七年级上学期半期数学测试题

合集下载

七年级上学期数学 半期考试试题(含答案)

七年级上学期数学 半期考试试题(含答案)

七年级(上期)半期考试数学试题(时间:90分钟 满分:100分)友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,祝你考出好的成绩。

一、填空题:(每小题2分,共20)1.写出两个大于-103 又小于-100的数 。

2.若a <b <0,则ab 0 ,a -b 0 。

(用“<,或 >”填空﹚3.若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )+cd = 。

4.甲班有 a 人,乙班比甲班的 2 倍多b 人,则 乙班有 。

5.某厂去年的产值为 a 元,今年比去年增长 x %,则今年的产值为 。

6.一艘轮船在静水中的速度为 a 千米/小时,水流速度为 b 千米/小时,则船顺流航行的速度为 千米/小时。

7.若方程 2x +a =x -1 的解是 x =3 ,则a = 。

8.一个两位数,个位上的数字是a ,十位上的数字是b ,那么这个两位数可表示为 。

9.仔细观察、思考下面一列数有哪些规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:(1)第7个数是 ;(2)第 n 个数是 。

10.用火柴棍象如图这样搭三角形:你能找出规律猜想出下列两个问题吗?(1)搭7个需要 根火柴棍。

(2)搭 n 个三角形需要 _________ 根火柴棍二、选择题:(每小题2分,共28分)1.下列各数:3 ,0 ,-5 ,0.48 ,-(-7) ,- |-8| ,(-4)2中,负数有( )个。

A.1 B.2 C.3 D.42. 把 27049 按四舍五入法取近似值,精确到百位,并用科学计数法表示的是( )。

A. 2.7×104B. 2.70×104C. 2.7×105D. 2.7O×1053. 下列由等式的性质进行的变形,错误的是( )。

A.如果 a =b,那么a +3=b+3;B.如果 a =b ,那么 a -3=b -3;C. 如果 a =3,那么a 2=3a ;D.如果 a 2=3a ,那么 a =3。

七年级数学上册期中测试卷

七年级数学上册期中测试卷

七年级数学上学期期中测试卷一、选择题(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目答案标号涂黑) 1.(4分)下列说法正确的是( ) A .有理数都可以化成有限小数 B .若a +b =0,则a 与b 互为相反数C .在数轴上表示数的点离原点越远,这个数越大D .两个数中,较大的那个数的绝对值较大2.(4分)如果a 是有理数,则a 2﹣2022的最小值为( ) A .﹣2021B .﹣2022C .﹣2023D .不存在3.(4分)下列计算正确的是( ) A .(﹣1)×(﹣2)×(﹣3)=6 B .(﹣36)÷(﹣9)×1=﹣4C .()32141232=-÷⎪⎭⎫ ⎝⎛-⨯ D .()()162214=-⨯÷- 4.(4分)下列说法:①如果a =﹣13.那么﹣a =13;②相反数等于它本身的数是1;③如果a 是非负数,那么﹣a 是正数;④如果a 是负数,那么|a |+1是正数,其中正确的有( ) A .1个B .2个C .3个D .4个5.(4分)下列关系正确的是( ) A .|a 2|=|a |2=a 2B .|a 2|>|a |2>a 2C .|a 2|=|a |2<a 2D .|a 2|<|a |2<a 26.(4分)已知代数式2x a y 352x b +1y a +b是同类项,则a ,b 的值分别是( ) A .⎩⎨⎧-==12b aB .⎩⎨⎧==12b aC .⎩⎨⎧-=-=12b aD .⎩⎨⎧=-=12b a7.(4分)若a 、b 、c 、d 是正整数,且a +b =20,a +c =24,a +d =22,设a +b +c +d 的最大值为M ,最小值为N ,则M ﹣N =( ) A .28B .12C .48D .368.(4分)如图,圆环中大圆的半径为r ,小圆的半径为2r,AB 为大圆的直径,则阴影部分的面积为( ) A .42r πB .432r πC .82r πD .832r π9.(4分)按如图所示的程序进行计算,若输入x 的值是3,则输出y 的值为1.若输出y 的值为3,则输入x 的值是( )A .7B .﹣31 C .7或﹣31 D .无法确定10.(4分)如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合.将圆沿数轴滚动1周,点A 到达点B 的位置,则点B 表示的数是( )A .π﹣1B .﹣π﹣1C .﹣π+1D .π﹣1或﹣π﹣111.(4分)有依次排列的3个整式:x ,x +7,x ﹣2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,7,x +7,﹣9,x ﹣2,则称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推.通过实际操作,得出以下结论:①整式串2为:x ,7﹣x ,7,x ,x +7,﹣x ﹣16,﹣9,x +7,x ﹣2; ②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2021的所有整式的和为3x ﹣4037;上述四个结论正确的有( )个. A .1B .2C .3D .412.(4分)新定义:对非负实数x “四舍五入”到个位的值记为x ,即:当n 为非负整数时,如果2121+≤-n x n <,则x =n ;反之,当n 为非负整数时,如果x =n ,则2121+≤-n x n <.例如:0=48.0=0,64.0=49.1=1,3=3,5.=12.4=4,…如果1-x =3,则实数x 的取值范围为( ) A .3.5<x ≤4.5B .3.5≤x <4.5C .3.5≤x ≤4.5D .3.5<x <4.5二、填空题(本题共4个小题,每小题4分,共16分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)若2x 2﹣3x ﹣2=0,则代数式3﹣4x 2+6x 的值为 .14.(4分)五一假期,班主任孙老师带着班级17名同学,去玉渊潭公园划船,项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150若每条船划的时间均为1小时,则租船的总费用最低为380元.15.(4分)如图,根据数轴上表示的三个数的位置,化简:|b﹣c|﹣|a﹣b|+|a+c|=.16.(4分)计算两个两位数的积,这两个两位数的十位上的数字相同,个位上的数字之和等于10.例如:43×47=2021,68×62=4216,74×76=5624,81×89=7209设其中一个数的十位数字为m,个位数字为n,请用含m,n的算式表示这个规律.三、解答题(本题共8个小题,共86分,答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上,解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算(1)12﹣(﹣8)+(﹣7);(2)﹣9×(﹣7)÷3÷(﹣3);(3)(2a2﹣3a﹣2)﹣(﹣a2﹣3a+7);(4)4+(﹣2)3×5﹣(﹣0.28)÷4.18.(8分)对于任意四个有理数a,b,c,d,都可以组成两个有理数对(a,b)与(c,d),我们规定:(a,b)★(c,d)=b c﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)(2,﹣3)★(3,﹣)=.(2)计算(2,﹣2)★(a,3﹣a);(3)当x+y=2,x y=﹣3时,求(x+y,2x+y)★(2x﹣y,4x﹣y+5)的值.19.(10分)如图,O为数轴原点,点A原点左侧,点B在原点右侧,且OB=2OA,AB=18.(1)求A、B两点所表示的数各是多少;(2)P、Q为线段AB上两点,且QB=2P A,设P A=m,请用含m的式子表示线段PQ;(3)在②的条件下,M为线段PQ的中点,若OM=1,请直接写出m的值.20.(10分)老师写出一个整式(ax2+bx﹣4)﹣(3x2+2x)(其中a、b为常数,且表示为系数),然后让同学给a、b赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x2﹣3x﹣4.则甲同学给出a、b的值分别是a=,b=;(2)乙同学给出了a=2,b=﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.21.(12分)某商场老板以32元的价格购进30件儿童服装,针对不同的顾客,30件儿童服装的售价不完全相同.若以47元为标准,超过的钱数记为正数,不足的钱数记为负数.记录结果如表所示:售出件数763545售价(元)+3+2+10﹣1﹣2(1)在销售这30件儿童服装中,价格最高的一件比价格最低的一件多多少元?(2)与标准售价比较,30件儿童服装总售价超过或不足多少元?(3)请问该商场在售完这30件儿童服装后,赚了多少钱?22.(12分)如图,在一条不完整的数轴上,点A,B,C对应的数分别为a,b,c,其中点A在点B的左侧,且a+b=0.(1)若AB=4,c=5,求a+c的值;(2)若点C在点A的左侧,化简|a﹣c|+|a﹣b|;(3)若b=6,AB=3BC,求c的值.23.(12分)图①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它平均分成形状和大小都一样的四块小长方形,然后按图②那样拼成一个正方形.(1)观察图②,请用两种不同的方法表示图②中阴影部分的面积:方法1:;方法2:;(2)直接写出三个代数式(m+n)2,(m﹣n)2,m n之间的等量关系:;(3)若a+b=7,ab=6,求a﹣b的值.24.(14分)如图,在长方形ABCD中,AB=a厘米,AD=b厘米,E为BC的中点,动点P从点A开始,按A→B→C→D的路径运动,速度为2厘米/秒,设点P的运动时间为t 秒.(1)当点P在AB边上运动时,请用含a,t的代数式表示PB的长;(2)若a=6,b=4,则t为何值时,直线PD把长方形ABCD的周长分成2:3两部分;(3)连结PD,PE,DE,若t=2时,三角形PED的面积恰好为长方形ABCD面积的五分之一,试探求a,b之间的关系式.。

四川省泸州市江阳区四川省泸州高级中学校2024-2025学年七年级上学期11月期中考试数学试题

四川省泸州市江阳区四川省泸州高级中学校2024-2025学年七年级上学期11月期中考试数学试题

泸州高级中学校2024-2025学年上期七年级半期测试题数学注意事项:1.全卷共三个大题,25个小题;满分120分,考试时间为120分钟;2.答题前请在答题卡上准确填写自己的学校、班级、姓名、考号;3.考生作答时,必须将答案写在答题卡上相应的位置,在本试卷和草稿纸上答题无效,考试结束后,试题卷由学校收回并保管,答题卡交回。

第I卷(选择题)一、单选题(共36分)1.(本题3分)的相反数是()A.2024B.C.D.2.(本题3分)若收入5元记为,则支出2元记为()A.B.C.1D.23.(本题3分)下列各式中运算正确的是()A.B.C.D.4.(本题3分)下列说法错误的是()A.的系数是B.数字也是单项式C.的系数D.的次数是5.(本题3分)小明同学在“百度”搜索引擎中输入“2023亚运会”,搜索到与之相关的结果条数为31400000,这个数用科学记数法表示为()A.B.C.D.6.(本题3分)下列说法中,正确的()A.没有最大的正数,但有最大的负数B.最大的负整数是C.有理数包括正有理数和负有理数D.一个有理数的绝对值总是正数7.(本题3分)小明和小亮期中考试的语文、数学成绩分别都是80分,m分.到了期末考时,小明期末考试的语文、数学两科成绩依次比期中考试增长了,两科总成绩比期中增长的百分数为a.小亮期末考试的语文、数学两科成绩依次比期中考试增长了,两科总成绩比期中增长的百分数为b,则()A.B.C.D.8.(本题3分)在,15,,0,.这些数中,非负数有()个A.2B.3C.4D.59.(本题3分)如图所示是计算机程序流程图,若开始输入,则最后输出的结果是()A.29B.C.D.3310.(本题3分)某企业今年3月份产值为万元,4月份比3月份减少了,5月份比4月份增加了,则5月份的产值是( )A.万元B.万元C.万元D.万元11.(本题3分)下列说法正确的有()①若,则为非正数;②与互为相反数;③近似数精确到十分位;④的次数是5;A.1个B.2个C.3D.4个12.(本题3分)如图,填在下列各正方形中的四个数之间都有相同的规律,根据此规律,c的值是()385127169b579a cA.B.C.D.第II卷(非选择题)二、填空题(共12分)13.(本题3分)若与是同类项,则.14.(本题3分)已知,,且,则的值为.15.(本题3分).16.(本题3分)已知a,b互为相反数且,c,d互为倒数;m的绝对值是最小的正整数,则.三、解答题(共72分)17.(本题16分)计算.(1);(2)(3);(4).18.(本题5分)画一条数轴,把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“”连接起来.0,,,,,19.(本题6分)把下列各数填在相应的大括号里:23,,,0,,,,;整数:{ …};负分数:{ …};正有理数:{ …}.20.(本题5分)先化简,再求值:,其中.21.(本题6分)已知有理数在数轴上的位置如图所示,(1)分别判断以下式子的符号(填“”或“”或“”):;;(2)化简:.22.(本题6分)某检修队从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修队一天中的行程记录如下(单位:km)∶.若检修队所乘汽车每千米耗油,问:(1)检修队收工地在何处?(2)从出发到收工共耗油多少升?23.(本题6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购物超出300元,超出部分按原价的八折优惠;在乙超市累计购物超出200元,超出部分按原价的八五折优惠.已知某顾客累计购物元.(1)请用含x的代数式分别表示该顾客在两家超市购物所付的费用(2)当该顾客累计购物500元时在哪个超市购物合算?24.(本题10分)用“”规定一种新运算:对于任意有理数和,规定.如:.(1)求的值;(2)若,求的值;(3)若,(其中为有理数),试比较、的大小.25.(本题12分)阅读理解:若A、B、C为数轴上三点且点C在A、B之间,若点C到A的距离是点C到B的距离的3倍,我们就成点C是【A,B】的好点.例如,点A表示的数为-2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是【A,B】的好点;又如,表示-1的点D 到A的距离是1,到B的距离是3,那么点D就不是【A,B】的好点,但是点D是【B,A】的好点.知识运用:(1)若M、N为数轴上两点,点M所表示的数为-6,点N所表示的数为2.数所表示的点是【M,N】的好点;数所表示的点是【N,M】的好点;(2)若点A表示的数a,点B表示的数b,点B在点A的右边,且点B在A、C之间,点B是【C,A】的好点,求点C所表示的数(用含a、b的代数式表示);(3)若A、B为数轴上两点,点A所表示的数为-11,点B所表示的数为9,现有一只电子蚂蚁P从点A 出发,以每秒2个单位的速度向右运动,运动时间为t秒.如果P、A、B中恰有一个点为其余两点的好点,求t的值.参考答案:题号12345678910答案A A B C D B B C A C 题号1112答案B C13.2 14.1或15./ 16.017.(1) (2) (3)15 (4)018.解:,,,各数表示在数轴上,如下图所示,则有.19.23,,,0;,,;23,;20.,21.(1);(2)22.(1)在A处(2)12.6升23.(1)在甲超市购物所付的费用是元,在乙超市购物所付的费用是元;(2)去乙超市,理由见详解24.(1)(2)(3)25.(1)0,;(2);(3)或或或。

重庆市璧山中学校2021-2022学年七年级上学期半期(期中)测试数学试卷(含答案)

重庆市璧山中学校2021-2022学年七年级上学期半期(期中)测试数学试卷(含答案)

2021--2022 学年七年级(上) 期中考试数学试卷(B 卷)(全卷共四大题,满分 150 分,考试时间 120 分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每小题的下面都给出了A 、B 、C 、D 四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上正确答案的番号涂黑.1. 2的相反数( ) A.12B. 12-C. 2D. −22. 下列四个数中,不是有理数的数是( ) A. 0B. 3.14C. πD. -23. 下列计算正确的是( ) A. 3a −2a =1 B. 224358a a a =+ C. 3mn −2nm =mnD. 2222x y xy xy -=-4. 方程2x −3=7的解是( ) A x =2B. x =−2C. x =4D. x =55. 2335x y π的系数与次数分别为( )A.3,55B.3,65π C.3,55π D. 3,5π6. 已知,,a b c 三个数在数轴上对应的点如图所示,下列结论正确的是( )A. a c <B. b c <C. b a -<D. c b >-7. 下列计算正确的有( ) ①224-=②2(2)24a b a b -+=-+③211()29--=④2021(1)1--= ⑤−[−(−m )]=−m A. 1个B. 2个C. 3个D. 4个8. 在下列式子中变形正确的是( ) A 如果a b =,那么a c b c +=- B. 如果a b =,那么a b 33= C 如果a63=,那么a 2= D. 如果a b c 0-+=,那么a b c =+9. 根据如图所示的程序计算,若输入x 的值是7,则输出y 的值是2-;若输入x 的值是-7,则输出y 的值是( )A 2 B. 5 C. -17 D. 1710. 孔明灯幼儿园的老师给小朋友们分苹果,如果每人分3个则剩1个,如果每人分4个则差2个,问有多少苹果?设有x 个苹果,则可列方程为( ) A. 3142x x +=- B.1234x x +-=C.1234x x -+= D. 2134x x +-= 11. 下图是一组有规律的图案,它们由边长相同的小正方形组成,其中部分小正方形被涂黑,依此规律,第2021个图案中被涂黑的小正方形个数为( )A. 10105B. 10102C. 8084D. 808512. 若3<x <6,则化简|6-x |+|3-x |的结果为( ) A. 9-2xB. 3C. 2x -9D. −3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接写在答题卡中对应的横线上.13. 在脱贫决战之际,2020年11月18日中宣部授予毛相林“时代楷模”称号.在毛相林的带领下,下庄村整村脱贫,村民人均收入达12600元,数据12600用科学记数法表示为__________.14. 比较大小(填“>”或“<”): (1)|−8|____+(−8) (2)13-____25-15. 若|a |=2,|b |=4,且a <b ,则a +b 的值为______.16. 对有理数a 、b 定义一种新运算∆,规定a ∆b =ab −2(a +b ),则(−6)∆3=______. 17. 当k =_____时,多项式2213383x kxy y xy ----中不含xy 项. 18. 1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m 最少经过6步运算可得到1,则m 的值为__.三、解答题:(本大题5个小题,共52分)19. 将下列各数在数轴上表示出来,并用“>”将它们连接起来.(温馨提示:请用铅笔、直尺画图哦)()()101213302 1.512⎛⎫+------- ⎪⎝⎭,,,,, 20. 计算(1)2239715-+- (2)33(4)()44⨯-÷- (3)124()(63)9721-+⨯-(4)2212(3)|4|(3)()2-+-⨯---+- 21. 化简(1)5ab −3ab −2ba(2)22(75)(49)x y xy x y xy ---22. 先化简,再求值:221128(4)22a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦,其中21()|1|02a b -++=23. 解方程:(1)()432040x x --+= (2)211236x x +--=四、解答题:(本大题共4个小题,共26分.第24题、25题各10分,第26题6分)24. 当m 为何值时,关于x 的方程5m+3x=1+x 的解比关于x 的方程2x+m=3m 的解大2? 25. 阅读下列材料:定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n 倍(n 为正整数),我们就说这个自然数是一个“n 喜数”. 例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n 喜数”,因为25≠n (2+5). (1)判断44和72是否是“n 喜数”?请说明理由; (2)请求出所有的“7喜数”.26. 数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动. (1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由.答案1-12 DCCDC CBBDC DB 13. 41.2610⨯ 14. ①. > ②. > 15. 2或6##6或2 16. -12 17. ﹣19. 18. 10或6419. 解:()()10121133332 1.5 1.512241⎛⎫+-=---=--=-⎭=⎝=- -⎪,,,,,将各数在数轴上表示出来,如下图:根据数轴得:()()101213 1.510232⎛⎫-->->-->-+-> ⎝>⎪⎭.20. 【小问1详解】解:2239715=17715=25-+--+--; 【小问2详解】 解:()334(4)()=3=4443⎛⎫⨯-÷--⨯- ⎪⎝⎭; 【小问3详解】 解:124124()(63)=(63)(63)(63)=71812=197219721-+⨯-⨯--⨯-+⨯--+--; 【小问4详解】解:221112(3)|4|(3)()=4129=25222-+-⨯---+------. 21. 【小问1详解】 解:5ab −3ab −2ba=(5-3-2)ab =0;【小问2详解】解:22(75)(49)x y xy x y xy ---227549x y xy x y xy =--+ 234x y xy =+ .22. 解:221128(4)22a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦=221128222a ab ab a ab ⎛⎫-+-- ⎪⎝⎭ =221128222a ab ab a ab --+- =249a ab -,由21()|1|02a b -++=, 可得a -12=0,b +1=0, 解得:a =12,b =-1,则原式=()21149122⎛⎫⨯-⨯⨯- ⎪⎝⎭ 112=. 23. (1)解:460340x x -++=756x = 8x =(2)()()221112x x +--=42112x x +-+= 39x = 3x =24. 解:解方程5m+3x=1+x 得:x=,解2x+m=3m 得:x=m , 根据题意得:﹣2=m ,解得:m=﹣. 25. 【小问1详解】44不是“n 喜数”,因为44≠n (4+4), 72是一个“8喜数”,因为72=8×(7+2); 【小问2详解】设存在“7喜数”, 设它的个位数字a 和十位数字b ,(a 、b 为1到9的自然数), 由定义可知:10b +a =7(a +b ), 化简得b =2a ,∵a 、b 为1到9的自然数,∴a =1,b =2;a =2,b =4;a =3,b =6;a =4,b =8,四种情况, ∴“7喜数”有4个:21、42、63、84. 26. (1)由题知:C :-53510+⨯= , 即C 点表示的数为10;(2)设B 表示的数为x ,则B 到A 的距离为x 5+ ,点B 在点A 的右边, 故x 55x +=+ 由题得: 5513132x x ++-=++, 即15x =(3)由(2)得知,AB 距离为20,丙甲相遇需要4秒,丙乙相遇需要5秒 ①当04t <<时,即丙未与甲、乙任意一点相遇前,丙乙的距离为204t -, 丙甲的距离为205t -,得()2042205t t -=-即1043t =< 成立 ②当45t <<时,即丙与甲相遇后,且丙未与乙相遇前, 丙乙距离为204t -,丙甲的距离为520t -,得()2042520t t -=- 即307t =, 30457t <=<成立③当5t >时,即丙与甲、乙相遇以后,丙乙的距离为420t -, 丙甲的距离为520t -,得()4202520t t -=- 即1053t =< 不成立 综上所述:103t = 或307t =。

七年级上数学半期测试卷

七年级上数学半期测试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3/4B. -2C. √2D. 0.252. 下列各数中,最大的是()A. -3B. -2.1C. 0D. -1.53. 下列各式中,正确的是()A. 5 + (-3) = 2B. (-5) × (-3) = 15C. 2 × (-3) = -6D. (-2) ×3 = 64. 下列各式中,绝对值最小的是()A. |-3|B. |3|C. |-3.5|D. |2.5|5. 下列各数中,是偶数的是()A. 3B. 4C. -5D. -26. 下列各数中,是质数的是()A. 4B. 6C. 8D. 117. 下列各数中,是奇数的是()A. 2B. 3C. 5D. 88. 下列各数中,不是正数的是()A. 0B. 1C. -1D. 29. 下列各数中,是正整数的是()A. 0B. 1C. -1D. -210. 下列各数中,是负数的是()A. 0B. 1C. -1D. 2二、填空题(每题3分,共30分)11. 5 - (-2) = ______12. (-3) × (-4) = ______13. |-5| + |3| = ______14. 3 × 4 - 2 × 3 = ______15. 2 + (-3) + 5 = ______16. (-2) ÷ (-4) = ______17. 0.5 × (-2) = ______18. 4 × (-3) + 2 = ______19. (-5) + (-3) = ______20. 3 × 0 = ______三、解答题(每题10分,共40分)21. (1)计算:-3 + 5 - 2(2)化简:-2 × (3 - 4)22. (1)判断下列各数是有理数还是无理数:√9,-2/5,0.1010010001……(2)比较下列各数的大小:-2,-1/2,0,1/323. (1)计算下列各数的乘方:(-2)^3,(3/4)^2(2)计算下列各数的混合运算:(-5 + 3)× 2 - 4四、应用题(每题10分,共20分)24. 小明买了3本书,每本书的价格是10元。

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一至第四章。

5.难度系数:0.75。

一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。

人教版七年级上册数学《期中测试题》附答案解析

人教版七年级上册数学《期中测试题》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小有理数是( ) A. -112B. 0C. 1D. -22.下列关于单项式 235xy -的说法中,正确的是( ) A. 系数是25-,次数是2 B. 系数是35,次数是2 C. 系数是一3,次数是3 D. 系数是35,次数是33.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5B. 1.5C. 2.5D. 3.54.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( ) A. 847.2410⨯ B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3B. 6C. 8D. 47.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7B. 5C. 1D.9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 810.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C 为( )A. 2225x y z --B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( ) A. 比进货价便宜了0.52a 元 B. 比进货价高了0.2a 元 C. 比进货价高了08a 元 D. 与进货价相同13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为( )A.B. 12-C.12D. 114.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是(). A. 200-60xB. 160-15xC. 200-15xD. 140-15x16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值. (1)()41-=______; (2)()()32--=______.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题. (1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?22.已知a,b,c在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c+a______0,c-b______0,;---+-.(2)化简a c a b b c23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的−3.5−2−1.50 1 2.5差值(单位:千克)筐数 2 4 2 1 3 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.答案与解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小的有理数是( )A. -112B. 0C. 1D. -2【答案】D【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5 B. 1.5C. 2.5D. 3.5【答案】D 【解析】 【分析】直接利用倒数的定义结合绝对值的性质得出答案. 【详解】解:∵b 的倒数等于-23, ∴b =﹣32, ∵a =|2﹣b|, ∴a =|2+32|=72=3.5. 故选D .【点睛】此题主要考查了倒数和绝对值,正确得出b 的值是解题关键.4.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.【答案】C 【解析】 【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a 距离原点比b 距离原点远,进而可得答案. 【详解】∵|a |=a ,|b |=-b , ∴a 0,b 0, ∵|a |>|b |,∴表示数a 的点到原点的距离比b 到原点的距离大, 故选:C.【点睛】本题考查了绝对值的应用及数轴的有关知识,熟练掌握利用数轴上的位置判断正负是解题的关键. 5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( )A. 847.2410⨯B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯【答案】B 【解析】 【分析】根据科学记数法的表示方法即可得出答案. 【详解】解:47.24亿=94.72410⨯, 故答案为:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是熟知科学记数法的表示方法. 6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3 B. 6C. 8D. 4【答案】D 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得a 的指数要相等,b 的指数也要相等,即可得到m ,n 的值,代入计算可得. 【详解】解:单项式m 42a b +与2n1a b 2的和是单项式, 单项式m 42a b +与2n1a b 2是同类项, 则m 42+=,n 2=, 解得m 2=-,n 2=,n 2m (2)4∴=-=,故选D .【点睛】本题考查了同类项定义,关键是把握两点:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭【分析】根据有理数的混合运算的运算法则一一判断即可.【详解】A. 72571017--⨯=--=-,故本选项错误; B. 54444833455525÷⨯=⨯⨯=,故本选项错误; C. ()331312726---=-+=,故本选项错误; D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭,故本选项正确. 故选D.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7 B. 5C. 1D.【答案】A 【解析】 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】3a b -=,2c d += 原式=223a d b c b d --+++ =22a b c d -++ =2()a b c d -++ =3+22 =7 故选A.【点睛】本题考查了代数式求值,将原式整理为与-a b 和+c d 有关的式子是解题的关键. 9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 8【分析】根据有理数的加法,原有人数,上车为正,下车为负,即可得答案. 【详解】10+2+(-3)+8+(-5)+1-6=7 故选C.【点睛】本题考查了正数和负数,有理数的加法运算是解题的关键. 10.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭是正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 【答案】D 【解析】 【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0. 【详解】A 、(a+13)2是非负数,错误; B 、-a 2+13不一定是负数,可能是0,也可能是正数,错误; C 、-(a-13)2是非正数,错误;D 、a 2+13是正数,正确;故选D .【点睛】此题考查非负数的性质,关键要注意全面考虑a 的取值.11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C ( )A. 2225x y z -- B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 【答案】B 【解析】由于A+B+C=0,则C=-A-B,代入A 和B 的多项式即可求得C .解:由于多项式A=x 2+2y 2-z 2,B=-4x 2+3y 2+2z 2且A+B+C=0,则C=-A-B=-(x 2+2y 2-z 2)-(-4x 2+3y 2+2z 2)=-x 2-2y 2+z 2+4x 2-3y 2-2z 2=3x 2-5y 2-z 2.故答案选B .12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a 元B. 比进货价高了0.2a 元C. 比进货价高了0.8a 元D. 与进货价相同【答案】B【解析】【分析】直接利用标价以及打折之间的关系得出服装的实际价格,再和进货价相减即可.【详解】由题意得,这件服装的实际价格是:(1200%)40%a +⨯=1.2a又因为进货价为a这件服装的实际价格比进货价高了0.2a 元故选B.【点睛】本题考查了列代数式,根据题意得出关系式是解题的关键.13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为() A. B. 12- C. 12 D. 1【答案】B【解析】【分析】根据非负性即可解得x ,y 的值,根据整式的混合运算法则化简,代入即可. 【详解】21202x y ⎛⎫-++= ⎪⎝⎭且20-≥x ,2102y ⎛⎫+≥ ⎪⎝⎭.20x -=,102y += 12,2x y ==-. ()()222233143x y xy x y xy +----=2222333343x y xy x y xy +-+--=2xy - =2122⎛⎫-⨯- ⎪⎝⎭=12- 故选B.【点睛】本题考查了绝对值的非负性及整式的化简求值,熟练掌握运算法则是解题的关键.14.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则abca b c ++ 的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个 【答案】D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则abca b c ++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是().A. 200-60xB. 160-15xC. 200-15xD. 140-15x【答案】C【解析】【分析】 先由“学校租用45座的客车x 辆,则余下20人无座位”表示出师生的总人数,再根据“租用60座的客车则可少租用2辆,但只有一辆还没坐满”这个条件求出最后一辆60座客车的人数.【详解】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生总人数为:4520x +,又∵租用60座的客车则可少租用2辆,但只有一辆还没坐满,∴最后一辆60座客车的人数为:()452060320015x x x +--=-.所以答案为C 选项.【点睛】本题主要考查根据实际情况列出代数式,仔细读题,读懂题中各个量之间的联系是解题关键. 16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 【答案】C【解析】【分析】根据有理数的乘方的定义解答即可. 【详解】∵第一次剪去绳子的23,还剩13; 第二次剪去剩下绳子的23,还剩13-23×13=13×(1-23)=(13)2, …… ∴第十次剪去剩下绳子的23后,剩下绳子的长度为(13)10, 故选C .【点睛】本题考查了有理数的乘方,理解乘方的意义是解题的关键. 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.【答案】8.20【解析】【分析】把千分位上的数字3进行四舍五入即可.【详解】8.203828.20故答案为8.20.【点睛】本题考查了近似数和有效数字,熟练掌握四舍五入是解题的关键.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值.(1)()41-=______;(2)()()32--=______. 【答案】 (1). 17 (2). 1【解析】【分析】(1)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值; (2)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值. 【详解】(1)()41-=24(1)17--=. (2)()()32--=23(2)1-+-=.故答案为:17,1.【点睛】本题考查了新定义下的实数运算,根据所给式子分情况代入是解题的关键.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.【答案】 (1). 22 (2). (3n +1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形, 第(3)个图案有3×3+1=10个三角形, …∴第n 个图案有(3n +1)个三角形.当n =7时,3n +1=3×7+1=22,故答案为:22,(3n +1).【点睛】本题考查了图形的规律,根据数据找到规律是解题的关键.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.计算下列各小题.(1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 【答案】(1)192;(2)169. 【解析】【分析】 (1)先计算乘方,再算乘除,最后计算加减.(2)先计算乘方,再算乘除,最后计算加减.【详解】(1)()2213602210--÷⨯+-; 119602410=-⨯⨯+ 3922=-+ 192=(2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭ 4316525=-+⨯+⨯448125=-++169=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?【答案】(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.已知a ,b ,c 在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c +a______0,c -b______0,;(2)化简a c a b b c ---+-.【答案】(1) >,<,<;(2) 2b−2c.【解析】【分析】先根据a、b、c三点在数轴上的位置判断出abc的符号及其绝对值的大小,再比较大小和化简即可.【详解】(1) ∵c<b<0<a,∴abc>0,c+a<0,c−b<0(2) ∵c<b<0<aa-c>0,a-b>0,b-c>0|a−c|−|a−b|+|b−c|=a−c−a+b+b−c=2b−2c.故答案为:>,<,<;2b−2c.【点睛】本题考查了绝对值的化简,根据数轴判断式子的符号是解题的关键.23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.【答案】(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.【答案】(1)最大是20,运算式是(-5) (-4);(2)最小是-2.5,运算式是(-5) 2;(3)()()456224-⨯-+-=,()()425624----⨯=⎡⎤⎣⎦(答案不唯一)【解析】【分析】(1)根据题意和给出的五张卡片可以解答本题;(2)根据题意和给出的五张卡片可以解答本题;(3)根据题意可以写出相应的算式,本题答案不唯一.【详解】(1)由题意得,抽取2张卡片,乘积最大是20,运算式是(-5) (-4)(2)由题意得,抽取2张卡片,卡片上数字相除的商最小是-2.5,运算式是(-5) 2(3)由题意得,()()456224-⨯-+-=()()425624----⨯=⎡⎤⎣⎦【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下: 与标准质量的差值(单位:千克)−3.5 −2 −1.5 0 1 2.5筐数2 4 2 13 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【答案】(1)6;(2)与标准重量比较,20筐白菜总计超过5千克;(3)出售这20筐白菜可卖549元.【解析】【分析】(1)求出最重的一筐的重量和最轻的一筐的重量,相减即可得出答案;(2)将20筐白菜的重量相加即可得出答案;(3)将总重量乘以价格即可得出答案.详解】解:(1)根据题意可得最重的一筐重:15+2.5=17.5(千克)最轻的一筐重:15-3.5=11.5(千克)∴最重的一筐比最轻的一筐重:17.5-11.5=6(千克);(2)2×(-3.5)+4×(-2)+2×(-1.5)+1×0+3×1+8×2.5=5答:与标准重量比较,20筐白菜总计超过5千克;(3)1.8×(15×20+5)=549(元)答:出售这20筐白菜可卖549元.【点睛】本题主要考查了正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性.26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示的数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.【答案】(1) −32;(2) t=3;(3)283;(4) |m−n|.【解析】分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是32,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P 的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=p时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【详解】(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是32,符号是“−”,故答案是:−3 2 .(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t=3(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是−1.6.此时点P到点A距离是2.6个单位长度,所以p=2.6÷0.3=2 83.故答案是2 83.(4)根据数轴上两点间的距离公式点M和N的距离等于|m−n|,故答案是|m−n|.【点睛】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.。

江西省南昌市第三中学2024-2025学年上学期七年级期中测试数学试卷

江西省南昌市第三中学2024-2025学年上学期七年级期中测试数学试卷

江西省南昌市第三中学2024-2025学年上学期七年级期中测试数学试卷一、单选题1.有理数:2-,() 5--,0,0.4,中,最小的数是()A .2-B .()5--C .0D .0.2.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是()A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位3.若2(21)2|3|0m n ++-=,则代数式n m 的值是()A .16-B .18-C .14D .84.2123m x y --与2222x y -次数相同,m 为()A .1B .2C .3D .45.如图,则a bab+的值是()A .正数B .负数C .0D .正数或06.已知()22132P x y =-+,()221223Q x y =-+,P 与Q 大小关系()A .P Q>B .P Q<C .P Q=D .无法确定二、填空题7.134的倒数是.8.单项式231π3x y -的系数是.9.中国的陆地面积约为96000002km ,用科学记数法表示这个数字2km .10.用代数式表示a 的相反数与b 的一半的差.11.如果25x y -=,那么124x y -+=.12.有三个条件:①只含有字母a ,b ,c ;②系数为2-;③次数为4;能满足这三个条件的所有单项式为.三、解答题13.计算(1)()()23121610+----(2)3751412660⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭14.计算(1)()323122544-+-´--¸(2)()2231253x x x x---+-15.先化简,再求值:()()()3323232x xy x y x xy x -----+,其中155x y xy -==,16.有一串代数式:23419202341920x x x x x x --- ,,,,,,,求:(1)写出第2009个代数式.(2)写出第n 个、第1n +个代数式.17.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是3,y 是最大的负整数.求202426()x cd a b y -++-的值.18.如图所示,用三种大小不同的正方形和一个长方形(阴影部分)拼成长方形ABCD .其中有4个相同小正方形的边长为a ,长方形的长DF 为b .(1)看图填空:AB =,DE =;(用含a ,b 的代数式表示)(2)当1a =,3b =时,求长方形ABCD 的周长.19.已知关于x 的多项式A ,B ,其中221A mx x =+-,22B x nx =-+(m ,n 为有理数).(1)化简2B A -;(2)若2B A -的结果不含x 项和2x 项,求m n -的值.20.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A 到B 记为:()1,4A B →++,从B 到A 记为:()1,4B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(,),B C →(,),C →()1,2+-;(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为()2,2++,()2,1+-,()2,3-+,()1,2--,请在图中标出P 的位置;(3)若这只甲虫的行走路线为A B C D →→→,请计算该甲虫走过的路程.21.点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为A ,在数轴上A 、B 两点之间的距离||AB b a =-.利用数形结合思想回答下列问题:(1)1-和2之间的距离为__________;(2)若x 与2的距离为3,则x 的值为__________;(3)若()213x x -+--=成立,则满足条件的所有整数x 为__________;(4)由以上探索猜想,对于任何有理数x ,|2||4||2|x x x -+-++的最小值为__________.22.计算:25×11=275,13×11=143,48×11=528,74×11=814,观察上面的算式,我们发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.仿照上面的速算方法,(1)填空:①54×11=________;②87×11=___________;③95×(﹣11)=_________.(2)已知一个两位数,十位上的数字是a ,个位上的数字是b ,这个两位数乘11.①若a+b <10,计算结果的百位、十位、个位上的数字分别是______、_______、_____,请通过计算加以验证.②若a+b≥10,请直接写出计算结果中百位上的数字.23.【数学阅读】从左边第一个格子开始向右数,每个格子中都填入一个数,使得其中任意三个相邻格子中所填数之和相等.2abx1-3……(1)可知x =;a =;b =;(2)判断第1000个格子中的数是多少,并给出理由.(3)前n 个格子中的数之和能否为2002?若能,求出n 的值,若不能,说明理由.(4)前三个格子中任取两个数,差的绝对值累加起来,得到累差值22a b a b -+-+-=;若取前8项,则前8项累差值为多少?(给出必要的计算过程)。

七年级上册数学半期考试卷【含答案】

七年级上册数学半期考试卷【含答案】

七年级上册数学半期考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 37C. 40D. 272. 一个等腰三角形的底边长为8cm,腰长为5cm,那么这个三角形的周长是多少?A. 18cmB. 20cmC. 22cmD. 24cm3. 有以下数列:2, 4, 8, 16, ,第n项是多少?A. 2^nB. 2nC. n^2D. 2n+24. 下列哪个比例尺表示的图形最大?A. 1:10B. 1:100C. 1:1000D. 1:100005. 一个正方形的对角线长为10cm,那么这个正方形的面积是多少?A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²二、判断题(每题1分,共5分)1. 任何偶数都可以表示为两个奇数的和。

()2. 在同一平面内,两条直线的位置关系只有平行和相交两种。

()3. 一个等边三角形的三个角都是60度。

()4. 两个相同的数相乘,结果一定是正数。

()5. 所有的矩形都是正方形。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个等腰三角形的顶角是______度。

3. 1千米等于______米。

4. 两个数的和是15,它们的差是3,这两个数分别是______和______。

5. 一个正方形的周长是______,它的面积是______。

四、简答题(每题2分,共10分)1. 解释什么是质数和合数。

2. 如何计算一个三角形的面积?3. 什么是比例尺?举例说明。

4. 解释等边三角形和等腰三角形的区别。

5. 如何判断一个数是偶数还是奇数?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的周长和面积。

2. 一个等腰三角形的底边长是6cm,高是4cm,求这个三角形的面积。

3. 一个数加上30后是50,这个数是多少?4. 一个正方形的对角线长是8cm,求这个正方形的边长。

人教版数学七年级上册《期中检测试卷》(附答案解析)

人教版数学七年级上册《期中检测试卷》(附答案解析)

人教版数学七年级上学期期中测试卷一、选择题:1.14-的相反数是()A.14- B.14C. -4D. 42.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G用户总数达到613000000.将613000000用科学记数法计数表示为()A. 661310⨯ B. 761.310⨯ C. 86.1310⨯ D. 100.61310⨯3.下列方程中,解为x=4的方程是()A. x﹣1=4 B. 4x=1 C. 4x﹣1=3x+3 D. 1(1)5x-=14.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=05.如图所示,阴影部分的面积是()A.112xyB. 132xyC. 6xyD. xy6.若(a+2)2+|b﹣1|=0,则(a+b)2019的值是()A. 0 B. 1 C. ﹣1 D. 2016 7.在a﹣(2b﹣3c)=﹣□中的□内应填的代数式为()A. ﹣a﹣2b+3c B. a﹣2b+3c C. ﹣a+2b﹣3c D. a+2b﹣3c 8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.11.单项式223x y -的系数是_______,次数是__________. 12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.13.3﹣|x ﹣1|的最大值是_____.14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.15.如果x =﹣2是关于x 的方程3x +5=14x ﹣m 的解,则m ﹣1m =_____. 16.当x =﹣1时,代数式ax 3+bx +1的值为﹣2014,则当x =1时,代数式ax 3+bx +1的值为_____.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n 个算式的结果为_____(用含n 的代数式表示,其中n 是正整数).三.计算题18.﹣14×(+3)÷(﹣12)3 19.(49﹣1112+2﹣56)÷(﹣136). 20.[-12-(1-0.5×13)]×[-10+(-3)2] 四、解方程21.3x +7=32﹣2x .22.()()371323x x x --=-+五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程;(2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.6a b c 2- 1 ···()1可求得c = ,第2016个格子中的数为 ;()2判断:前m 个格子中所填整数之和是否可能为2016?若能,求出m 的值,若不可能,请说明理由; ()3如果x ,y 为前3格子中的任意两个数,那么所有x y 的和可以通过计算6666a a a b b a b b -+-+-+-+-+-得到,若x ,y 为前20格子中的任意两个数,则所有x y 的的和为29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________; ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.答案与解析一、选择题: 1.14-的相反数是( ) A. 14- B. 14 C. -4 D. 4【答案】B【解析】【详解】略 2.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G 用户总数达到613000000.将613000000用科学记数法计数表示为( )A. 661310⨯B. 761.310⨯C. 86.1310⨯D. 100.61310⨯ 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:613 000 000=86.1310⨯.故答案为C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列方程中,解为x =4的方程是( )A. x ﹣1=4B. 4x =1C. 4x ﹣1=3x +3D. 1(1)5x -=1 【答案】C【解析】【分析】把x=4代入方程的左右两边,判断左边和右边是否相等即可判断.【详解】解:A 、当x=4时,左边=4-1=3≠右边,故选项不符合题意;B、当x=4时,左边=16≠右边,故选项不符合题意;C、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意.故选C.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.4.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=0【答案】B【解析】【分析】根据合并同类项得到4m-m=3m,2a3-3a3=-a3,xy-2xy=-xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【详解】解:A、4m-m=3m,所以A选项错误;B、xy-2xy=-xy,所以B选项正确;C、2a3-3a3=-a3,所以C选项错误;D、a2b与ab2不能合并,所以D选项错误.故选B.【点睛】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.5.如图所示,阴影部分的面积是()A. 112xy B.132xy C. 6xy D. xy【答案】A【解析】【分析】阴影部分面积为长3x,宽2y的长方形面积减去长0.5x,宽y的长方形面积,然后合并同类项进行计算求解.【详解】解:由题意可得:阴影部分面积为111320.5(2)622x y x y y xy xy xy --=-= 故选:A 【点睛】本题考查列代数式及合并同类项的计算,根据图形找到图形面积之间的等量关系是解题关键. 6.若(a +2)2+|b ﹣1|=0,则(a +b )2019的值是( )A. 0B. 1C. ﹣1D. 2016 【答案】C【解析】【分析】直接利用互为相反数的定义结合绝对值的性质得出a ,b 的值,进而得出答案.【详解】解:∵|a+2|与| b-1|互相反数, ∴a+2=0,b-1=0,解得:a=-2,b=1,∴()2019a b +=-1.故选C .【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.7.在a ﹣(2b ﹣3c )=﹣□中的□内应填的代数式为( )A. ﹣a ﹣2b +3cB. a ﹣2b +3cC. ﹣a +2b ﹣3cD. a +2b ﹣3c 【答案】C【解析】【分析】先去括号,然后再添括号即可.【详解】解:a-(2b-3c )=a-2b+3c=-(-a+2b-3c ),故选C.【点睛】本题考查了去括号与添括号的知识,解答本题的关键是熟记去括号及添括号的法则.8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 【答案】A【解析】【分析】 用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16【答案】A【解析】【详解】解:a :设每堆牌的数量都是x (x >10);b :第1堆x+4,第2堆x-4,第3堆x ;c :第1堆x+4+8=x+12,第2堆x-4,第3堆x-8;d :第1堆x+12-(x-4)=16,第2堆x-4,第3堆x-8+(x-4)=2x-12,e :第1堆16+5=21,第2堆x-4-5=x-9,第3堆2x-12.如果x-9=5,那么x=14,如果x-9=8,那么x=17.故选A .二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.【答案】3232232m n m n mn -++-【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】解:把多项式2323232m n mn m n +--按字母m 的降幂排列是3232232m n m n mn -++-. 故答案为3232232m n m n mn -++-【点睛】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.此题还要注意分清按x 还是y 的降幂或升幂排列.11.单项式223x y -的系数是_______,次数是__________. 【答案】 (1). 23- (2). 3 【解析】【分析】根据单项式的定义以及性质直接写出系数和次数即可. 【详解】单项式223x y -的系数是23-,次数是3 故答案为:23-,3. 【点睛】本题考查了单项式的问题,掌握单项式的定义以及性质是解题的关键.12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.【答案】0.010【解析】【分析】把万分位上的数字1进行四舍五入即可.【详解】解:0.01016(精确到千分位)取近似数是0.010.故答案为0.010.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.3﹣|x ﹣1|的最大值是_____.【答案】3【解析】【分析】利用表示数轴上的3减去x 到1的距离,求得它的最大值即可.【详解】解:∵|x-1|表示数轴上的 x 到1的距离,要使31x --最大,就要让|x-1|最小,当x=1时,31x --取得最大值,最大值等于3,故答案为3.【点睛】此题主要考查了此种类型的最值的求法,对于此种最值可以分析其几何意义,然后再求得最值. 14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.【答案】4【解析】【分析】把a-b=2代入多项式3a-3b-2,求出算式的值是多少即可.【详解】解:∵a-b=2,∴3a-3b-2=3(a-b )-2=3×2-2=6-2=4故答案 4.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.如果x=﹣2是关于x的方程3x+5=14x﹣m的解,则m﹣1m=_____.【答案】3 2 -【解析】【分析】把x=-2代入方程即可得到一个关于m的方程,从而求解.【详解】解:把x=-2代入方程,得:-6+5=-12-m,解得:m=12,则m-1m=12-2=32-.故答案是:3 2 -.【点睛】本题考查了方程的解的定义,方程的解就是能使方程的左右两边相等的未知数的值.16.当x=﹣1时,代数式ax3+bx+1的值为﹣2014,则当x=1时,代数式ax3+bx+1的值为_____.【答案】2016【解析】分析】把x=1代入求出a+b的值,再把x=-1代入求解即可.【详解】解:x=-1时,-a-b+1=-2014,所以,a+b=2015,x=1时,ax3+bx+1=a+b+1=2015+1=2016.故答案为2016.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n个算式的结果为_____(用含n的代数式表示,其中n是正整数).【答案】 (1). -121 (2). 12(1)(21)n n +--【解析】【分析】每一个算式的第一个数的绝对值与行数相同,且偶数行每一个数字都是负数,数的个数是从1开始连续的奇数,所得的结果的绝对值是数的个数的平方,且偶数行的数字和是负数,由此得出算式的结果即可.【详解】解:第6个算式的结果为-(2×6-1)2=-121; 第n 个算式的结果为(-1)n+1(2n-1)2.故答案为-121;(-1)n+1(2n-1)2.【点睛】此题考查数字的变化规律,找出数字运算之间的规律,利用规律,解决问题.三.计算题18.﹣14×(+3)÷(﹣12)3 【答案】6【解析】【分析】按照有理数混合运算的顺序,先乘方,再乘除,后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化.【详解】解:()311 342⎛⎫-⨯+÷- ⎪⎝⎭=11-+3-48⨯÷()() =1384⨯⨯ =6 【点睛】此题主要考查了有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.19.(49﹣1112+2﹣56)÷(﹣136). 【答案】-25【解析】【分析】利用乘法分配律简算. 【详解】解41151:2912636⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ =()41152369126⎛⎫-+-⨯-⎪⎝⎭ =()()()()41153636236?369126⨯--⨯-+⨯--⨯- =-16+33-72+30=-25【点睛】此题考查有理数的混合运算,抓住运算顺序,根据数字特点,灵活利用运算定律简算.20.[-12-(1-0.5×13)]×[-10+(-3)2] 【答案】116【解析】【分析】按有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:][()221110.51033⎡⎤⎛⎫---⨯⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1-1-1-0.5-10+93⎡⎤⨯⨯⎢⎥⎣⎦() =1-1-1--16⎡⎤⨯⎢⎥⎣⎦()() =5-1-(1)6⎡⎤⨯-⎢⎥⎣⎦=11(1)6-⨯- =116【点睛】本题考查了有理数的混合运算,注意运算顺序和符号;本题使用的运算技巧是:①转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.②凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.③巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.四、解方程21.3x +7=32﹣2x .【答案】5x =【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】解:方程移项合并得:5x=25,解得:x=5.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.()()371323x x x --=-+【答案】5x =【解析】【分析】先去括号,再移项和合并同类项,即可求解.【详解】()()371323x x x --=-+377326x x x -+=--102x =5x =.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 【答案】80.【解析】试题分析:先去括号,再合并同类项,最后把字母的值代入计算即可.试题解析:222(52)2(3),a a a a a +---2225226,a a a a a =+--+244,a a =+,∵5a =-,∴原式24(5)4(5),=⨯-+⨯- 42520,=⨯-10020,=-80=.24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 【答案】2671a a +-;-3【解析】【分析】将A 与B 代入3A-2B 中,去括号合并得到最简结果,将a 的值代入计算即可求出值.【详解】解:∵A=2a 2-a ,B=-5a+1,∴3A-2B+1=3(2a 2-a )-2(-5a+1)+1=6a 2-3a+10a-2+1=6a 2+7a-1,当a=12-时,原式=32-72-1=-2-1=-3. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.【答案】6【解析】解:原式222926735x xy xy x y =++--++ 222311x xy y =+++当22235x xy y ++=-时原式511=-+6=六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.【答案】-4.【解析】【分析】首先根据数a ,b ,c 在数轴上的位置,可得b<a<0<c<2,据此判断出a+b 、b-2、c-a 、2-c 的正负;然后去掉绝对值符号,根据整式的加减运算方法,计算即可求解.【详解】解:根据图示,可得02b a c <<<<,0a b ∴+<,20b -<,0c a ->,20c ->,22a b b c a c +------()()()()22a b b c a c =-++-----22a b b c a c =--+--+-+4=-.【点睛】熟练掌握绝对值化简和整式加减运算是解决本题的关键,本题难度一般,但是要注意先判断各绝对值中式子的正负性再化简计算.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程; (2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.【答案】(1)是;见解析;(2)265. 【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【详解】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)∵关于x的一元一次方程6x=m+2是差解方程,∴m+2﹣6=26m+,解得:m=265.【点睛】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.()1可求得c=,第2016个格子中的数为;()2判断:前m个格子中所填整数之和是否可能为2016?若能,求出m的值,若不可能,请说明理由; ()3如果x,y为前3格子中的任意两个数,那么所有x y的和可以通过计算6666a a ab b a b b-+-+-+-+-+-得到,若x,y为前20格子中的任意两个数,则所有x y 的的和为【答案】(1)6,1 (2)不可能,证明见解析(3)1456【解析】【分析】(1)根据题意,归纳总结得到所求数字即可;(2)可先计算出这三个数的和,再照规律计算;(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)由题意得∵6a b a b c ++=++∴6c =∵2a b c b c ++=+-∴2a =-∵其中第9个格子中的数为1,按规律正好是b 的值,∴1b =∴格子中的数为6,2,1-依次循环∵20163672÷=∴第2016个格子中的数为1故答案为:6,1;(2)不可能,由于格子中的数为6,2,1-依次循环,前三个数的和是5,而201654031÷=,也就是说前40331209⨯=位之和是40352015⨯=,而第1210位是6,所以前m 个格子中所填整数之和为2016是不可能的;(3)由于是三个数重复出现,前20个格子中,这三个数中,6和-2出现了7次,1出现了6次,故代入式子可得()()()6276167267216716712761456+⨯+-⨯⨯+--⨯+--⨯⨯+-⨯++⨯⨯=故答案为:1456.【点睛】本题考查了表格类的规律题,掌握表格中的规律、绝对值的计算方法是解题的关键.29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________;ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.【答案】(1). 4(2). 6或2(3). 8 3【解析】【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意. 【详解】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2,当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4-2=6,∴A′表示的数为6,故答案为6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=43,∴x=4-43=83,同法可得:右移时,x=83.故答案为83;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,由题意可得方程:4-12x-13x=0,解得:x=245,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.【点睛】此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。

5.难度系数:0.72。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。

河南省信阳市2024-2025学年七年级上学期数学期中测试卷

河南省信阳市2024-2025学年七年级上学期数学期中测试卷

河南省信阳市2024-2025学年七年级上学期数学期中测试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.据省统计局数据,今年上半年,我省2894家规模以上文化及相关产业企业实现营业收入965.68亿元,数据“965.68亿”用科学记数法表示为()A .8965.6810⨯B .89.656810⨯C .109.656810⨯D .110.9656810⨯3.当1x =时,代数式2x -+的值等于()A .1B .-1C .3D .-34.如图,点A 在数轴上表示的数为1,将点A 向左移动4个单位长度得到点B ,则点B 表示的数为()A .−2B .3-C .5-D .55.代数式2315,0,,33,,5x x x x y x y+--++中,整式有()A .3个B .4个C .5个D .6个6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是在计算()A .()()52-+-B .()52-+C .()52+-D .5+27.下列关于单项式223x y -的说法中,正确的是()A .系数是23-,次数是3B .系数是−2,次数是3C .系数是23-,次数是2D .系数是23,次数是38.铁棍山药是河南焦作的著名特产之一,其营养价值丰富.小豫利用网络销售山药,包装后由某快递公司发货,其收费标准:5千克以内收费a 元,超过5千克的部分每千克按3元收费.小豫寄8千克的包裹,需要支付()A .()24a +元B .()15a +元C .()9a +元D .()53a +元9.计算2322223333m n +++++⨯⨯⨯⨯L L 1444444244444431444442444443个个的结果是()A .23m n +B .23n m +C .23+m n D .32m n +10.已知整数1234,,,,a a a a ,满足下列条件:121321,2,3,a a a a a =-=-+=-+ .以此类推,2024a 的值是()A .1013-B .2025-C .1012-D .2024-二、填空题11.用“>”或“<”填空:3-1-.12.请写出一个含字母a 的三次二项式是.13.数轴上表示2的点与表示5-的点之间的距离为.14.如图,将形状、大小完全相同的“·”与线段按照一定规律摆成下列图案,其中第1个图案用了6个“·”,第2个图案用了11个“·”,第3个图案用了16个“·”,第4个图案用了21个“·”……按此规律排列下去,则第n 个图案用的“·”个数是(用含n 的代数式表示).15.定义运算:当a b ≥时,2a b a b ⊗=-;当a b <时,a b a b a b-⊗=+(其中0a b +≠).那么225⊗=(),22⊗-=.三、解答题16.(1)计算:()11112263⎛⎫-+⨯- ⎪⎝⎭.(2)计算:()3232628-+⨯-+-÷.17.已知代数式22a b -和()()a b a b +-,请你按要求解答下列问题.(1)当5,3a b ==时,计算两个代数式的值.(2)当2,6a b =-=时,计算两个代数式的值.(3)观察(1)和(2)中代数式的值,发现代数式22a b -_____()()a b a b +-.(填“>”“<”或“=”)18.某汽车上午8点从甲地出发匀速地行驶到乙地,行驶里程为400千米,汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/时).(1)用含t 的式子表示v ,并说明v 与t 成什么比例关系?(2)若行驶路段全程速度限定为不超过120千米/时,该汽车能否在当天上午11点前到达乙地?请说明理由.19.已知多项式215m x y xy n ++-是关于,x y 的五次三项式,且单项式23n x y 的次数与该多项式的次数相同.(1)求,m n 的值.(2)当1,2x y =-=时,求多项式215m x y xy n ++-的值.20.近几年,全球的新能源汽车发展迅猛,新能源汽车产销量都大幅增加.小明家将汽油车换成了一辆新能源汽车,他连续七天记录了每天行驶的路程(如下表).以20千米为标准,多于20千米的记为“+”,不足20千米的记为“-”,刚好20千米的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程/千米6+8-9-03-14+10+(1)小明家的新能源汽车这七天一共行驶了多少千米?(2)已知原汽油车每行驶100千米需用汽油6升,汽油价8.2元/升,而新能源汽车每行驶100千米耗电量为15千瓦时,电费标准为0.6元/千瓦时,请计算小明家换成新能源汽车后这七天的行驶费用比原汽油车节省多少钱?21.小新同学设计了几张如图所示的写有不同运算的卡片A B C D ,,,,小新给出一个有理数,让他的同桌小丽选择A B C D ,,,的顺序,进行一次运算(每次运算不同卡片只能用一次).例如:小新给出的数是1-,若小丽选择了D C B A →→→的顺序,则计算结果为()()()()2132213226⎡⎤--⨯-+=-⨯-+=⎣⎦.(1)当小新给出的数是5,小丽选择了A C B D →→→的顺序,列出算式并计算结果.(2)当小新给出的数是6-,小丽选择了()()__________C D →→→的顺序,若列式计算的结果刚好为160-,请判断小丽选择的顺序.22.阅读理解有一种整式处理器,能将二次多项式处理成一次多项式,处理的方法是将二次多项式的二次项系数与一次项系数的和(和为非零数)作为一次多项式的一次项系数,将二次多项式的常数项作为一次多项式的常数项.例如:多项式2328A x x =+-,经过处理器可得到多项式()32858B x x =+-=-.若关于x 的二次多项式A 经过处理器得到多项式B ,根据以上方法,解决下列问题:(1)已知多项式2256A x x =-+-,经过处理器得到多项式B =______.(2)若多项式2563A x x =-+经过处理器得到多项式B ax b =+,求2025a b 的值.(3)已知()2625,M x m x m M =-+-++是关于x 的二次多项式,经过处理器得到的一次多项式是7N kx =+,求k 的值.23.综合与实践已知多项式32412621,x y x a -++是该多项式五次项的系数,b 是该多项式四次项的系数,c 是常数项.如图,在数轴上点,,A B C 所对应的数分别是,,a b c ,O 为原点.(1)a =______,b =______,c =______.(2)数轴上有一动点M 从点A 出发,以每秒3个单位长度的速度沿数轴向终点C 运动,运动时间为t 秒.当点M 运动到点B 时,点N 从点O 出发,以每秒3个单位长度的速度沿数轴向点C 运动,当点M 到达终点C 时,点N 的运动也停止.①6t ≥时,点M 表示的数是______,点N 表示的数是______.(用含t 的代数式表示)②当点M 到达终点C 时,求此时点N 在数轴上所表示的数.③若点,M N 所对应的数分别是,m n ,当6t >时,求b m c n -+-的值.。

24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析

24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析

2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版2024七年级上册第1章-第3章。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

山西省晋中市昔阳县多校2024-2025学年上学期期中测试七年级数学试卷

山西省晋中市昔阳县多校2024-2025学年上学期期中测试七年级数学试卷

山西省晋中市昔阳县多校2024-2025学年上学期期中测试七年级数学试卷一、单选题1.2024-的绝对值是()A .2024B .2024-C .12024D .12024-2.下列计算正确的是()A .1133⎛⎫--=⎪⎝⎭B .111333--=C .211-+=D .()5353-=--3.用一个平面去截一个四棱柱,截面的形状不可能是()A .正方形B .长方形C .六边形D .七边形4.下面的立体图形是由哪个平面图形绕轴旋转一周得到的()A .B .C .D .5.如图,数轴上的点P 表示的数可能是()A .112-B .324-C .15-D .114-6.根据国内旅游抽样调查统计结果,2024年上半年,我国国内出游人次27.25亿,同比增长14.3%,数据“27.25亿”用科学记数法表示为()A .82.72510⨯B .92.72510⨯C .102.72510⨯D .112.72510⨯7.如图是由7个完全相同的小正方体堆叠成的几何体,若在标有①、②、③、④的其中一个小正方体上放置一个小正方体,从正面看该几何体的形状图不会发生变化,则该正方体的标号是()A .①B .②C .③D .④8.云冈石窟是一部镌刻在石头上的北魏史书,一条通往盛唐的路.某批发商以每件50元购进文创衬衣100件,预计每件70元售出.在实际销售过程中,他按预售价将x 件衬衣售出后,决定将剩下的衬衣打九折销售,全部售完后,共可以获得的利润是()元A .20xB .71300x +C .51300x +D .()13100x -9.动车作为一种现代化的铁路交通工具,具有运行速度快、运行稳定、乘客运载能力大、节能环保等优点,它的出现为人们的出行带来了极大的便利.某隧道长1000米,一列匀速行驶的动车车身进入隧道用时15秒,完全通过该隧道用时40秒,则这列动车行驶的速度是()A .30m/sB .35m/sC .40m/sD .45m/s10.数学活动课上,同学们用黑白小正方形按下面的规律拼摆:小明、小亮、小强、小颖通过观察图形,找出了拼摆成的第n 个图案中黑小正方形的数量a 、白小正方形的数量b 和n 之间的关系.下面说法正确的是()A .小明:()222a n n =+-B .小亮:()21b n =+C .小强:()()2211a n n =+--D .小颖:2)1b n =-(二、填空题11.计算()21312⨯-+的结果是.12.若代数式35m -与32m -的值互为相反数,则m 的值是.13.用[]x 表示不超过x 的最大整数,比如:[3.02]3,[5.96]6=-=-,计算[10.24][9.62]-+的结果是.14.如图,在一块长为2m a ,宽为m b 的长方形土地上种植花草,还留下一条条弯曲的小路便于人们观赏,小路的任何地方的水平宽度都是1m ,则种植花草的面积为2m .15.下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形…按此规律,图20中黑色正方形的个数是.三、单选题16.计算.(1)()127⎛⎫-÷- ⎪⎝⎭;(2)()2183⎛⎫-⨯- ⎪⎝⎭;(3)()51248-÷⨯;(4)()()289163-⨯--÷.四、解答题17.数学课上老师和同学们一起学习了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习所学内容(如图所示),请解答下列问题:()()22252m n mn mn m n --+222522m n mn mn m n =--+第一步222252m n m n mn mn =+--第二步247m n mn =-第三步(1)第一步的目的是_______,依据是__________;(2)从第______步开始出现错误,错误的原因是__________;(3)请你进行正确的化简,并求当m ,n 互为倒数时,原式的值.18.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则7-表示的点与_____表示的点重合;(2)若1-表示的点与7-表示的点重合,回答以下问题:①12表示的点与______表示的点重合;②若数轴上点A,点B之间的距离为2024(点A在点B左侧),且A,B两点经折叠后重合,则A表示的数是______,B表示的数是______.19.如图是由7个完全相同的小立方体组成的一个几何体,请在指定位置画出从正面、左面、上面看到的这个几何体的形状图.20.山西因特殊的地理环境,培育出了众多品质一流的特色杂粮,被誉为“小杂粮王国”,某地一家小型杂粮工厂生产荞麦面和红豆面,每天两种产品合计生产2000袋,设每天生产荞麦面x袋.两种产品的成本和定价如下表所示:荞麦面红豆面成本(元/袋)5023定价(元/袋)5628(1)用含x的代数式表示每天的生产成本,并化简;(2)用含x的代数式表示每天获得的利润,并化简;x=时,求每天的生产成本和获得的利润.(3)当80021.随着自媒体时代的到来,很多农产品的售卖改变了传统的销售模式,小明把自家的冬枣产品放到网上利用直播平台进行销售,他原计划每天卖100千克冬枣,但由于种种原因,实际每天的销售量与计划相比有出入,如表是一个星期的销售情况(超额记为正,不足记为负,单位:千克):星期一二三四五六日与计划量的差额2+5-1-4+7-18+5-(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售_____千克;(2)上个星期日小明卖了100千克冬枣,现在用正数表示比前一天多的销售量,负数表示比前一天少的销售量.请你完成销售量变化表(单位:千克):_____.星期一二三四五六日实际销售量比前一天的变化量2+4+5+23-(3)这星期实际销售总量与计划总量相比,增加或减少了多少千克?22.请阅读下面材料,完成相应的任务:“速算”指利用数与数之间的特殊关系进行较快的加减乘除运算.一个两位数与15相乘时,先在这个两位数1的末尾添0得到一个三位数,再用这个三位数加上它本身的一半,即添零加半.如32与15,那么这两个数的积是32后面加0变成320,然后再加上320的一半也就是160,结果为480,即3215320160480⨯=+=.(1)请写出下列各式的运算结果:4515⨯=_______,8715⨯=________;(2)用a 表示两位数十位上的数,用b 表示个位上的数.①这个两位数可以表示为____________:②上述速算方法可用等式表示为:____________;③请说明②中等式的正确性.。

24-25学年七年级数学上学期期中测试卷(无锡专用,测试范围:苏科版2024七上第1章-第3章)考试

24-25学年七年级数学上学期期中测试卷(无锡专用,测试范围:苏科版2024七上第1章-第3章)考试

2024-2025学年七年级数学上学期期中模拟卷(无锡专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版2024七年级上册第1章-第3章。

5.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2-的相反数是( )A .2B .12C .12-D .2-2.下列计算正确的是( )A .278a a a +=B .862y y -=C .222325x y x y x y +=D .325a b ab+=3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作1000-元,那么1080+元表示( )A .支出80元B .收入 80元C .支出1080元D .收入1080元4.单项式347πa b c 的系数和次数分别是( )A .7,4B .7,8C .7π,4D .7π,85.在4+,73, 3.14-,0,0.5中,表示正分数的有( )A .0个B .1个C .2个D .3个6.下列各选项中的两个单项式,不是同类项的是 ( )A .23x y 与22yx -B .22ab 与2ba -C .3xy 与5xyD .23a 与32a7.将数轴上一点A 沿数轴向左平移7单位到点B ,再由B 向右平移6个单位到点C ,而C 为数轴上表示2的点,则点A 表示的数是( )A .0B .1C .2D .38.若1230x y z -+++-=.则x y z ++的值为( )A .2B .2-C .0D .69.有一个数值转换器,其工作原理如图所示,若输入2-,则输出的结果是( )A .8-B .6-C .4-D .2-10.如图,6张全等的小长方形纸片放置于矩形ABCD 中,设小长方形的长为a ,宽为()b a b >,若要求出两块黑色阴影部分的周长差,则只要测出下面哪个数据( )(小蜜蜂提醒:小长方形有部分重叠)A .aB .bC .a b +D .a b-第Ⅱ卷二、填空题:本题共8小题,每小题3分,共24分。

七年级数学(人教版)年级上册学期期中复习02(试题+答案版)及答案

七年级数学(人教版)年级上册学期期中复习02(试题+答案版)及答案

七年级(上)人教版数学期中过关测试02学校:_____________班级:____________ 姓名:______________(时间:120分钟分值:120分)一、选择题(共10小题,每小题3分,共30分)1.一个数加上﹣5得﹣12,则这个数是( )A.17B.7C.﹣17D.﹣72.四个数﹣1,0,1,13中为负数的是( )A.﹣1B.0C.1D.1 33.如果一个数的倒数的相反数是412,那么这个数是( )A.92B.―92C.―29D.294.一个整数6250…0用科学记数法表示为6.25×108,则原数中“0”的个数是( )A.5B.6C.7D.85.若单项式―13xy3z2的系数、次数分别是a、b,则( )A.a=13,b=6B.a=―13,b=6C.a=13,b=7D.a=―13,b=76.下列关于多项式2m2n﹣2mn﹣7的说法中,正确的是( )A.最高次项是m2n B.二次项系数是2C.常项数是7D.次数和项数都是37.对任意有理数a,下列各式一定成立的是( )A.﹣a2=(﹣a)2B.a3=(﹣a)3C.a2=(﹣a)2D.|﹣a|3=(﹣a)38.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有( )A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确9.购买2个单价为a元的面包和5瓶单价为b元的饮料,所需钱数为( )A.(2a+b)元B.3(a+b)元C.(5a+2b)元D.(2a+5b)元10.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A.﹣1B.1C.5D.﹣5二、填空题(共5小题,每小题3分,共15分)11.化简:﹣|―35|= .12.如果﹣1000元表示支出1000元,那么收入2000元记作为 .13.若|a﹣2|+(b+3)2=0,则a+b= .14.单项式―3πa2b4的系数是 ,次数是 .15.如下表,从左向右依次在每个小格子中都填入一个有理数,使得其中任意四个相邻小格子中所填数之和都等于15.已知第3个数为7,第5个数为m﹣1,第16个数为2,第78个数为3﹣2m,则m的值为 ,第2021个数为 .7m﹣1三、解答题(共8小题,共75分)16.(8分)计算:―32÷[4―(―1)2]+[23―(12)2]×24.17.(8分)计算(1)﹣32+(―13)2×(﹣3)3÷(﹣1)25;(2)112×57―(―57)×212+(―12)×57.18.(9分)先化简,再求值:3m2﹣[5m﹣2(m﹣3)+4m2],其中,m=﹣4.19.(9分)已知﹣2x m y与3x3y n是同类项,求m﹣m2n﹣3m+4n+2nm2﹣3n的值.20.(10分)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.21.(10分)(1)关于x,y的多项式4x2y m+2+xy2+(n﹣2)x2y3+xy﹣4是七次四项式,求m和n的值;(2)关于x,y的多项式(5a﹣2)x3+(10a+b)x2y﹣x+2y+7不含三次项,求5a+b的值.22.(10分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用:(1)把(a﹣b)2看成一个整体,求出3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2的结果.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值.23.(11分)我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请观察下列各式的规律,回答问题:262=(26+6)×20+62372=(37+7)×30+72432=(43+3)×40+32…(1)请根据上述规律填空:682= .(2)我们知道,任何一个两位数(个数上数字为n,十位上的数字为m)都可以表示为10m+n,根据上述规律写出:(10m+n)2= ,并用所学知识说明你的结论的正确性.参考答案一、选择题12345678910DACBBDCDDA二、填空题11.―3512.+2000元13.﹣114.―3π4;315.﹣4;﹣5三、解答题16.解:原式=﹣9÷(4﹣1)+(23―14)×24=﹣9÷3+(23×24―14×24)=﹣3+(16﹣6)=﹣3+10=7.17.解:(1)﹣32+(―13)2×(﹣3)3÷(﹣1)25=﹣9+19×(﹣27)÷(﹣1)=﹣9+19×27×1=﹣9+3=﹣6;(2)112×57―(―57)×212+(―12)×57=112×57+57×212―12×57=(112+212―12)×57=312×57=72×57=5 2.18.解:原式=3m2﹣(5m﹣2m+6+4m2)=3m2﹣5m+2m﹣6﹣4m2=﹣m2﹣3m﹣6,当m=﹣4时,原式=﹣(﹣4)2﹣3×(﹣4)﹣6=﹣16+12﹣6=﹣10.19.解:由题意可知:m=3,n=1,原式=m﹣3m﹣m2n+2nm2+4n﹣3n=﹣2m+m2n+n=﹣2×3+9×1+1=﹣6+9+1=3+1=4.20.解:(1)因为c<0<b<a,所以a﹣c>0,c﹣b<0,b﹣a<0,所以|a﹣c|+2|c﹣b|﹣|b﹣a|=a﹣c+2(b﹣c)+b﹣a=a﹣c+2b﹣2c+b﹣a=3b﹣3c;(2)∵OA=6,OA=4OB,∴OB=3 2,∴a=6,b=3 2,∵B为线段AC的中点,∴a﹣b=b﹣c,即6―32=32―c,∴c=﹣3.21.解:(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.22.解:(1)3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2=(3+6﹣2)(a﹣b)2=7(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.23.解:(1)682=(68+8)×60+82;(2)(10m+n)2=(10m+n+n)×10m+n2.证明:∵(10m+n)2=(10m)2+2×10m×n+n2=100m2+20mn+n2,(10m+n+n)×10m+n2=100m2+20mn+n2,∴(10m+n)2=(10m+n+n)×10m+n2.故答案为:(68+8)×60+82;(10m+n+n)×10m+n2.七年级(上)人教版数学期中过关测试02参考答案一、选择题12345678910DACBBDCDDA二、填空题11.―3512.+2000元13.﹣114.―3π4;315.﹣4;﹣5三、解答题16.解:原式=﹣9÷(4﹣1)+(23―14)×24=﹣9÷3+(23×24―14×24)=﹣3+(16﹣6)=﹣3+10=7.17.解:(1)﹣32+(―13)2×(﹣3)3÷(﹣1)25=﹣9+19×(﹣27)÷(﹣1)=﹣9+19×27×1=﹣9+3=﹣6;(2)112×57―(―57)×212+(―12)×57=112×57+57×212―12×57=(112+212―12)×57=312×57=72×57=5 2.18.解:原式=3m2﹣(5m﹣2m+6+4m2)=3m2﹣5m+2m﹣6﹣4m2=﹣m2﹣3m﹣6,当m=﹣4时,原式=﹣(﹣4)2﹣3×(﹣4)﹣6=﹣16+12﹣6=﹣10.19.解:由题意可知:m=3,n=1,原式=m﹣3m﹣m2n+2nm2+4n﹣3n=﹣2m+m2n+n=﹣2×3+9×1+1=﹣6+9+1=3+1=4.20.解:(1)因为c<0<b<a,所以a﹣c>0,c﹣b<0,b﹣a<0,所以|a﹣c|+2|c﹣b|﹣|b﹣a|=a﹣c+2(b﹣c)+b﹣a=a﹣c+2b﹣2c+b﹣a=3b﹣3c;(2)∵OA=6,OA=4OB,∴OB=3 2,∴a=6,b=3 2,∵B为线段AC的中点,∴a﹣b=b﹣c,即6―32=32―c,∴c=﹣3.21.解:(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.22.解:(1)3(a﹣b)2+6(a﹣b)2﹣2(a﹣b)2=(3+6﹣2)(a﹣b)2=7(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.23.解:(1)682=(68+8)×60+82;(2)(10m+n)2=(10m+n+n)×10m+n2.证明:∵(10m+n)2=(10m)2+2×10m×n+n2=100m2+20mn+n2,(10m+n+n)×10m+n2=100m2+20mn+n2,∴(10m+n)2=(10m+n+n)×10m+n2.故答案为:(68+8)×60+82;(10m+n+n)×10m+n2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上学期半期测试题
_____班 姓名__________ 学号________ 得分________
一、选择题(每小题3分,共33分) 1、在-(- 5),2)5(-,-|- 5|,25-中负数有( )
A 、0个
B 、1个
C 、2个
D 、3个
2、下列各数中,35-,3.3,-3.14,+4,-1 ,7
22,其中整数有a 个,负数
有b 个,则a + b =( )
A 、5
B 、6
C 、7
D 、4 3、若a<0,则下列结论中正确的有( )
①22)(a a -= ②33)(a a -= ③||22a a =
④33||a a -=
A 、1个
B 、2个
C 、3个
D 、4个 4、一个数在数轴上所对应的点向右移动5个单位长度可得到它的相反数的对应点,则这个数是( )
A 、-2
B 、2
C 、2
12
D 、2
1
2-
5、已知0|2|)3(2=-++a b ,则b a 的值是(

A 、9
B 、8
C 、6
D 、-9 6、当y<0时,x ,x + y ,x - y 中最大的一个数是( )
A 、x
B 、x + y
C 、x - y
D 、不能确定 7、有理数的绝对值一定是( )
A 、正数
B 、整数
C 、正数或零
D 、有理数
8、下列四种说法:①几个有理数相乘,当负因数个数有奇数个时,积为负;②几个有理数相乘,当积为负时,负因数有奇数个;③如果一个数的倒数等于它本身,那么这个数是1;④如果一个数的相反数等于它本身,那么这个数是0。

其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个
9、甲、乙两个数的和为10,若甲数为x ,那么甲数的3倍与乙数的
3
2
的和用
代数式表示为( )
A 、x x 32)10(3+
- B 、10323⨯+x C 、)10(323x x -+ D 、3
2)10(3+-x 10、把309740四舍五入,使其精确到千位,那么所得的近似数是( )
A 、5
1010.3⨯ B 、4
1010.3⨯
C 、3
1010.3⨯
D 、5
1009.3⨯
11、如果有理数a 、b 在数轴上的位置如下图,则下面四个式子:①a- b ;
②b- a ;③2ab ;④b a 2中,符号为正的是(

A 、①②
B 、①④
C 、②③
D 、②④ 二、填空题(12--20小题每空1分,21—26每空2分,共40分)
12、-|-7|=________,2)2(--=_______。

13、有些等式看起来不能成立,可是只要你在每个数后面填上一个恰当的计量单位,等式就成立了,如,800+200=1可以理解为800克+200克=1千克,那么你认为等式30+30=1,怎样理解可以成立呢?即30_____+30_____=1_____。

14、多项式xy x y x x +-+-23445是____次___项式,它是按_______排列的。

15、若a 、b 互为相反数,p 、q 互为倒数,则代数式2(a+b )- pq 的值是____。

16、如果|x|=3,则x=_______;如果3x =-27,则x =_______。

17、三个连续偶数,最后一个为2n ,则其余两个是_____________________。

18、
2
4y x n 与m y x 58-是同类项,则n m =__________。

19、若5
12b
a
m +与12
4-n b a
是同类项,则m + n =_________。

20、多项式
2
2
-x 是一次______项式,它的项分别__________________。

21、如右图,用“>”或“<”填空:
①a ____ b ;② a_____0;
③c ____ 0;④ - a____ 3c
22如下图,长方形内有两相邻的正方形,面积分别为4和16,那么阴影部分的面积为________________。

23、如下图,将一张长方形的纸片,第1次左右对折,可折出2个小长方形(如图1),第2次上下对折,可折出4个小长方形(如图2),第3次再左右对折,可折出______个小长方形;第4次再上下对折,可折出______个小长方形,……,如此操作下去,第15次操作可折出_____个小长方形。

24、某地区夏季高山上的温度从山脚处开始每升高100米降低0.7 C 。

如果
山脚温度是28 C ,那么山上300米处的温度为_______;一般地,山上x 千米处温度为________。

25、2003200120032002
)1(0)1(1
--+-+-=_____________.
26、已知,有理数a 、b 、c 在数轴上对应点如下图所示,且|a|>|b|,那么 ①|a- b|=_______,②|a +b|=_________;③|a+c|=________。

三、计算(每小题3分,共6分)
27、)4(3)2(8102-⨯--÷+-
28、)12(
24
23
29
-⨯(简便运算)
四、按要求完成下列各题(共14分)
(图一) (图二)
29、比较5
4
-
与|43|--的大小。

(2分)
30、有理数a 、b ,在数轴上的位置如图所示:(2分)
(1)在数轴上标出- a ,- b 的位置。

(2)用“>”把a ,b ,- a ,- b 连结起来。

31、当x = 3,y = 5时,求代数式
y
x y x y x y x +---+)
(3)(2的值。

(4分) 32、列式计算:(每小题3分,共6分)
(1) 15加上2与-2的积;
(2)-0.3与31-的和减去10
3
的差。

五、33(7分)某股民上星期六以每股27元的价格买进某种股票1000股,该股星期 一 二 三 四 五 六 每股涨跌 +4 +4.5 -1 -2.5 -6 +1.5 (1)星期四收盘时,每股多少元?
(2)本周内最高价是每股多少元?最低价是多少元?
(3)已知该股民买进股票时付出了3‰的交易税,卖出股票时需付成交额 3‰的手续费和2‰的交易税,如果该股民在星期六收盘前将全部股票卖出,他的收益情况如何?。

相关文档
最新文档