可控硅的工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅中频电源的工作原理
可控硅中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图2 。
下面分整流电路,逆变电路及保护回路分别进行一些介绍。
一三相桥式全控整流电路的工作原理
1 三相桥式全控整流电路的工作过程。
三相桥式全控整流电路共有六个桥臂,在每一个时刻必须2个桥臂同时工作,才能够成通路,六个桥臂的工作顺序如图3 。现假定在时刻t1-t2(t1-t2的时间间隔为60o电角度,既相当于一个周波的1/6)此时SCR 1和SCR6同时工作(图3(a)中涂黑的SCR),输出电压即为VAB。到时刻t2-t3可控硅SCR2因受脉冲触发而导通,而SCR6则受BC反电压而关闭,将电流换给了SCR2,这时SCR1和SCR2同时工作,输出电压即为VAC,到时刻t3-t4,SCR3因受脉冲触发而导通,SCR1受到VAB的反电压而关闭,将电流换给了SCR3,SC R2和SCR3同时工作,输出电压为VBC,据此到时刻t4-t5, t5-t6, t6-t1分别为SCR3和SCR4, SCR4和S CR5, SCR5和SCR6 同时工作,加到负载上的输出电压分别为VBA,VCA,VCB,这样既把一个三相交流进行了全波整流,从上述分析可以看出,在一个周期中,输出电压有六次脉冲。这种整流电路由于在每一瞬间都有两个桥臂同时导通,而且每个桥臂导通时间间隔为60o,故对触发脉冲有一定要求,即脉冲的时间间隔必须为60o,而且如果采用单脉冲方式,脉冲宽度必须大于60o,如果采用窄脉冲,则必须采用双脉冲的方法, 既在主脉冲的后面60o的地方再出现一次脉冲。
2 三相同步及触发线路
1)三相同步的选取及整形
根据三相桥式全控整流过程的有关要求,首先要保证触发电路与三相电源严格同步。既有A相产生的触发脉冲必须接于整流电路1号,4号可控硅(称为正A负A ),B相产生的触发脉冲接于3号,6号可控硅(称为正B负B),C相产生的触发脉冲接于5号,2号可控硅(称为正C负C)。本系统(如图4整流触发线路)整流触发线路里,三相同步信号直接取之380V电压,接入主控板的同步输入端,X10(A),X20(B),X30(C)。通过降压电阻降压,进入由W1,W2,W3,C1,C2,C3组成的三相同步滤波,整形,平衡电路。它的特点是由W1,C1(单相说明)组成积分电路。电容量一定,改变阻值大小就可改变时间常数。其作用有:(1)滤除网电杂乱尖峰波干扰,使同步信号纯正,定位准确,避免整流可控硅误动作。(2) 调整三相不平衡度,调节移相范围可达12o使整流桥输出平衡。
2)整流触发的形成
通过以上整形后的三相同步信号,由C4.C5.C6.分别送入大规模集成块TCA787C的同步输入端1.2.18角。按三相全控整流桥触发电路的要求由7.8.9.10.11.12角分别输出 6 路调制后的双窄脉冲,经电容C13. C14.C15.C16.C17.C18耦合给6路大功率MOS管进行脉冲功率放大。再由6只脉冲变压器输出,经整形后接于整流桥的6只可控硅的控制极和阴极,达到三相全控整流桥正常工作的触发目的。
3整流可控硅的选取。
1)由于三相全控整流桥工作在较低的频率范围,所以普遍选用普通整流可控硅,即KP系列可控硅。
2)跟据三相全控整流电路的理论计算,流过每一个可控硅的电流是整流输出总电流的0.334倍。所以在使用中为了留有足够的富裕量,一般选用与电源的额定电流值相同大小的可控硅。
3)进相电源电压为三相380V的机型中,选定耐压值为1200V—1400V的KP硅。进相电压为三相660 V的机型中,选定耐压值为2000V—2500V的KP硅。
二可控硅中频电源装置的逆变电路
1 两种逆变器电路
无论是感应加热或是感应熔炼,负载的功率因数都是很低的,也就是感应的Q值很高,在感应熔炼炉来说Q值一般在10-14之间,对感应加热来说,则根椐偶合程度Q值为5-9之间。
什么是Q值,Q值是指线圈的感抗和线圈的电阻之比。也就是炉子的无功功率和有功功率之比。举例来说,250Kg的感应熔炼炉,其需要的有功功率为160kw.假定Q值为10,则其无功功率为1600 kfar,这样大的无功功率,很显然不能有电网供给,那样电网的容量将非常庞大而不经济,因此,必须用能提供无功功率的电容器进行补偿,这个原理就象一般工厂里补偿功率因数一样。
无功功率的补偿方法有二种,一种是补偿电容器和炉子串联,叫作串联补偿,补偿电容器和炉子并联的叫做并联补偿。针对二种不同的补偿方法,可以有两中不同的逆变线路,一种叫作串联逆变器,一种叫作并联逆变器,如图 5
两种逆变器的比较如下;
2 单相桥式并联逆变器的工作原理
1)并联逆变器的基本线路如图6。
图中可控硅SCR1-SCR4组成了一个桥式线路,Ld为直流电抗器,L为感应炉,C为补偿电容, LC组成一个并联谐振线路。这个线路是如何工作,又是怎样把直流变为中频电流呢;我们首先来研究分析一下线路正常情况下是如何工作的。图7表示一个工作循环的情况。假设在图7(a)中,先是(1) (2)导通(3)(4)截止,则直流电流Id经电抗器Ld,可控硅(1)(2)流向LC谐振回,由于Ld的电感值比较大,Id受Ld的限止基本上不变化而保持恒定,LC谐振回路受到一个恒定电流的激励,而产生谐振,震荡电压为正弦波,也就是说电容器两端的电压为正弦波,(这相当于图7(a)及图8中时刻t1前的电流电压波形)假定在这一时刻电容器两端的电压极性左端为正,右端为负。电容器两端电压将按正弦波规律变化,如果我们在电容器两端电压尚未过零之前的某一时刻(图8中的时刻t1)触通可控硅(3)与(4),此时可形成可控硅(1)(2)(3)(4)同时导通的状态,(如图7(b)),由于可控硅(3)(4)的导通,电容器两端的电压通过可控硅(3)(4)加在可控硅(1)(2)上,阳极电压为负,阴极电压为正,可控硅(1)(2)两端由于承受一个反向电压而迅速关断,也就是说可控硅(1)(2)将电流换给可控硅(3)(4).换流以后,直流电流经电抗器Ld,可控硅(3)(4),从相反方向激励了谐振回路。电容器两端电压继续按正弦规律变化,而电容器两端电压的极性变成左端为负,右端为正,(如图7(c)),对应的波形图位图8中的t2—t3时刻。在负载回路中的电流也改变了方向。当电容器右端的正电压再要过零之前的某一时刻(这相当于图8中的t3时刻),再将可控硅(1)(2)触通则再次形成4个桥臂可控硅(1)(2)(3)(4)同时导通状态,但在此时使可控硅(3)(4)承受一个反向电压,而将电流换给了可控硅(1)(2),这就完成了一个工作循环。从上述换流过程中我们可以看出,当可控硅(1)(2)导同时电流自一个方向流入负载,当可控硅(3)(4)导通时电流从相反方向流入负载,可控硅(1)(2)与(3)(4)相互轮流导通和关断,就把一个直流变成了交流,可控硅(1)(2)与(3)(4)交替工作的次数也就决定了输出交流电的频率。这种变频线路因其换流过程是受负荷控制的,所以不需要外加另外的强迫换流装置,这是它和其它变频线路的不同之点,由于不需外加换流装置,因之这种变频线路的效率较高。适合在大功率的感应熔炼及加热中应用,所以这种线路对负载的依赖性也是较大的。
2)从上述分析的逆变器的换流过程还可以看出,换流过程必须在电容器电压过零之前的某一时刻进行,也就是电流必须超前电压某一时间。这一点在所介绍的线路中非常重要,不满足这一点,这种逆变线路是不能