《蒙特卡罗模拟》PPT课件
第六讲 蒙特卡洛方法ppt课件
蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
一。蒙特卡洛随机模拟
系列一蒙特卡洛随机模拟实验目的:学会用计算机随机模拟方法来解决随机性问题蒙特卡洛模拟法简介蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸拟的方法。
此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。
作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。
蒙特卡洛模拟法的应用领域蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。
2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。
解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。
通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3.根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5.统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
一.预备知识:1.随机数的产生提示:均匀分布U(0, 1)的随机数可由C语言或Matlab自动产生,在此基础上可产生其他分布的随机数.2.逆变换法:设随机变量U服从(0, 1)上的均匀分布,则X = F-'(U)的分布函数为F(x)步骤:(1)产生U(0J)的随机数U;②计算X = F-1(U),则X服从F(x)分布.问题:练习用此方法产生常见分布随机数例如“指数分布,均匀分布U(a,b) ”.还有其它哪种常见分布的随机数可用此方法方便产生?3.产生离散分布随机数己知离散随机变量X的概率分布:P(X = x k) = I\, (K = 1,2…),产生随机变量X的随机数可采用如下算法:a)将区间[0.1]依次分为长度为Pi, p?,・• •的小区间L,L,・• •;b)产生[0, 1]均匀分布随机数R,若Rclk则令X = x k,重复(b),即得离散随机变量X的随机数序列.问题:(1)下表给出了离散分布X的概率分布表,试产生100个随机数(2)用此方法给出100个二项分布B(20, 0.1)的随机数及10个泊松分布P(l)的随机数.4.正态分布的抽样提示:设U],U2是独立同分布的U(0Q变量,令X] =(-21nU])”2 cos(2^u2)X2 = (-21nU1)1/2 sin(2MJ2)则X.与X,独立,均服从标准正态分布.步骤:(1)由U(0J)独立抽取Ui=g=U2(2)用(*)式计算^,X2.用此方法可同时产生两个标准正忐分布的随机数问题:有关随机数产生方法很多,查阅相关材料进行系统总结.二.随机决策问题1.某小贩每天以一元的价格购进一种鲜花,卖出价为b元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量,服从泊松分布,P(X = k)=e-4—,k=0, 1, 2,...,, 其中常数;I由多口销传量的平均值来估计,问小贩每天应购进多少束鲜花?(准则:期望收入,(①最局)问题:(1)在给定b = 1.25, 2=50的值后,画出目标函数S(u)连线散点图,观察单调性,给出最优决策U*:。
计算材料学概述之蒙特卡洛方法详解课件
组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为
。
密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。
《蒙特卡罗方法》ppt课件
I
1 dx 0 1 x2
解:选择分布函数
(x) 1(42x)
3
y(x)
xHale Waihona Puke (x')dx'
4x
x2
0
3
x(y) 2 43y
1.3.3 Metropolis 算法
对积分区间的重要抽样要求我们获得x(y),而这只对极少数的分 布 (x)可以解析地做到。
Metropolis 算法: 一种很普遍的产生具有任不测形的给定概率分布随机变量的方法。
r (Rt) 来决议是“接受〞还是“回绝〞这 (一R实n ) 验步.假设r大于l,那么接受这一步
(取Rn+1=Rt);而假设r小于1,那么以概率r 接受这步.这时我们把r和一个 在[0,1]区间上均匀分布的随机数比较,假设 <r就接受这一步.假设这 一实验步不被接受,就舍弃它.而取Rn+1=Rn;这样产生出Rn+1之后,可 以从Rn+1出发迈出一个实验步按照同样的过程产生Rn+2,‘恣意’点R0都 可以用作随机行走的起点.
narea of yellowpart
N area of the square 4
4n N
圆周率的值
π = 3. 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 41 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 .....
《蒙特卡罗方法》PPT课件
5
1.引言
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
完整版ppt
L
d
p
2L d
6
1.引言
7 完整版ppt
1.引言
8 完整版ppt
1.引言
9 完整版ppt
23 完整版ppt
1.引言
注意以下两点: • Monte Carlo方法与数值解法的不同: ✓ Monte Carlo方法利用随机抽样的方法来求解物理问题;
✓数值解法:从一个物理系统的数学模型出发,通过求解一 系列的微分方程来的导出系统的未知状态;
• Monte Carlo方法并非只能用来解决包含随机的过程的问题:
28 完整版ppt
2.MC基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。
➢ 两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
4. 编程进行计算机模拟
5. 获得统计量
j
17 完整版ppt
1.引言
MC的模拟方法-1 确定统计方案
1 确定统计模型 1) 现象 模型
随机现象Y=Y(Xi), Xi={X1, X2, X3,…}
2) 确定随机变量Xi的分布特征fi(x) 平均分布,指数分布,正态分布,Γ分布…
2 确定统计量
j
i lnim1nkn1ik(xi,...)
1.引言
MonteCarlo模拟
counter=counter+1; %统计针与线相交的次数 frame(counter)=getframe; %描点并取帧
end
end
fren=counter/n; pihat=2*l/(a*fren) %用频率近似计算π
1901 3408
3.1415929
蒙特卡罗投点法是蒲丰投针实验的推广:
在一个边长为a的正方形内随机投点,
该点落在此正方形的内切圆中的概率 y
(a/2,a/2)
应为该内切圆与正方形的面积比值,
即 πa/22 : a2 π/4
n=10000; a=2; m=0; for i=1:n
ox
x=rand(1)*a; y=rand(1)*a;
rand(1) %每次重新启动matlab时,输出的随机数不一样
注意: 产生一个参数为λ的指数分布的随机数应输入 exprnd(1/λ)
产生m×n阶参数为A1,A2,A3的指定分布'name'的随机数矩阵 random('name',A1,A2,A3,m,n)
举例: 产生2×4阶的均值为0方差为1的正态分布的随机数矩阵 random('Normal',0,1,2,4) 'name'的取值可以是(详情参见help random): 'norm' or 'Normal' / 'unif' or 'Uniform' 'poiss' or 'Poisson' / 'beta' or 'Beta' 'exp' or 'Exponential' / 'gam' or 'Gamma' 'geo' or 'Geometric' / 'unid' or 'Discrete Uniform' ……
蒙特卡罗模拟PPT课件
问题:试验次数 n 多大时,对给定的置信度 1-α(0<α<1),估计精度达到ε.
即问:取多大的n 使
P pˆ
p
P
kn n
p
1
成立?
答案:
n
p(1 2
p) z2
其中, zα是正态分布的临界值.
证明
频率法是事件A出现的频率作为概率p的估计
pˆ kn n
n次独立试验中A出现的次数kn~B(n, p).由中 心极限定理知
相当于第i 个随机点落 在1/4圆内.
若有k 个点落在l/4圆内
随机事件“点落入1/4圆内”的 频率为 k/n 根据概率论中的大数定律, 事件发生的频率
依概率收敛于事件发生的概率p,即有
lim
n
P{
k n
p
}
1
得圆周率π的估计值为
ˆ 4k n
且当试验次数足够大时, 其精度也随之提高.
分析:实际上概率值为
01
1 x2dx 4
恰为1/4圆 的面积
频率法: 利用随机变量落进指定区域内的频 率来计算定积分.
平均值法: 利用随机变量的平均值(数学期望) 来计算定积分.
I ab f ( x)dx
平均值法的算法如下:
(1)产生RND 随机数:r1,r2,…,rn;
(2)令 ui=a+(b-a)ri,i=1,2,…,n;
要增大100倍.
P197表8.2中列出了置信度为0.95 时, 在不同
《蒙特卡罗方法》课件
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗模拟方法ppt课件
问题的解决:1.选取好的递推公式 2.不是本质问题
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
产生伪随机数的乘同余方法
▪ 乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于
N
1
AaPbL2cQ2d
根据历史数据,预测未来。
1
AaPbL2cQ2d
收集P,L,Q数据,确定分布函 数 f(P),f(L),f(Q)
模拟次数N;根据分
N
布函数,产生随机数
产生 N 个 A值
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
X
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
1,0 x 1 f (x) 0,其他
分布函数为:
0, x 0
F
(x)
x,0
x
1
特征:独立性、均匀性 1, x 1
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
随机数的产生方法
▪ 随机数表 ▪ 物理方法 ▪ 计算机方法
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
1 N
gN N i1 g(ri )
蒙特卡洛模拟法
( exact ) one component failure Probability of event = 3.689875E-001 ( +/- 5.682113E-003 )
蒙特卡洛模拟法应用实例
Rank Failure mode
Failures Estimated Probability Importance 1 ac 1421 1.243375E-001 ( +/- 3.298413E-003 ) 33.70% 2 ab 1413 1.236375E-001 ( +/- 3.289116E-003 ) 33.51% 3 abc 1383 1.210125E001 ( +/- 3.254012E-003 ) 32.80%
蒙特卡洛模拟法应用实例
Primary Event Analysis: Event
a
b
c
Failure contrib. Importance 4.900000E-001 132.80% 2.446500E-001 66.30% 2.453500E-001 66.49%
差等),所构造的模型在主要特征参量方面 要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算 机上产生随机数,实现一次模拟过程所需的 足够数量的随机数。通常先产生均匀分布的 随机数,然后生成服从某一分布的随机数, 方可进行随机模拟试验。
蒙特卡洛模拟法步骤
3. 根据概率模型的特点和随机变量的分布特 性,设计和选取合适的抽样方法,并对每个 随机变量进行抽样(包括直接抽样、分层抽
蒙特卡洛模拟法应用实例
Compressed: Rank Failure mode
Failures Estimated Probability Importance 1 ab 2796 2.446500E-001 ( +/- 4.626756E-003 ) 66.30% 2 ac 2804 2.453500E-001 ( +/- 4.633371E-003 ) 66.49%
《蒙特卡罗模拟》课件
蒙特卡罗模拟的基本原理
重复实验:多次重复抽样实 验,得到大量样本
统计分析:对样本进行统计 分析,得到估计值
随机抽样:从概率分布中随 机抽取样本
误差估计:计算估计值的误 差,评估模拟结果的准确性
蒙特卡罗模拟的应用领域
金融领域:风 险评估、投资 决策、期权定
价等
工程领域:可 靠性分析、优 化设计、系统
建立模型:根据问 题建立数学模型
设定参数:设定模 型中的参数
模拟实验:进行模 拟实验,验证模型 的准确性
实现随机抽样
确定抽样范围:确定需要抽样的总体范围
生成随机数:使用随机数生成器生成随机数
确定抽样方法:选择合适的抽样方法,如简单随机抽样、 分层抽样等
实施抽样:根据抽样方法,从总体中抽取样本
Part Four
蒙特卡罗模拟的案 例分析
金融衍生品定价
蒙特卡罗模拟在金融 衍生品定价中的应用
案例分析:期权定价 模型
蒙特卡罗模拟在期权 定价中的应用
案例分析:利率衍生 品定价模型
蒙特卡罗模拟在利率 衍生品定价中的应用
风险评估
蒙特卡罗模拟是一种风险评估方法,通过模拟随机事件来预测可能的结果 案例分析可以帮助我们更好地理解蒙特卡罗模拟的应用场景和效果 风险评估可以帮助我们更好地理解风险,并采取相应的措施来降低风险 蒙特卡罗模拟在金融、工程、医学等领域都有广泛的应用
统计分析:对计算得到的统计量进行统计分析,得出结论
分析和解读结果
蒙特卡罗模拟是一种随机模拟方法,通过模拟随机事件来估计概率分布
实现步骤包括:设定随机变量、设定随机数生成器、设定模拟次数、模拟随机事件、计算结 果
结果分析:通过模拟结果可以估计出概率分布,从而进行决策
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 1:设 R 为[0,1]上服从均匀分布的随机变量,即的分布密度函数与 分布函数分别为:
布物物的理理随方方机法法数::一。一是是放放射射性性物物质质随随机机蜕蜕变变;;二二是是电电子子管管回回路路的的热热噪噪声声。(。(如如
②可可产将将生热热方噪噪法声声源源装装于于计计算算机机外外部部,,按按其其噪噪声声电电压压的的大大小小表表示示不不同同的的随随机机 物数数理。。方此此法法法:产产一生生是的的放随随射机机性性性物最最质好好随,,机但但蜕产产变生生;过过二程程是复复电杂杂子。。)管)回路的热噪声。(如 可查查将随随热机机噪数数声表表源-----装---””R于Raan计ndd算TTaa机bblel外e”(”(部11,995按555其年年噪由由美声美国电国兰压兰德的德公大公司小司编表编制示制,不,有同有随的随机随机数机数 数1100。00 此万万法个个产。。))生随随的机机随数数机表表性中中最的的好数数,字字但具具产有有生均均过匀匀程的的复随随杂机机。性)性,,没没有有周周期期性性。。使使 查用用随时时机,,数可可表根根-据据---需需”R要要an任任d取T取a一b一l段e段”(((1横9横5或或5 竖年竖)由)。。美如如国需需兰220德0个公个,司,便编便可可制从从,中有中取随取(机(顺数顺 1次次00))万2200个个个。,),需随需要机要几几数位位表取取中几几的位位数,,字随随具机机有数数均表表匀无无的所所随谓谓机位位性数数,,,没不不有能能周四四期舍舍性五五入。入。使。 用 次由 个由个时 )我递 随递随2,们推 机推机0可在数公个数公根使是式,是式据用由(需由(中需第如要第如可要同几i同i以个任余个位余在按取数按取数E一一公一几公x定c段式定e位式l公(中)公,)式产横在式随在推生或计推机计算随竖 算算数算出机机)出表机。来数内来无内如的,产的所产需,命生,谓生故令2伪故0位伪并为随个并数随非R机,非a,机真n数便真d不数正(:可正能:的)由从的四由随于中随于舍机第取机第五数(i数+入。i1+顺。。1 由但但递满满推足足公::式(如同余数公式)在计算机内产生伪随机数:由于第 i+1 个aa随))机有有数较较是好好由的的第随随机i机个、、按均均一匀匀定性性公。。式推算出来的,故并非真正的随机数。 但abcbdcbdc) ))满)) ))))有 算周足算周 算 故算故周算较 法期:法期 法 这法期法这好 过长过长 可 是过长可是的 程、程、 再 目程、再目随 不重不前重 现不前重现机 退复退复 , 最退复,最、 化化性性 速常化性速常均 ((差差 度 用(差度用即匀 即的。 快。即的。快不方性 不。不方。能法。 能能法反。反反。cd复复))复出出算算出现现法法现某某过可某一程再一一常不现常常数退,数数。化速。。)))度快。
数学实验之
蒙特卡洛模拟
前言
计算机模拟中的蒙特卡罗方法又称随机抽样技巧或统计试验方 法。半个多世纪以来,由于科学技术的发展和电子计算机的发明 , 这种方法作为一种独立的方法被提出来,并首先在核武器的试验与 研制中得到了应用。
蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大 区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法 能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方 法难以解决的问题,因而该方法的应用领域日趋广泛。
(则2则 布 ②则布②)R的 产的产RR产的的随生的随生生样样机方样机方方本本法数本法数法值值。值。,,,即即即以以0以, 即即即其以以以他等等等概概概率率率取取取自自自[[0[00,,1,11]]的]的的一一一1,串串串数数数称称x称为为为1[0[[0,01,,1]1上]]上上均均均匀匀匀分分分
基本原理
(2)任意概率分布随机数的产生 (2)以任上意介概绍率了分均布匀随分机布数的R 产的生随机数 r1,r2,的产生方法,任意分布 X 的 (随 2)以机任上数意介x1概绍, x2率了,分均可布匀以随分利机布用数Rr1的,r的2产,随生得机到数。r1,r2,的产生方法,任意分布 X 的定随理机: 以数设 上x介1R, x绍是2,了服可均从以匀[0利,分用1布]区r1R,r间2,的上随得均机到匀数。分r1布,r2的,随的机产变生量方,法X,的任分意布分函布数X 定为 的理随FX:机(x设)数,Rx则1,是x2,服从可[以0,利1用]区r1间,r2,上均得匀到分。布的随机变量,X 的分布函数 为定F理X (:x) 设,则R 是服从[0,1]区间X上均FX匀1(R分) 。布的随机变量,X 的分布函数 例 为:FX利(x)用,[则0,1]区间均匀分布X 的 F随X1机(R)数。r1, r2,表示服从负指数分布的 例随:机利数用。[0,1]区间均匀分布X的随FX机1(R数) 。r1,r2,表示服从负指数分布的 随解 例机:数设利。用X [服0,从1负]区指间数均分匀布分,布则的F随X (x机) 数1r1e,r2,x(x表 0示) ,服由从R负指FX数(x)分,布的 解 例例 解 随 解::: 机 ::设 求求 设 数 设[X。[aXXa知,知 知b,服b]服 服r]区irr区ii从从 从间1间11负负[上ae上指ee,指b的x的]数ixx区数ii(均((x均xx分间分匀匀0布上00布)分))分,的所,所 所布布则均以则以 以的的F匀Fx随Xxxi随Xii(分(x机x机))布数1数111,1lnll。nn。(e1((则e11xrx(irr()xii ))x即即 即0为0)为 为),,所所 所由由求求 求R。R。 。FFXX((xx)),,
基本原理
1.模拟法分类
(1)运筹对策法:主要用于军事对策和企业管理对策。如现代化战争 的军事演习、新式武器的试验等。最早于 40 年代末美国纽曼等人首先 用运筹模拟法解决了核屏蔽实验问题。
(2)蒙特卡罗法:蒙特卡罗方法又称随机抽样技巧或统计试验方法, 与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方 法。 (试验)
1, f (x) 0,
0 x 1,
其他
0, F (x) x,
1,
x0 0 x 1 x 1
则 R 的样本值,即以等概率取自[0,1]的一串数称为[0,1]上均匀分布的 随机数。 ②产生方法 物理方法:一是放射性物质随机蜕变;二是电子管回路的热噪声。(如 可将热噪声源装于计算机外部,按其噪声电压的大小表示不同的随机