最新数学建模bp神经网络.docx

合集下载

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

BP神经网络算法预测模型

BP神经网络算法预测模型

BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。

它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。

BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。

BP神经网络的框架,可以有输入层、隐含层和输出层等组成。

其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。

每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。

BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。

BP神经网络学习及算法

BP神经网络学习及算法

BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。

(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。

每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。

输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。

(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。

同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。

隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。

2.反向传播:在前向传播后,可以计算出网络的输出值。

接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。

(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。

误差函数的具体形式根据问题的特点而定。

(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。

首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。

依此类推,直到计算出输入层神经元的误差。

(3)更新权值:利用误差和学习率来更新网络中的权值。

通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。

权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。

以上就是BP神经网络的学习算法。

在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。

此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

BP神经网络

BP神经网络

BP神经⽹络2013参考数学建模常⽤⽅法:数学建模常⽤⽅法系列资料由圣才⼤学⽣数学建模竞赛⽹整理收集。

希望能对您有所帮助!BP神经⽹络⽅法摘要⼈⼯神经⽹络是⼀种新的数学建模⽅式,它具有通过学习逼近任意⾮线性映射的能⼒。

本⽂提出了⼀种基于动态BP神经⽹络的预测⽅法,阐述了其基本原理,并以典型实例验证。

关键字神经⽹络,BP模型,预测1 引⾔在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的⿊箱式输⼊输出模型;在时域,Box-Jenkins⽅法、回归分析⽅法、ARMA模型等,通过各种参数估计⽅法也可以给出描述。

对于⾮线性时间序列预测系统,双线性模型、门限⾃回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进⾏假定。

可以说传统的⾮线性系统预测,在理论研究和实际应⽤⽅⾯,都存在极⼤的困难。

相⽐之下,神经⽹络可以在不了解输⼊或输出变量间关系的前提下完成⾮线性建模[4,6]。

神经元、神经⽹络都有⾮线性、⾮局域性、⾮定常性、⾮凸性和混沌等特性,与各种预测⽅法有机结合具有很好的发展前景,也给预测系统带来了新的⽅向与突破。

建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。

⽬前在系统建模与预测中,应⽤最多的是静态的多层前向神经⽹络,这主要是因为这种⽹络具有通过学习逼近任意⾮线性映射的能⼒。

利⽤静态的多层前向神经⽹络建⽴系统的输⼊/输出模型,本质上就是基于⽹络逼近能⼒,通过学习获知系统差分⽅程中的⾮线性函数。

但在实际应⽤中,需要建模和预测的多为⾮线性动态系统,利⽤静态的多层前向神经⽹络必须事先给定模型的阶次,即预先确定系统的模型,这⼀点⾮常难做到。

近来,有关基于动态⽹络的建模和预测的研究,代表了神经⽹络建模和预测新的发展⽅向。

2BP神经⽹络模型BP⽹络是采⽤Widrow-Hoff学习算法和⾮线性可微转移函数的多层⽹络。

典型的BP 算法采⽤梯度下降法,也就是Widrow-Hoff算法。

BP神经网络ppt

BP神经网络ppt

人工神经网络 是生物神经网络的某种模型(数学模型) 是对生物神经网络的模仿 基本处理单元为人工神经元
1. 生物神经系统与生物神经元
大量生物神经元的广泛、复杂连接,形成生
物神经网络 (Biological Neural Network, BNN)。
实现各种智能活动
生物神经元(neuron)是基本的信息处理单元
(1)生物神经系统
生物神经元(neuron)是基本的信息处理单元, 其组成:
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2 1m =
2 j1
dj f
net
L1 j
2
样本集内所有样本关于该网络的总输出误差
Etotal E
输出层l L 1节点j的净输入
实际输出
nL2
net
L1 j
O L1 L2
ij i
i 1
O L1 j
1
1+e-
net
L1 j
II
输出层的权值iLj 1调整
隐含层 L 2 输出层 L 1
nL2
net
L1 j
=
O L1 L2 ij i
i 1
权值iLj 1对误差E的影响
E
iLj 1
E
net
L1 j
net
L1 j
iLj 1
O L1 L2
j
i
输出层的权值iLj 1调整 iLj 1修正应使误差E最快减小

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网

三.BP神经网络

三.BP神经网络

三.BP神经⽹络 BP神经⽹络是包含多个隐含层的⽹络,具备处理线性不可分问题的能⼒。

以往主要是没有适合多层神经⽹络的学习算法,,所以神经⽹络的研究⼀直处于低迷期。

20世纪80年代中期,Rumelhart,McClelland等成⽴了Parallel Distributed Procession(PDP)⼩组,提出了著名的误差反向传播算法(Error Back Propagtion,BP)。

BP和径向基⽹络属于多层前向神经⽹络。

⼴泛应⽤于分类识别、逼近、回归、压缩等领域。

BP神经⽹络(强调是⽤BP算法)⼀般是多层的,其概念和多层感知器(强调多层)差不多是等价的,隐层可以是⼀层或多层。

BP神经⽹络具有如下特点:(1)⽹络由多层构成,层与层之间全连接,同⼀层之间的神经元⽆连接。

(2)BP⽹络的传递函数必须可微。

所以感知器的⼆值函数不能⽤,⼀般采⽤Sigmoid函数,可分为Log-Sigmoid和Tan-Sigmoid函数。

其中x的范围包含整个实数域,函数值再0~1之间。

具体应⽤时可以增加参数,以控制曲线的位置和形状。

sigmoid函数可以将输⼊从负⽆穷到正⽆穷的范围映射到(-1,1)和(0,1)之间,在原点处具有⾮线性放⼤功能。

BP的典型设计是隐含层采⽤Sigmoid函数作为传递函数,输出层采⽤线性函数作为传递函数。

(⼀定不能全部层都采⽤线性的,否则就会和线性神经⽹络⼀样了)(3)采⽤误差反向传播算法(Back-Propagation)进⾏学习。

再BP⽹络中,数据从输⼊层经隐含层逐层向后传播,训练⽹络权值时,则沿着减少误差的⽅向,从输出层经过中间各层逐层向前修正⽹络连接权值。

(与反馈神经⽹络不同,BP是误差信号反向传播,⽹络根据误差从后向前逐层进⾏修正)(1)⽹络由多层构成,层与层之间全连接,同⼀层之间的神经元⽆连接。

(2)BP⽹络的传递函数必须可微。

所以感知器的⼆值函数不能⽤,⼀般采⽤Sigmoid函数,可分为Log-Sigmoid和Tan-Sigmoid函数。

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。

它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。

BP网络的训练过程可以分为两个阶段:前向传播和反向传播。

前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。

反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。

BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。

通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。

2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。

例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。

3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。

通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。

4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。

例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。

5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。

通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。

总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。

它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。

然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。

BP神经网络

BP神经网络

BP神经网络BP神经网络今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据挖掘等领域。

接下来介绍BP神经网络的原理及实现。

Contents1. BP神经网络的认识2. 隐含层的选取3. 正向传递子过程4. 反向传递子过程5. BP神经网络的注意点6. BP神经网络的C 实现1. BP神经网络的认识BP(Back Propagation)神经网络分为两个过程(1)工作信号正向传递子过程(2)误差信号反向传递子过程在BP神经网络中,单个样本有个输入,有个输出,在输入层和输出层之间通常还有若干个隐含层。

实际上,1989年Robert Hecht-Nielsen证明了对于任何闭区间内的一个连续函数都可以用一个隐含层的BP网络来逼近,这就是万能逼近定理。

所以一个三层的BP网络就可以完成任意的维到维的映射。

即这三层分别是输入层(I),隐含层(H),输出层(O)。

如下图示2. 隐含层的选取在BP神经网络中,输入层和输出层的节点个数都是确定的,而隐含层节点个数不确定,那么应该设置为多少才合适呢?实际上,隐含层节点个数的多少对神经网络的性能是有影响的,有一个经验公式可以确定隐含层节点数目,如下其中为隐含层节点数目,为输入层节点数目,为输出层节点数目,为之间的调节常数。

3. 正向传递子过程现在设节点和节点之间的权值为,节点的阀值为,每个节点的输出值为,而每个节点的输出值是根据上层所有节点的输出值、当前节点与上一层所有节点的权值和当前节点的阀值还有激活函数来实现的。

具体计算方法如下其中为激活函数,一般选取S型函数或者线性函数。

正向传递的过程比较简单,按照上述公式计算即可。

在BP神经网络中,输入层节点没有阀值。

4. 反向传递子过程在BP神经网络中,误差信号反向传递子过程比较复杂,它是基于Widrow-Hoff学习规则的。

假设输出层的所有结果为,误差函数如下而BP神经网络的主要目的是反复修正权值和阀值,使得误差函数值达到最小。

BP神经网络算法

BP神经网络算法

BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。

它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。

BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。

每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。

BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。

在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。

在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。

具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。

常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。

然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。

在反向传播过程中,首先需要计算输出层的误差。

一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。

然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。

最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。

总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。

通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。

BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。

BP神经网络预测模型

BP神经网络预测模型

BP 神经网络模型 基本原理( 1) 神经网络的定义简介神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络.( 2) BP 模型的基本原理[3]学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型.BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网,这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) .O 1 O 2 O i O m输入层输出层 隐含层 …… …… ……( 大于等于一层) W (1)…W (L)( 3) BP 神经网络的训练BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段:[1]向前传输阶段:①从样本集中取一个样本,i j P Q , 将i P 输入网络;②计算出误差测度1E 和实际输出(1)(2)()21(...((())...))L i L iO F F F PW W W =; ③对权重值L W W W ,...,)2()1(各做一次调整, 重复这个循环, 直到i E ε<∑.[2]向后传播阶段——误差传播阶段:①计算实际输出p O 与理想输出i Q 的差;②用输出层的误差调整输出层权矩阵; ③211()2mi ij ij j E Q O ==-∑; ④用此误差估计输出层的直接前导层的误差, 再用输出层前导层误差估计更前一层的误差. 如此获得所有其他各层的误差估计;⑤并用这些估计实现对权矩阵的修改. 形成将输出端表现出的误差沿着与输出信号相反的方向逐级向输出端传递的过程.网络关于整个样本集的误差测度:i iE E =∑几点说明:一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。

(完整版)bp神经网络算法

(完整版)bp神经网络算法

BP 神经网络算法 三层BP 神经网络如图:设网络的输入模式为Tn x x x x ),...,(21=,隐含层有h 个单元,隐含层的输出为Th y y y y ),...,(21=,输出层有m 个单元,他们的输出为Tm z z z z ),...,(21=,目标输出为Tm t t t t ),...,,(21=设隐含层到输出层的传递函数为f ,输出层的传递函数为g于是:)()(1∑∑===-=ni i ij ni iij j x w f xw f y θ:隐含层第j 个神经元的输出;其中1,00=-=x w j θ)(0∑==hj j jk k y w g z :输出层第k 个神经元的输出此时网络输出与目标输出的误差为∑=-=m k k k z t 12)(21ε,显然,它是jk ij w w 和的函数。

下面的步骤就是想办法调整权值,使ε减小。

由高等数学的知识知道:负梯度方向是函数值减小最快的方向因此,可以设定一个步长η,每次沿负梯度方向调整η个单位,即每次权值的调整为:pqpq w w ∂∂-=∆εη,η在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。

隐含层,隐含层输出向量传递函数输入层,输入向量BP 神经网络(反向传播)的调整顺序为: 1)先调整隐含层到输出层的权值 设k v 为输出层第k 个神经元的输入∑==hj j jkk y wv 0-------复合函数偏导公式若取x e x f x g -+==11)()(,则)1()111(11)1()('2k k v v v v k z z ee e e u g kk k k -=+-+=+=---- 于是隐含层到输出层的权值调整迭代公式为: 2)从输入层到隐含层的权值调整迭代公式为: 其中j u 为隐含层第j 个神经元的输入:∑==ni i ijj x wu 0注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即jy ∂∂ε涉及所有的权值ij w ,因此∑∑==--=∂∂∂∂∂-∂=∂∂m k jk k k k j k k k m k k k k j w u f z t y u u z z z t y 002)(')()(ε于是:因此从输入层到隐含层的权值调整迭代为公式为: 例:下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的2010和2011年的数据,预测相应的公路客运量和货运量。

数学建模之BP神经网络

数学建模之BP神经网络

神经网络的应用
人工神经网络以其具有自学习、自组织、 较好的容错性和优良的非线性逼近能力,受到 众多领域学者的关注。在实际应用中,80%~ 90%的人工神经网络模型是采用误差反传算法
或其变化形式的网络模型(简称BP神经网络),
目前主要应用于函数逼近、模式识别、分类和
数据压缩或数据挖掘。
§2 BP神经网络概述
人工神经网络是根据人的认识过程而开发出的一 种算法。 假如我们现在只有一些输入和相应的输出,而对 如何由输入得到输出的机理并不清楚,那么我们可以 把输入与输出之间的未知过程看成是一个“网络”, 通过不断地给这个网络输入和相应的输出来“训练” 这个网络,网络根据输入和输出不断地调节自己的各 节点之间的权值来满足输入和输出。这样,当训练结 束后,我们给定一个输入,网络便会根据自己已调节 好的权值计算出一个输出。这就是神经网络的简单原 理。

工作过程:
从神经元各组成部分的功能来看,信息的处理与传递主
要发生在突触附近。当神经元细胞体通过轴突传到突触 前膜的脉冲幅度达到一定强度,即超过其阈值电位后, 突触前膜将向突触间隙释放神经传递的化学物质。 神经元间信息的产生、传递和处理是一种电化学活动。 神经元间的信号通过突触传递。通过它,一个神经元内 传送的冲击信号将在下一个神经元内引起响应,使下一 个神经元兴奋,或阻止下一个神经元兴奋。
常见的激活函数有以下几种类型:
1、阶梯函数 2、线性函数 3、非线性:Sigmoid函数
1 (s) 1 e s
1 (s) 1 e s
人工神经网络的分类

按网络连接的拓扑结构分类:
层次型结构:将神经元按功能分成若干层,如输入
层、中间层(隐含层)和输出层,各层顺序相连 互连型网络结构:网络中任意两个节点之间都可能 存在连接路径

BP神经网络

BP神经网络

BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。

它是一种监督学习算法,用于解决分类和回归问题。

以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。

输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。

权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。

这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。

激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。

常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。

前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。

数据经过一系列线性和非线性变换,最终产生网络的预测输出。

反向传播(Backpropagation):反向传播是BP神经网络的核心。

它用于计算网络预测的误差,并根据误差调整网络中的权重。

这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。

2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。

3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。

训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。

目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。

超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。

这些参数的选择对网络的性能和训练速度具有重要影响。

BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。

BP神经网络模型预测未来

BP神经网络模型预测未来

BP神经网络模型预测未来BP神经网络算法概述:简介与原理BP神经网络是一种多层前馈神经网络,该网络的主要特点是:信号前向传递,误差反向传播。

在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神经元状态。

如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。

BP神经网络的拓扑结构如下图所示:X1X2Y1Xn输入层隐含层输出层BP神经网络结构图图中是BP神经网络的输入值,是BP神经网络的预测值,为BP神经网络权值。

BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。

BP神经网络的训练过程包括一下几个步骤。

步骤一:网络初始化。

根据系统输入输出序列(,)X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,,ωω初始化隐含层阈值a,给ij jk定输出层阈值b,给定学习速率和神经元激励函数。

步骤二:隐含层输出计算。

根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。

步骤三:输出层输出计算。

根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。

步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。

步骤五:权值更新。

根据网络预测更新网络连接权值步骤六:阈值更新。

根据网络预测误差更新网络节点阈值。

步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。

下面是基本BP算法的流程图。

BP神经网络的拓扑结构如下图所示:X1X2Y1n X输入层 隐含层 输出层BP 神经网络预测的算法流程如下:步骤一:对初始数据进行标准化。

步骤二:利用原始数据对网络进行训练。

步骤三:对未来第t 年第i 类污染程度的河流长度比例进行预测。

步骤四:利用第年预测得到的数据作为样本再对网络进行训练。

步骤五:然后令1t t =+,回到Step2,直到10t =。

BP 神经网络

BP 神经网络
数更精确,容错性较好。 输入与负无穷到正无穷的范 围映射到0~1或 -1~1区间内, 具有非线性的放大功能
二、BP神经网络的结构
BP神经网络采用误差反向传播算法 (Back-Propagation Algorithm)进 行学习。在BP网络中,数据从输入 层经隐含层逐层向后传播,训练网络 权值时,则沿着减少误差的方向,从 输出层经过中间各层逐层向前修正网 络的连接权值。
达数万次迭代。根据网络的大小,训练过程可能需要主机时间几个到几十个小
时。 (2)需大量训练数据:人工神经网络在很大程度上取决于训练时关于问题的输
入-输出数据,若只有少量输入-输出数据,一般不考虑使用人工神经网络。
(3)不能保证最佳结果:反向传播是调整网络的一个富有创造性的方法,但它 并不能保证网络能恰当地工作。训练可能导致网络发生偏离,使之在一些操作 区域内结果准确,而在其他区域则不准确。此外,在训练过程中,有可能偶尔 陷入“局部最小”。

够在训练过程中自动调节步长。

当误差以减小的方式趋于目标时,说明正方向是正确的,可以增加学习率; 当误差增加超过一定范围时,说明前一步修正进行的不正确,应减小步长,并 撤销前一步修正过程。
六、BP神经网络的优化

3.数据的归一化处理 BP神经网络在训练前对数据进行归一化处理,隐含层的数量通常不宜过多, 虽然将数据映射到更小的数据区间,有效提高学习速度。
2 1 m (3)网络关于第p个样本的误差: Ep d pj Ypj 2 j 1
(4) 网络关于整个样本集的误差:
E Ep
p
三、BP神经网络的学习算法 2.误差传播分析:
Ⅰ 输出层权的调整 ANp wpq ∆wpq 第L-1层 wpq= wpq+∆wpq 反向传播时,把误差信号按照原来正向传播的通路反向传回,并对每个神 经元的权数进行修改,以望误差信号趋向最小。 权值调整量=学习率*局部梯度*上一层信号输出 第L层 ANq

实验五BP神经网络的构建与使用(一)

实验五BP神经网络的构建与使用(一)

人工神经网络实验五BP神经网络的构建与使用(一)一、实验目的1、熟悉MATLAB中神经网络工具箱的使用方法;2、掌握BP神经网络的特性和应用范围;3、掌握使用BP神经网络解决实际问题的方法;二、实验内容:在第四次实验中,试图用线性神经网络求解函数逼近问题,从实验的结果可以看到未能达到预期的效果,下面使用BP 神经网络来求解函数逼近问题:1、有21组单输入矢量和相对应的目标矢量,参考书《神经网络实验教程》P36的示例程序,试设计一个BP神经网络来实现这对数组的函数关系。

BP神经网络的部分参数输入与目标数据如下:BP神经网络参数:隐含层神经元个数为5个,设置BP神经网络的最大训练次数为1000。

提示:正确选择输入层到隐含层、隐含层到输出层的激活函数,tansig的定义域为负无穷到正无穷,值域为-1到1,logsig的定义域为负无穷到正无穷,值域为0到1;为观察训练后神经网络的效果,可以利用sim()函数(参见书P22)和plot()函数(参见书P15)在同坐标中画出输入数据和期望目标数据、测试数据和测试数据输出的图形输入数据:P=-1:0.1:1期望目标数据:T=[-0.96、0.577、-0.0729、0.377、0.641、0.66、0.461、0.1336、0.201、-0.434、-0.5、-0.393、-0.1647、0.0988、0.3072、0.396、0.3449、0.1816、-0.0312、-0.2183、-0.3201](注意:为了清楚的表示数据,我在数据间加了逗号,同学们在MATLAB中使用进请将逗号改为空格)截图:代码:P=-1:0.1:1;T=[-0.960.577-0.07290.3770.6410.660.4610.13360.201-0.434-0.5-0.393-0.16470.09880.30720.3960.34490.1816-0.0312-0.2183-0.3201];%创建一个BP神经网络,每一个输入向量的取值范围为[-1,1],隐含层有5个神经元,输出层%有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为logsig,训练函数为梯度下%降函数,即2.3.2节中所描述的标准学习算法net=newff([-11],[5,1],{'tansig','tansig'},'traingd');%可以改变训练步数为3000、5000、10000来查看网络的训练结果net.trainParam.epochs=5000;%目标误差设为0.01net.trainParam.goal=0.01;%设置学习速率为0.1LP.lr=0.1;net=train(net,P,T);y=sim(net,P);figurehndl1=plot(P,y);%设置线宽为2set(hndl1,'linewidth',2);%设置线的颜色为红色set(hndl1,'color','red');hold onhndl2=plot(P,T);set(hndl2,'linewidth',2);%设置图形标题title('BP神经网络逼近非线性函数的MATLAB实现'); %设置图例legend('BP神经网络逼近非线性函数','原数据')2、对1中建立的BP神经网络进行测试,测试数据为:P2=-1:0.025:1并对测试结果进行分析,3、当最大训练次数设置为3000、5000、10000时,分析网络的输出效果。

BP神经网络模型

BP神经网络模型

BP网络旳原则学习算法
BP算法直观解释
◦ 情况一直观体现
◦ 当误差对权值旳偏 导数不小于零时,权值 调整量为负,实际输 出不小于期望输出, 权值向降低方向调整, 使得实际输出与期望 输出旳差降低。
e
who
e w ho
>0,此时Δwho<0
BP网络旳原则学习算法
BP算法直观解释
◦ 情况二直观体现
xx1,x2, ,xn
h h y yo o i i h y h y o o ii1 1 1 1 ,,,,h h y y o o ii2 2 2 2 ,,,,
,h ip
,h o p ,yiq
,y o q
dod1,d2, ,dq
BP网络旳原则学习算法
◦ 输入层与中间层旳连接权值: w ih ◦ 隐含层与输出层旳连接权值: w h o ◦ 隐含层各神经元旳阈值: b h ◦ 输出层各神经元旳阈值: b o ◦ 样本数据个数: k1,2, m ◦ 激活函数: f ( )
将误差分摊给各层旳全部 单元---各层单元旳误 差信号
修正各单元权 值
•学习旳过程:
• 信号旳正向传播 向传播
误差旳反
BP网络旳原则学习算法-学习过程
•正向传播:
• 输入样本---输入层---各隐层---输出层
•判断是否转入反向传播阶段:
• 若输出层旳实际输出与期望旳输出(教师信号)不 符
•误差反传
第七步,利用隐含层各神经元旳 h ( k ) 各神经元旳输入修正连接权。
和输入层
wih(k)weihhihe(k)hiw h(ihk)h(k)xi(k) wiN h1wiN hh(k)xi(k)
BP网络旳原则学习算法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络算法原理:输入信号 x i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号 y k,网络训练的每个样本包括输入向量x 和期望输出量d,网络输出值y 与期望输出值 d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值w ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。

此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

变量定义:设输入层有 n 个神经元,隐含层有p 个神经元 , 输出层有 q 个神经元输入向量: x x1 , x2 ,L , x n隐含层输入向量:hi hi1, hi2 ,L , hi p隐含层输出向量:ho ho1 , ho2 ,L ,ho p输出层输入向量:yi yi1, yi2 ,L , yi q输出层输出向量:yo yo1, yo2 ,L , yo q期望输出向量 : do d1, d2 ,L , d q输入层与中间层的连接权值:w ih隐含层与输出层的连接权值:w ho隐含层各神经元的阈值: b h输出层各神经元的阈值:b o样本数据个数 :k1,2,L m激活函数 : f误差函数: e 1 q(d o (k )yo o (k )) 22 o1算法步骤:Step1. 网络初始化 。

给各连接权值分别赋一个区间( -1 , 1)内的随机数,设定误差函数 e ,给定计算精度值和最大学习次数 M 。

Step2. 随机选取第 k 个输入样本x( k)x 1( k ), x 2 (k),L , x n (k ) 及对应期望输出d o ( k) d 1 (k ), d 2 ( k),L , d q (k)Step3. 计算隐含层各神经元的输入nhi h ( k)w ih x i (k ) b h h 1,2,L , p 和输出i1ho h (k)f (hi h (k )) h 1,2, L , p及输 出 层各 神 经元的输入pyi o (k )w ho ho h (k) b o o 1,2,L q 和输出 yo o ( k) f ( yi o (k )) o 1,2, L , ph 1Step4. 利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导数 o (k ) 。

e e yi ow ho yi o w hopyi o ( k) (hw ho ho h (k ) b o )ho h (k )w how hoe( 1q (d o ( k) yo o (k))) 2 2 o 1( d o (k )yi oyi o(d o (k) yo o (k ))f ( yi o (k )) @ o (k )Step5. 利用隐含层到输出层的连接权值、输出层的差函数对隐含层各神经元的偏导数h (k ) 。

e e yi o o ( k) ho h (k )w hoyi owhoeehi h (k)wihhi h ( k) w ihnhi h (k )( w ih x i (k ) b h )i1x i ( k)wihwihyo o (k )) yo o (k )o ( k) 和隐含层的输出计算误精品文档e hi h (k )(1q(do( k)yo (k)) 2 )2 o 1o ho h (k )ho h (k )hi h (k )(1q(d o ( k)f( yi o (k )))2 )ho h (k)2 o1ho h ( k)hi h (k)(1q((d o (k)f(p w ho ho h (k ) b o )2 ))2 o1h 1ho h (k )ho h (k)hi h (k ) q ho h (k)o 1( do(k )yoo(k ))f ( yio(k))who hi h(k) q(o (k )w ho )f (hi h ( k)) @h (k )o 1Step6. 利用输出层各神经元的o (k )和隐含层各神经元的输出来修正连接权值w ho (k ) 。

w ho (k )eo (k)ho h (k) whow ho N 1w ho N o (k )ho h (k)Step7. 利用隐含层各神经元的h (k ) 和输入层各神经元的输入修正连接权 w ih ( k) 。

w ih (k)e e hi h ( k)wih hi h ( k)h (k) x i ( k)wihw ih N 1w ih N h (k ) x i (k ) Step8. 计算全局误差。

1m qy o ( k)) 2E(d o (k)2m k 1 o1Step9. 判断网络误差是否满足要求。

当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。

否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。

算法流程图:网络初始化输入 x ,根据网络的状态方程计算网络输出y计算全局误差:1m qE(d o (k) y o (k))22m k 1o 1YESENOYES达到最大学习次数NO修改权值:训练完成w Nw N 1(k )x(k )参数确定:确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等也就确定了BP网络。

确定这些选项时有一定的指导原则,但更多的是靠经验和试凑。

1.样本数据采用 BP 神经网络方法建模的首要和前提条件是有足够多典型性好和精度高的样本。

而且,为监控训练(学习)过程使之不发生“过拟合”和评价建立的网络模型的性能和泛化能力,必须将收集到的数据随机分成训练样本、检验样本(10%以上)和测试样本( 10%以上) 3 部分。

2.输入 / 输出变量一般地,BP网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。

若输入变量较多,一般可通过主成份分析方法压减输入变量,也可根据剔除某一变量引起的系统误差与原系统误差的比值的大小来压减输入变量。

输出变量即为系统待分析的外生变量(系统性能指标或因变量),可以是一个,也可以是多个。

一般将一个具有多个输出的网络模型转化为多个具有一个输出的网络模型效果会更好,训练也更方便。

3.数据的预处理由于 BP 神经网络的隐层一般采用Sigmoid 转换函数,为提高训练速度和灵敏性以及有效避开Sigmoid 函数的饱和区,一般要求输入数据的值在0~1 之间。

因此,要对输入数据进行预处理。

一般要求对不同变量分别进行预处理,也可以对类似性质的变量进行统一的预处理。

如果输出层节点也采用Sigmoid 转换函数,输出变量也必须作相应的预处理,否则,输出变量也可以不做预处理。

但必须注意的是,预处理的数据训练完成后,网络输出的结果要进行反变换才能得到实际值。

再者,为保证建立的模型具有一定的外推能力,最好使数据预处理后的值在0.2 ~0.8 之间。

标准化:d d dmindmaxdmin4.隐层数一般认为,增加隐层数可以降低网络误差,提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合 (overfitting) ”造成网络的性能脆弱,泛化能力(generalization ability) 下降。

Hornik 等早已证明:若输入层和输出层采用线性转换函数,隐层采用 Sigmoid 转换函数,则含一个隐层的 MLP网络能够以任意精度逼近任何有理函数。

显然,这是一个存在性结论。

在设计 BP 网络时可参考这一点,应优先考虑 3 层 BP网络(即有 1 个隐层)。

输入层隐含层输出层x1y z -T1111x2y2z 2-T2 2x NyN 2w z N3-1T Nih hj3N3图三层 BP网络的拓扑结构5.隐层节点数精品文档在BP 网络中,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因,但是目前理论上还没有一种科学的和普遍的确定方法。

为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。

因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。

6.传递函数图 BP 网络常用的传递函数BP网络的传递函数有多种。

Log-sigmoid型函数的输入值可取任意值,输出值在0 和 1 之间; tan-sigmod 型传递函数 tansig的输入值可取任意值,输出值在-1 到+1之间;线性传递函数 purelin的输入与输出值可取任意值。

BP网络通常有一个或多个隐层,该层中的神经元均采用sigmoid 型传递函数,输出层的神经元则采用线性传递函数,整个网络的输出可以取任意值。

7. 学习率学习率影响系统学习过程的稳定性。

大的学习率可能使网络权值每一次的修正量过大,甚至会导致权值在修正过程中超出某个误差的极小值呈不规则跳跃而不收敛;但过小的学习率导致学习时间过长,不过能保证收敛于某个极小值。

所以,一般倾向选取较小的学习率以保证学习过程的收敛性(稳定性),通常在 0.01 ~0.8 之间。

8.网络的初始连接权值BP算法决定了误差函数一般存在(很)多个局部极小点,不同的网络初始权值直接决定了 BP 算法收敛于哪个局部极小点或是全局极小点。

因此,要求计算程序必须能够自由改变网络初始连接权值。

由于 Sigmoid 转换函数的特性,一般要求初始权值分布在 -0.5 ~ 0.5 之间比较有效。

10.收敛误差界值Emin在网络训练过程中应根据实际情况预先确定误差界值。

误差界值的选择完全根据网络模型的收敛速度大小和具体样本的学习精度来确定。

当Emin 值选择较小时,学习效果好,但收敛速度慢,训练次数增加。

如果网络模型的性能和泛化能力:训练神经网络的首要和根本任务是确保训练好的网络模型对非训练样本具有好的泛化能力(推广性),即有效逼近样本蕴含的内在规律,而不是看网络模型对训练样本的拟合能力。

判断建立的模型是否已有效逼近样本所蕴含的规律,主要不是看测Emin 值取得较大时则相反。

试样本误差大小的本身,而是要看测试样本的误差是否接近于训练样本和检验样本的误差。

非训练样本误差很接近训练样本误差或比其小,一般可认为建立的网络模型已有效逼近训练样本所蕴含的规律,否则,若相差很多(如几倍、几十倍甚至上千倍)就说明建立的网络模型并没有有效逼近训练样本所蕴含的规律,而只是在这些训练样本点上逼近而已,而建立的网络模型是对训练样本所蕴含规律的错误反映。

相关文档
最新文档