简单的三角恒等变换:课件三(21张PPT)
合集下载
5.5 三角恒等变换 课件(21张PPT)(2024年)
2
α是 的二倍角,
2是的二倍角,在倍角公式cos 2α=1-2sin2α中,利用换
元法,
用代替2,用
2
代替,得
cos α=1-2sin2
2
1-
2
=
2
2
新知探究
同理,在倍角公式cos
2
2α=2cos α-1中,用代替2,用
cos
2
α=2
2
−1
2
1+
(1)sin αcos β=
2
(2)sin θ+sin φ=2sin θ+φcos θ-φ
2
2
思考1:(2)式与(1)式有什么相同点和不同点?
θ+φ
θ-φ
(换元法)如果我们令α=
,β=
,
2
2
θ+φ θ-φ
θ+φ θ-φ
即α+β=
+
= ,α-β=
=φ,代入(1)中得
2
2
2
2
θ+φ
θ-φ
2sin
cos
=sin θ+sin φ
(+)+(-)
同理,我们还可以得到公式
cos αsin
cos αcos
1
β=
2
1
β=
2
(+)-(-)
(+)+(-)
1
2
sin αsin β= (-)-(+)
我们把以上四个公式叫做“积化和差公式”
例2、求证:
1
[sin(α+β)+sin(α-β)]
2
2
2
, 2 ,2 .
新知探究
例1、试以cos α表示2
简单的三角恒等变换 课件
简单的三角恒等变换
例1 试用cos表示sin 2 , cos2 , tan2 .
解 是 的二倍角.
2
2
2
2
在公式 cos 2
1
2 sin
2
中,以代替2 ,以
代替 ,
2
cos 1 2sin 2
2
sin 2 1 cos ①
2
2
在公式 cos 2 2 cos2 1中,以代替2,以 代替,
cos 2 cos2 1
2
2
cos2 1 cos ②
2
2
① 得 ②
tan 2
2
1 cos 1 cos
可表示为:
sin
1 cos
2
2
cos 1 cos
2
2
tan 1 cos 2 1 cos
称为半角公式, 符号
由 所在象限决定.
2
例2 求证
1sin cos 1 sin sin ;
例3 求函数y sin x 3 cos x的周期,最大值和最小 值
分析:利用三角恒等变换,先把函数式化简,再求相 应的值.
解 y sin x 3 cos x
点评:例3是三角
2
1 2
sin
x
3 2
cos
x
恒等变换在数学中 应用的举例,它使 三角函数中对函数
2sin x cos cos x sin
1 (1 sin x cos x) 2
1 sin 2x 1
4
2
f ( x ) 的最小正周期为π,最大值为 3,最小值为
4
1 。4
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
例1 试用cos表示sin 2 , cos2 , tan2 .
解 是 的二倍角.
2
2
2
2
在公式 cos 2
1
2 sin
2
中,以代替2 ,以
代替 ,
2
cos 1 2sin 2
2
sin 2 1 cos ①
2
2
在公式 cos 2 2 cos2 1中,以代替2,以 代替,
cos 2 cos2 1
2
2
cos2 1 cos ②
2
2
① 得 ②
tan 2
2
1 cos 1 cos
可表示为:
sin
1 cos
2
2
cos 1 cos
2
2
tan 1 cos 2 1 cos
称为半角公式, 符号
由 所在象限决定.
2
例2 求证
1sin cos 1 sin sin ;
例3 求函数y sin x 3 cos x的周期,最大值和最小 值
分析:利用三角恒等变换,先把函数式化简,再求相 应的值.
解 y sin x 3 cos x
点评:例3是三角
2
1 2
sin
x
3 2
cos
x
恒等变换在数学中 应用的举例,它使 三角函数中对函数
2sin x cos cos x sin
1 (1 sin x cos x) 2
1 sin 2x 1
4
2
f ( x ) 的最小正周期为π,最大值为 3,最小值为
4
1 。4
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
三角恒等变换课件
பைடு நூலகம்
三角恒等变换概述
在本节中,我们将介绍三角恒等变换的概念,并探讨恒等变换的证明方法,帮助您深入理解这个 重要的数学概念。
定义三角恒等变换
- 三角恒等变换的定义和作用
恒等变换的证明方法
- 如何证明三角恒等变换的等式
常用的三角恒等变换公式
在本节中,我们将学习一些常用的三角恒等变换公式,这些公式在解题和化简数学表达式中非常 有用。
- 概括和总结所学的三角恒等变换知识和应用
练习三角恒等变换的题目
- 提供一些练习题目,让大家通过实践巩固所学的三角恒等变换知识
解三角函数方程
- 使用三角恒等变换解决各种类型的三角函数方程
求三角函数值
- 利用三角恒等变换计算各种角度的三角函数值
化简数学表达式
- 利用三角恒等变换化简复杂的数学表达式
总结与练习
在本节中,我们将总结刚刚学习的三角恒等变换的知识点和应用,并提供一些练习题供大家巩固 所学。
总结三角恒等变换的知识点和应用
三角恒等变换课件
这是一份关于三角恒等变换的课件,我们将深入探讨三角恒等变换的各个方 面,包括基础知识回顾、概述、常用公式、应用等内容。
引言
在本节中,我们将回顾三角函数的基础知识,包括周期性、奇偶性等,并为后续的学习打下基础。
三角函数基础知识回顾
- 正弦、余弦和正切的定义
三角函数的周期性和奇偶性
- 三角函数的周期性和奇偶性特点
和差公式
- 正弦、余弦和正切的和差公式
积化和差公式
- 正弦、余弦和正切的积化和差公式
幂指公式
- 正弦、余弦和正切的幂指公式
倍角公式
- 正弦、余弦和正切的倍角公式
半角公式
三角恒等变换概述
在本节中,我们将介绍三角恒等变换的概念,并探讨恒等变换的证明方法,帮助您深入理解这个 重要的数学概念。
定义三角恒等变换
- 三角恒等变换的定义和作用
恒等变换的证明方法
- 如何证明三角恒等变换的等式
常用的三角恒等变换公式
在本节中,我们将学习一些常用的三角恒等变换公式,这些公式在解题和化简数学表达式中非常 有用。
- 概括和总结所学的三角恒等变换知识和应用
练习三角恒等变换的题目
- 提供一些练习题目,让大家通过实践巩固所学的三角恒等变换知识
解三角函数方程
- 使用三角恒等变换解决各种类型的三角函数方程
求三角函数值
- 利用三角恒等变换计算各种角度的三角函数值
化简数学表达式
- 利用三角恒等变换化简复杂的数学表达式
总结与练习
在本节中,我们将总结刚刚学习的三角恒等变换的知识点和应用,并提供一些练习题供大家巩固 所学。
总结三角恒等变换的知识点和应用
三角恒等变换课件
这是一份关于三角恒等变换的课件,我们将深入探讨三角恒等变换的各个方 面,包括基础知识回顾、概述、常用公式、应用等内容。
引言
在本节中,我们将回顾三角函数的基础知识,包括周期性、奇偶性等,并为后续的学习打下基础。
三角函数基础知识回顾
- 正弦、余弦和正切的定义
三角函数的周期性和奇偶性
- 三角函数的周期性和奇偶性特点
和差公式
- 正弦、余弦和正切的和差公式
积化和差公式
- 正弦、余弦和正切的积化和差公式
幂指公式
- 正弦、余弦和正切的幂指公式
倍角公式
- 正弦、余弦和正切的倍角公式
半角公式
简单的三角恒等变换课件
【例 3】
求证:sins2inα+α β-2cos
(α+β)=ssiinn
β α.
[思路探索] 式中涉及角 α、β、α+β,2α+β,因此可以把 2α+
β 化为(α+β)+α,再进行证明.
证明 ∵sin(2α+β)-2cos(α+β)sin α
=sin[(α+β)+α]-2cos(α+β)sin α
题型四 三角函数的实际应用 【例 4】 点 P 在直径 AB=1 的半圆上移动,过 P 作圆的切线 PT 且 PT=1,∠PAB=α,问α为何值时,四边形 ABTP 面积最 大? 审题指导 先画图 ――用―α―→ 表示出四边形 ABTP 的面积 ―三―利角―用公――式→ 求最值 ――得―出――→ α值
α2= sin
2α= sin
2·2sin α
2α=1-sincoαs α,
cos 2 cos 2ห้องสมุดไป่ตู้2sin 2
αα
α
sin α=2sin
α 2cos
α2=s2isni2nα2+2ccooss22α2=12+tatnan22α2.
cos α=cos2α2-sin2α2,
=ccooss22αα22- +ssiinn22αα22=11- +ttaann22αα22.
=sin(α+β)cos α+cos(α+β)sin α-2cos(α+β)sin α
=sin(α+β)cos α-cos(α+β)sin α
=sin[(α+β)-α]=sin β,
两边同除以
sin
α,得sins2inα+α β-2cos(α+β)=ssiinn
β α
规律方法 证明三角恒等式的基本思路是根据等式两端特征, 通过三角恒等变换,应用化繁为简、左右归一、变更论证等方 法,使等式两端的“异”化为“同”,分式不好证时,可变形为 整式来证.
简单三角恒等变换-课件ppt
b, a2+b2
则有 y=asin x+bcos x
= a2+b2(cos θsin x+sin θcos x)= a2+b2sin(θ+x).
自测自评
1.已知 sin α= 55,则 sin4α-cos4α 的值为(
)
A.-15
B.-35
1 C.5
3 D.5
解析:原式=sin2α-cos2α
=2sin2α-1=-35.故选 B.
1-cos 1+cos
α来解, α
也可由 cos α=-35解出 sin α,再根据公式 tanα2=1-sicnoαs α
或
tanα2=1+sincoαs
求解.对第一种解法,要注意符号的选择. α
解析:解法一:∵180°<α<270°,∴90°<α2<135°, 即角α2是第二象限角,∴tanα2<0,
θ.
分析:半角公式、倍角公式的灵活运用.
证明:法一:
原式=22csoins22θ2θ2++22ssiinnθ2θ2ccoossθ2θ2+22csoins22θ2θ2++22ssiinnθ2θ2ccoossθ2θ2
θθ
= sin2θ+cosθ2=
1 θθ
cos2 sin2 cos2sin2
=sin2 θ.
即 x=72π4时,f(x)取得最小值 3 3-2 2.
因为函数 y=sin2x-3π在区间π4,72π4上是单调递增的,
所以函数 f(x)在区间π4,72π4上是单调递减.
点评:这类问题由于兼顾了函数性质以及三角变换, 因此是高考考查的热点问题,在此过程中往往还会用到和、 差角的特殊形式,因此对于一些常见辅助角的变换要熟悉,
12[sin(α+β)+sin(α-β)] 12[sin(α+β)-sin(α-β)]
简单的三角恒等变换课件三
练一练·当堂检测、目标达成落实处 B
练一练·当堂检测、目标达成落实处 D
练一练·当堂检测、目标达成落实处 A
练一练·当堂检测、目标达成落实处
练一练·当堂检测、目标达成落实处
(2) 由(1)可得
sin(+) + sin(-) = 2sincos
①
设 +=, -=
把,的值代入①,即得
思考 在例2证明过程中用到了哪些数学思想方法?
上例:证明中用到换元思想, ①式是积化和差的形式, ②式是和差化积的形式;
在后面的练习当中还有六个关于积化和差、 和差化积的公式.
研一研·问题探究、课ຫໍສະໝຸດ 更高效研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
练习 函数
π 最大值为 ,最小值为 .
的最小正周期为
的最小正周期为π,最大值为 ,最小值为 。
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
简单的三角恒等变换课 件三
2020年4月30日星期四
例1 解
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
例 求证
证明:(1) sin(+)和sin(-)是我们学过的知识,所以
从右边着手 sin(+) = sincos+cossin sin(-) = sincos-cossin 两式相加,得 sin(+) + sin(-) = 2sincos
简单的三角恒等变换PPT教学课件
a
2时
f
(x)大
a2 4
1 2
a 4
当a 2
1即a
2时
当sin x 1时
f
(x)大
3 4
a
1 2
当
a 2
0即a
0时
sin
x
0时 f
(x)大
1 2
a 4
3 4
a
1 2
(a
2)
即M
(a)
a2 4
a 4
1 2
(0
a
2)
1 2
a 4
(a
0)
(2)当M
(a)
2时,
解得a
10 3
或a
6
小结:
对公式我们不仅要会直接的运用,还 要会逆用、还要会变形用,还要会与 其它的公式一起灵活的运用。
2
log 1 (sin x cosx) f (x)
2
T 2
练习2.f(x)=cos2x+asinx-
a 4
-
1 2
(0≤x≤2 )
①用a表示f(x)的最大值M(a)
②当M(a)=2时,求a的值
解:
(1)
f
(x)
(sin
x
a 2
)2
a2 4
1 2
a 4
0
x
2
0
x
1
当0
a 2
1即0
2
sin2 cos2 1
2
解法2:
原式 1 (1 cos2 )(1 cos2 ) 1 (1 cos2 )(1 cos2 )
4
4
1 cos2 cos2
2
1 (1 cos2 cos2 ) 1 cos2 cos2
人教版高中数学必修1《简单的三角恒等变换》PPT课件
α2,cos
α2,tan
α 2
的值;
1-sin (2)化简:
α-2c-os2αcossiαnα2+cosα2(-π<α<0).
[解] (1)∵sin α=-187,π<α<32π,∴cos α=-1157.
∵cos2α=1-2sin2α2=2cos2α2-1,又π2<α2<34π,
∴sin α2=
1-cos 2
6 A. 3
B.-
6 3
C.±
6 3
解析:∵cos θ=13,且 θ∈(0,π),
D.±
3 3
∴θ2∈0,π2,∴cosθ2>0,
∴cos θ2=
cos2θ2=
1+cos 2
θ=
1+2 13= 36.
答案:A
()
3.已知 cos α=45,α∈32π,2π,则 sin α2等于
A.-
10 10
10 B. 10
【学透用活】
[典例 2] (1)求证:1+2cos2θ-cos 2θ=2;
(2)求证:
sin
x+cos
2sin xcos x-1sin
x x-cos
x+1=1+sincoxs
x .
[证明] (1)左边=1+2cos2θ-cos 2θ=1+2×1+c2os 2θ-cos 2θ=2=右边,
所以原等式成立.
• (一)教材梳理填空 • 1.半角公式:
半角公式
正弦 sinα2= ±
1-cos α 2
余弦 cosα2= ±
1+cos α 2
续表
正切 tan α2=±
1-cos 1+cos
αα,tanα2=1+sincoαs
= α
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,则
f(
)
的值是(
12
)
2sin cos
22
A. 4 3 3
B. 4 3
C. 4 3
D. 6 3
练习
3
5.tan( ) 2 , tan( ) 1 ,则 tan( ) ___2_2___.
5
44
4
1 sin2
6.化简: 2
cos 1 cos 3
A.0
C. 1 2
B. 3 2
D.-1
练习
3.设 (0, ) , ( , ) ,且cos 1 ,sin( ) 7
2
2
3
9
则 sin 等于( )
1
A.
27
C. 1 3
5
B.
27 23
D.
27
练习
4.若 f ( x)
2sin2 1
2
转化为形如 y=Asin(+)的函数, 从而使问题得到简化
1 sin 2 3
3 6 6
由于0 , 所以当 2 ,即 时,
3
62
6
S最大
13
3 6
3 6
练习
函数 f (x) sin 4 x cos4 x sin 2 x cos2 x 的最小正周期为 2 sin 2x
在Rt△OAD中, DA tan 60 3
OA
OA 3 DA 3 BC 3 sin
3
3
3
AB OB OA cos 3 sin
3
设矩形ABCD的面积为S,则
S AB BC
cos
3 3
sin
sin
sin cos 3 sin 2
2
2
在公式 cos 2 2 cos2 1中,以代替2,以 代替,
cos 2 cos2 1
2
2
cos2 1 cos ②
2
2
① 得 ②
tan 2
2
1 cos 1 cos
可表示为:
sin 1 cos
2
2
cos 1 cos
3
1 sin 2 3 1 cos 2
2
6
1 sin 2 3 cos 2 3
2
6
6
通过三角变换把形如 y=asinx+bcosx的函数 转化为形如通过三角 变换把形如 y=asinx+bcosx的函数
1 3
3 2
sin
2
1 2
cos
2
3 6
22
sin 1 2
7.已知
sin( )
1
2 ,sin( )
1 3
,则
tan cot
5
8.若
tan sec
3,则 tan
2
__12__(__t_a_n__2______1_舍___之__)_.
小结
对变换过程中体现的换元、逆向使用公式 等数学思想方法加深认识,学会灵活运用
作业
课本第143页习题3.2A组 题1、(6)---(8).2
简单的三角恒等变换
复习 和(差)角公式
倍角公式
例1 试用cos表示sin 2 , cos2 , tan2 .
解 是 的二倍角.
2
2
2
2
在公式 cos 2
1
2 sin
2
中,以代替2 ,以
代替 ,
2
cos 1 2sin 2
2
sin 2 1 cos ①
2sin x cos cos x sin
3
3
的性质研究得到延 伸,体现了三角变 换在化简三角函数
2sin x
式中的作用.
3
所以,所求的周期为2,最大值为2,最小值为-2.
例4 如图,已知OPQ是半径为1,圆心角为 的扇形,C是扇形
3
弧上的动点,ABCD是扇形的内接矩形. 记COP ,求
当角取何值时, 矩形ABCD的面积最大?并求出最大面积.
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin
2
2
tan 1 cos 2 1 cos
称为半角公式, 符号
由 所在象限决定.
2
例2 求证
1sin cos 1 sin sin ;
2
2sin sin 2sin cos .
2
2
解 (1) sin(+)和sin(-)是我们学过的知识,所
sin(+) + sin(-) = 2sincos
①
设 +=, -=
,
2
2
把,的值代入①,即得
sin sin 2sin cos .
2
2
思考 在例2证明过程中用到了哪些数学思想方法?
例2证明中用到换元思想, ①式是积化和差的形式, ②式是和差化积的形式;
π
3
1
最大值为 4 ,最小值为 4 .
分析:欲求最小正周期主最大最小值,首先要将函数式化为单一函数.
sin4 x 2sin2 x cos 2 cos 4 x sin2 x cos 2 x f (x)
2 2sin x cos x 1 sin2 xcox2 x 2(1 sin x cos x) 1 (1 sin x cos x) 2
1 sin 2x 142 f ( x ) 的最小正周期为π,最大值为 3 ,最小值为 1 。
4
4
练习
1 tan2 75
1.
的值是 ( )
tan 75
A. 2 3 3
B. 2 3 3
C. 2 3
D. 2 3
练习
2.cos40 cos60 cos80 cos160 的值是( )
以从右边着手
sin(+) = sincos+cossin
sin(-) = sincos-cossin
两式相加,得
sin(+) + sin(-) = 2sincos
sin cos 1 sin sin
2
(2) 由(1)可得
在后面的练习当中还有六个关于积化和差、 和差化积的公式.
例3 求函数y sin x 3 cos x的周期,最大值和最小 值
分析:利用三角恒等变换,先把函数式化简,再求相 应的值.
解 y sin x 3 cos x
点评:例3是三角
2
1 2
sin
x
3 2
cos
x
恒等变换在数学中 应用的举例,它使 三角函数中对函数