质部水分的同位素构成完 全取决于所吸收的水源,当水源的同位素值已知 时,可以用所谓的端源混合模型确定各水源的相 对贡献。最简单的情况,两源的情况,可用同位 素质量平衡方程确定,如
在富集同位素示踪研究中,物质同位素组成 常用稀有同位素的丰度表示,即
Ab X heavy X heavy Xlight ( ) 100 R sample 1 R sample
• BOX4 生态系统存在着各种气体交换过程,其对生 态功能有重要影响,如CO2的呼吸和水分蒸腾等, 此时根据同位素的质量平衡,由得出keeling方 程可知,通过测定混合气体的同位素值,通过 keeling作图可在大气背景条下求得源气体的 值,实验表明气体转化过程基本不产生同位素分 馏,因此其同位素组成主要取决于来源物质,通 过其值可以对来源物质进行鉴别和确认。以水 汽的蒸散为例,有
0.011204 C ( - 1) 1000 2.14 (‰) 0.0111802
13
0.011204 Ab 100 1.108 0.011204 1
(%)
• BOX2
同位素富集标记技术,可以通过标记物的示踪,在 非破坏的条件下研究其转移和转化过程。在示踪实验中, 将已知数量的标记物引入到一个库中,在一定时间后, 测定在接受库中回收率,根据同位素稀释原理,只要知 道源(A)的原子百分超IA,和实验结束时库(B)的质 量mB和原子百分超IB,则从源运转到库的物质为 mBIB M AB IA
2)
280 0.45 R 52.5 (%) m Fa F 200 1.2 mpa p
• BOX3 陆生植物的水分吸收过程基本不发生同位素 分馏现象,因此植物木质部水分的同位素构成完 全取决于所吸收的水源,当水源的同位素值已知 时,可以用所谓的端源混合模型确定各水源的相 对贡献。最简单的情况,两源的情况,可用同位 素质量平衡方程确定,如
在富集同位素示踪研究中,物质同位素组成 常用稀有同位素的丰度表示,即
Ab X heavy X heavy Xlight ( ) 100 R sample 1 R sample
同位素基础获奖课件
大,垂直层理方向变化较大
■从矿床底部到顶部,δS34具有增大趋势 ■在共生矿物中: δS34黄铁矿 >δS34闪锌矿 >δS34方铅矿
三、硫同位素旳地质应用
1、鉴别成岩物质起源
■在地质作用过程中,因为多种硫化物旳形 成条件不同,相应旳硫同位素构成也不同, 所以硫同位素构成也就能够用来鉴别成岩 物质起源。
2024/10/9
17
每个测定样品旳δ(‰)值可正可负,正值表达与原 则相比所测样品中重同位素有一定旳富集,而负值则 表达重同位素有一定旳贫化,亦即轻同位素有所富集。
不同相(不同矿物、液体、气体)中同位素构成不 同,即产生了同位素分馏,两相间同位素比值之商称 为同位素分馏系数
R / R, RA 、RB分别为A相及B相中重同位素
(
D H
)标准
1000
(
D H
)标准
2024/10/9
15
同位素分析资料要能够进行世界范围内旳比 较,就必须建立世界性旳原则样品。世界各国所 采用旳原则样品已基本统一。国际原则样品旳名 称及其同位素绝对比值见下:
氢、碳、氧、硫同位素原则样品
元
标
准
素
H 平均大洋水标准(Standard Mean Ocean Water)
24
2、花岗岩旳硫化物 ■因为花岗岩成因复杂、多样,故其硫化物旳
δS34值也不相同 ■一般由幔源衍生而来旳花岗岩,其硫化物中
旳δS34值在-3~+8‰之间,且单个岩体中δS34 值变化范围窄,阐明成岩物质比较均匀
■ S花岗岩δS34值为-9.4~+7.6 ‰ ■ I花岗岩δS34值为-3.6~+5.0 ‰
与轻同位素A旳比值B。
2024/10/9
■从矿床底部到顶部,δS34具有增大趋势 ■在共生矿物中: δS34黄铁矿 >δS34闪锌矿 >δS34方铅矿
三、硫同位素旳地质应用
1、鉴别成岩物质起源
■在地质作用过程中,因为多种硫化物旳形 成条件不同,相应旳硫同位素构成也不同, 所以硫同位素构成也就能够用来鉴别成岩 物质起源。
2024/10/9
17
每个测定样品旳δ(‰)值可正可负,正值表达与原 则相比所测样品中重同位素有一定旳富集,而负值则 表达重同位素有一定旳贫化,亦即轻同位素有所富集。
不同相(不同矿物、液体、气体)中同位素构成不 同,即产生了同位素分馏,两相间同位素比值之商称 为同位素分馏系数
R / R, RA 、RB分别为A相及B相中重同位素
(
D H
)标准
1000
(
D H
)标准
2024/10/9
15
同位素分析资料要能够进行世界范围内旳比 较,就必须建立世界性旳原则样品。世界各国所 采用旳原则样品已基本统一。国际原则样品旳名 称及其同位素绝对比值见下:
氢、碳、氧、硫同位素原则样品
元
标
准
素
H 平均大洋水标准(Standard Mean Ocean Water)
24
2、花岗岩旳硫化物 ■因为花岗岩成因复杂、多样,故其硫化物旳
δS34值也不相同 ■一般由幔源衍生而来旳花岗岩,其硫化物中
旳δS34值在-3~+8‰之间,且单个岩体中δS34 值变化范围窄,阐明成岩物质比较均匀
■ S花岗岩δS34值为-9.4~+7.6 ‰ ■ I花岗岩δS34值为-3.6~+5.0 ‰
与轻同位素A旳比值B。
2024/10/9
稳定性同位素在土壤铅镉污染源识别中的应用
4离子按质荷 比进行分离
3提取透镜使离 子通过样品锥进 入真空系统
2样品颗粒电 离成正离子
1高速氩气将 液体样品雾化
图1 ICP-MS仪器结构图
图2 电感耦合等离子体质谱仪
ICP-MS主要优点与局限
❖ 优点:
(1) 大气压下进样,便于与其他技术联用。 (2) 图谱简单,检出限低,分析速度快,动态范围宽。 (3) 可进行同位素分析,单元素和多元素分析,以及有机物中金属元素的形态
3 铅、镉稳定同位素 在土壤污染源识别中的应用
❖ 人为活动已经造成了土壤重金属的污染,在工 业和城市地区污染则更加严重。
❖ 准确识别土壤重金属的污染来源,是进行污染 环境治理的前提,更能针对性的采取有效措施 治理污染。
1)各种源的同位素范围
俄罗斯铅矿石(Mukai etal.,2001) 捷克方铅矿(Ettler et al.,2004)
(路远发 等,杭州市土壤铅污染的铅同位素示踪研究)
表2 土壤中铅含量的测定结果(mg/kg)
采样点到 公路距离
5m 15 m 25 m 对照点
样品数
12 12 12 2
含量范围
38.1-46.0 37.4-44.0 35.4-41.2 34.5-37.1
测定均值
44 41.2 39.9 35.8
标准差
and significance, In: Nriagቤተ መጻሕፍቲ ባይዱed J O)
2) 交通对土壤的影响
图5 土壤中全铅及可溶相铅含量分布直方图 * 考察土壤总量铅与可溶相铅的关系发现,两者具很好的相 关关系,相关系数高达0.979。
(路远发 等,杭州市土壤铅污染的铅同位素示踪研究)
图6 土壤铅含量在垂直于公路的剖面中的变化特征
《同位素交换分离法》课件
应用领域的拓展
核能领域
随着核能技术的发展,同位素分离技术在核能领域的应用将进一步 拓展,如核燃料循环、核废料处理等。
医学领域
同位素分离技术在医学领域的应用将更加广泛,如放射性药物的生 产、医学影像技术等。
环境监测与治理
同位素分离技术也可应用于环境监测与治理领域,如水体和土壤中污 染物的同位素分析等。
同位素交换分离法需要使用特定的设备和条 件,对设备的要求较高。
分离时间长
该方法的分离时间较长,影响了生产效率。
操作难度大
该方法的操作难度较大,需要专业的技术人 员进行操作。
改进方向
优化化学试剂的用量
通过研究新的分离方法和工艺,减少化学试剂的用量,降低生产成本。
缩短分离时间
通过改进分离工艺和设备,缩短同位素交换分离法的分离时间,提高生产效率。
CHAPTER 06
同位素交换分离法的未来发展前景
技术创新与突破
高效分离技术
通过改进分离工艺和设备,提高同位素分离的效率和精度 ,降低能耗和成本。
01
智能化控制
利用人工智能和大数据技术,实现同位 素分离过程的智能控制和优化,提高分 离过程的稳定性和可靠性。
02
03
新型分离介质
研究开发新型的分离介质和吸附剂, 提高同位素吸附和脱附效率,降低介 质消耗和再生难度。
在医学中的应用
疾病诊断
同位素交换分离法可以用于疾病诊断中,例 如通过测定人体内同位素组成来诊断代谢性 疾病。
药物研发
同位素交换分离法可以用于药物研发中,例如通过 测定药物中同位素组成来研究其药代动力学和药效 学。
辐射剂量监测
同位素交换分离法可以用于辐射剂量监测中 ,例如在核设施周围环境中监测放射性物质 的分布和含量。
第1章同位素标记技术在分子生物学实验技术中的应用ppt课件
⑵ 从RNA合成单链cDNA探针
用RNA为模板合成cDNA探针所用的引物有两种:
a. 寡聚dT为引物合成cDNA探针。本方法只能用 于带Poly(A)的mRNA,并且产生的探针极大多数偏 向于mRNA 3‘末端序列。
b. 可用随机引物合成cDNA探针。该法可防止上 述缺陷,产生比活性较高的探针。但由于模板RNA 中通常含有多种不同的RNA分子,所得探针的序列 往往比以克隆DNA为模板所得的探针复杂得多, 应预先尽量富集mRNA中的目的序列。反转录得到 的产物RNA/DNA杂交双链经碱变性后,RNA单链可 被迅速地降解成小片段,经Sephadex G-50柱层析 即可得到单链探针。
切口平移法
(2)随机引物法
经过热变性使模板DNA 变为单链DNA,随机 引物与单链DNA退火后,利用Klenow Fragment合 成互补链。此时假设底物中dNTP的一种或几种被 [α-32P], [α-35S], [3H] 等标志时,那么合 成的互补链DNA也被标志。合成后的双链DNA经过 热变性变成单链后即可用作杂交探针。
mullismullis的的pcrpcr构思构思引物引物dnadna聚合酶聚合酶dnadna聚合酶聚合酶特定特定dnadna片段片段引物引物22新引物新引物靶靶dnadna的扩增的扩增引物引物11引物引物22互补链互补链引物引物11互补链互补链单位长度的链单位长度的链不同长度的链不同长度的链引物引物11互补链互补链引物引物22互补链互补链目的片段不同长度的链未示出目的片段不同长度的链未示出聚合酶链式反响表示图聚合酶链式反响表示图预变性9395c25m变性9395c30s复性5070c30s延伸75c3060s总延伸75c7m2535pcr的普经过程
probe) 背景: 129I:0.7 cps (20-100 KeV) 灵敏度: 129I : 20 Bq in 10 min 分辨率: 129I : 2-3 mm(depending on the used
稳定碳同位素技术在土壤植物系统碳循环中的应用
例如,在有机质的分解过程中,细菌和真菌会优先吸收轻同位素(如12C), 留下重同位素(如13C)在土壤中。通过比较新老有机质中的碳同位素组成,我 们可以了解有机质的分解速率和土壤碳的动态循环。
此外,稳定同位素分析技术还可以用于研究土壤中的氮循环。在农田生态系 统中,氮的主要来源是施用的化肥。通过比较农作物、土壤和化肥中的氮同位素 组成,我们可以了解氮的矿化、固定和转化过程,以及氮在土壤-植物系统中的 迁移和利用效率。
3、土壤有机碳的固存和分解:土壤有机碳的固存和分解是土壤碳循环的重 要环节。稳定碳同位素技术可以帮助我们理解这个过程中的碳来源、传输和储存 机制。例如,当土壤中的有机物质分解时,其同位素指纹可能会发生变化,这为 我们提供了判断有机物质分解程度的重要线索。
4、农业实践的影响:农业实践如施肥、灌溉等都会影响土壤植物系统的碳 循环。通过稳定碳同位素技术,我们可以评估这些农业实践对土壤有机碳固存的 影响,从而为优化农业管理策略提供科学依据。例如,某些特定的肥料可能会引 入与当地土壤不同的碳源,这就可以通过稳定碳同位素技术进行识别。
参考内容二
引言
土壤碳循环是地球碳循环的重要组成部分,对于气候变化、生态系统功能和 农业生产等方面具有重要影响。准确理解和研究土壤碳循环过程是制定相关环境 政策和农业实践的基础。近年来,碳同位素技术得到了广泛应用,为土壤碳循环 研究提供了新的方法和视角。本次演示将介绍碳同位素技术在土壤碳循环研究中 的应用和意义。
稳定碳同位素技术在土壤植物系统 碳循环中的应用
目录
01 一、稳定碳同位素技 术的基本原理
03 三、前景展望
二、稳定碳同位素技
02 术在土壤植物系统碳 循环中的应用
04 应用价值的地球化学工具,尤其在理解和 解决土壤植物系统的碳循环问题中,其作用不容忽视。通过追踪碳元素的同位素 指纹,科学家们能够更好地理解碳的来源、传输和储存过程,进而为保护和改善 农业生态环境提供科学依据。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ConFloⅢ
氧化炉 TC
GC
仪器外观
CombustionⅢ
控制电脑
DELTAplus XL 质谱主机
IRMS样品分析流程
IRMS
离子源系统
常见的离子源:电子轰击、表面热电离、二次离子化等
IRMS
电子轰击型离子源
在离化室内,样品气体电离成正离子,在电场作用下 离子聚焦成束,并在加速电压作用下经过缝隙进入分析器。
应用领域:生态学,地理地质科学,环境科学, 海洋科学,石油,石化,食品,化工,法检, 医 学,考古等领域。
稳定同位素技术在水污染中的应用
IRMS
稳定同位素技术在水污染中的应用主要集中于碳、 汞、铅、硫、氮的稳定同位素,使用方法多是利用其作 为示踪剂推测水体中污染源的来历,分析污染物质随时 间的迁移与变化。从而达到对已发生的污染事件进行 仲裁、了解污染与转化途径等目的。
稳定性同位素15N能够被用来测定植物通过氮固定 或吸收土壤NH4+及NO3-获得氮素相对比率,确定土 壤中碳和氮周转速率等。
IRMS的仪器维护
反应管及水阱、冷阱的维护 (Flash EA部分)
IRMS
1、测试植物样品时最多200个样后需要取下燃烧管,用专用 工具清除燃灰,装管时注意水平装O形圈 2、氧化剂的消耗和燃烧位置的变化会引起不完全燃烧,造成 峰的拖尾及形成CO等不良结果,不完全燃烧时可把燃烧管温 度升高少许
IRMS的性能改进
IRMS
(2)丰度灵敏度改进的措施: a、改善测量时的真空环境 b、使用具有质量、能量双聚焦功能的串列分析器 c、采用不同类型阻滞透镜 (3)精密度的提高: a、改善供电系统的稳定性 b、多接收器同时测量,缩短采集数据的时间 c、完善计算机在线测量功能和软件功能,消除人 为重复操作误差,缩短测量时间
真空系统
IRMS
涡 轮 分 子 泵
获得超高真空,排除 残余气体,降低“本底”
稳定同位素质谱技术的应用
IRMS
20世纪80年代以后,随着同位素质谱测试技术 的改进,大大拓宽了稳定同位素的研究领域。
特点: a 灵敏度高、检测限低 b 操作简便、使用安全 c 没有放射性,无二次污染 d样品用量少、分析结果精确稳定
IRMS
1、一般一根反应管连续做一周需老化一次:含C量较多的样 品出现鬼峰和杂峰时用,说明Combustion Reactor氧化能力变 差,需要老化。老化方法:
a、Combustion Reactor(燃烧管),开O2 阀1-2小时; HTC Reactor(裂解管),开CH4 阀1-2小时
b、开反吹气一小时 c、仪器状态确认:用2个以上空白样和标准样检测仪器状态, 查看样品信号是否稳定
样品
进样 系统
离子源 质量分析器 离子检测器 质谱图
DELTA plus XL 气体同位素比值质谱
IRMS
•生产商:美国菲尼根玛特质谱公司 •制造地:德 国 •前处理设备: •① 双流进样系统 •② 气相色谱HP6890-燃烧界面Ⅲ •③ 元素分析仪EA1112-连续流界面Ⅲ •基 本 功 能 : H/D, 13C/12C, 15N/14N, 18O/16O, 34S/32S 五种元素的气体同位素比值的测定
稳定同位素技术在大气污染中的应用
IRMS
同位素技术作为来源解析与示踪手段也广泛应 用于气态污染物质来源确定与大气颗粒物污染过 程的研究。应用主要集中于碳、铅、硫的稳定同 位素,研究介质主要为多环芳烃中的稳定碳同位素 组成、燃煤排放的硫化物、汽油燃烧后的铅尘等。
稳定同位素技术在土壤污染中的应用
土壤是许多重金属类污染物质重要的汇,同时土壤 IRMS 又与地表的植被、大气的沉降、地表径流的污染密 切相关,故污染物与污染形式复杂多样,来源探究更加 困难。
2、冷阱维护:N元素分析时,需要开冷阱去除CO2,CO;一般 液氮灌满一次用一天
IRMS的性能改进
同位素质谱仪的技术进展,主要围绕提高仪器的灵敏 IRMS 度、丰度灵敏度、和精密度等性能进行
(1)灵敏度:通常用原子/离子的转换效率来决定,即 用接收到的离子数去除以离子源的样品总原子数之比
• 提高电离效率 (改进电离技术,如采用大流量界面泵和X型的采样锥相结合) • 提高离子传输效率 (改善仪器真空极限、减少离子在传输过程中与缝隙和中性粒子ቤተ መጻሕፍቲ ባይዱ的碰撞) • 提高离子接受效率 (如改进离子束的形状,避免离子的溅射、反射和电子的逃逸)
3、有峰出现就需要更换还原铜(还原铜失效时会有NO形成, 造成30N的峰变高) 4、更换了燃烧管填料后,为了彻底赶出水分,需要加热烘烤 分离柱
5、水阱维护:当水阱中2/3的干燥剂湿润后,需更换干燥剂, 如果颗粒太大,可以轻轻碾碎后使用
IRMS的仪器维护
反应管及水阱、冷阱的维护 (GC Isolink中)
IRMS
有关同位素的测定方法中,常用的同位素 稀释质谱法(IDMS)和电感耦合等离子体质谱 法(ICP-MS)都存在严重的同质异位素干扰, 有什么新的技术可以解决这个问题?
稳定同位素技术在环境分析中的应用
稳定同位素技术(IRMS)
在环境领域的分析应用
IRMS
目录
IRMS
• IRMS的系统组成和工作原理 • IRMS在环境科学中的应用 • IRMS的仪器维护和性能改进
稳定同位素比例质谱仪
IRMS
概念:利用离子光学和电磁原理,按照质 荷比(m/e)进行分离从而测定同位素质量 和相对含量。
迄今发现的稳定同位素274种,但得到 产业化生产并已广泛应用的主要为2H、13C、 15N、18O、22Ne、10B等少数几种产品。
IRMS的系统组成
IRMS
• IRMS主要由3大系统组成:分析系统、电学系 统和真空系统。
• 其中分析系统由3个必需的部分组成:单能级离 子源、质量分析器、离子检测器。
分析器系统
IRMS
磁 分 析 器
质谱仪的心脏,由一个有限制狭缝板和金属杯(法拉 第筒)组成,主体为一扇形磁铁,其功能是把离子源 送来的离子束按不同的质荷比(m/z)分开。
离子检测器(Delta Plus XL/XP)
IRMS
离子接受器+放大检测装置 接受来自质量分析器的不同质荷比的电子束,并加以放大和记录 有多个接收器,可同时接收、记录被分开的几束离子及其强度