立体几何及三视图
7.1立体几何的结构特征及三视图直观图
(对应学生用书 P128)
几种常见的多面体的结构特征 (1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是正 多边形时,叫正棱柱(如正三棱柱, 正四棱柱).
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(2)正棱锥:底面是正多边形,且顶点在底面的射影是底面 中心的棱锥.
课前自主回顾
【解析】 若为D选项,则主视图为: D选项.
【答案】 D
,故不可能是
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(1)空间几何体的三视图是该几何体在三个两两垂直的平面 上的正投影,并不是从三个方向看到的该几何体的侧面表示的 图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线 和棱用实线表示,挡住的线要画成虚线.
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
对应学生用书 P127)
1.空间几何体的结构特征
(1)棱柱的侧棱都 平行且相等 ,上下底面是 全等 的多边形. 多 (2)棱锥的底面是任意多边形,侧面是有一个 公共点 面 的三角形. 体 (3)棱台可由 平行于棱锥底面 的平面截棱锥得 到,其上下底面是 相似 多边形.
高考总复习 · 课标版 · 数学(文)
【思路启迪】 利用有关几何体的概念判断所给命题的真 假.
【解析】 命题①符合平行六面体的定义,故命题①是正 确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故 命题②是错误的.因为直四棱柱的底面不一定是平行四边形, 故命题③是错误的.命题④由棱台的定义知是正确的.
第一章《立体几何初步》-----§3 三视图(3)
三、习题处理
13
9
8. . 用若干块相同的小正方体搭成一个几何体, 该几 用若干块相同的小正方体搭成一个几何体, 何体的三视图如图所示, 何体的三视图如图所示,则搭成该几何体需要的
6 小正方体的块数是________. . 小正方体的块数是
解析
由正视图和侧视图,知该几何体由两层小
正方体拼接成,由俯视图可知,最下层有 5 个小 正方体,由侧视图知上层仅有一个正方体,则共 有 6 个小正方体.
10
(三)解答题 9.画出如图所示的几何体的三视图. .画出如图所示的几何体的三视图.
解
三视图如图所示.
11
10.下图是一几何体的三视图,想象该几何体的几 .下图是一几何体的三视图, 何结构特征,画出该几何体的形状. 何结构特征,画出该几何体的形状.
ቤተ መጻሕፍቲ ባይዱ
解
由于俯视图有一个圆和一个四边
形,则该几何体是由旋转体和多面体 拼接成的组合体,结合左视图和主视 图,可知该几何体是由上面一个圆柱, 下面一个四棱柱拼接成的组合体.该 几何体的形状如图所示.
8
7.根据如图所示的俯视图,找出对应的物体. .根据如图所示的俯视图,找出对应的物体.
(1)对应 D 对应________;(2)对应 A 对应________;(3)对应 对应 ; 对应 ; 对应
E ________;(4)对应 C ; 对应 对应________;(5)对应 B 对应________. ; 对应 .
A.三棱锥 . C.四棱台 .
B.四棱锥 . D.三棱台 .
4
3.四个正方体按如图所示的方式放置, .四个正方体按如图所示的方式放置, 其中阴影部分为我们观察的正面, 其中阴影部分为我们观察的正面,则 该物体的三视图正确的为 ( B )
立体几何的结构特征及三视图直观图
主视图
01
主视图是物体正对着观察者时所 呈现的视图,通常放在最前面, 表示物体的高度和长度。
02
主视图反映了物体的前后、上下 关系,是三视图中最重要的一个 视图。
左视图
左视图是从物体的左侧观察得到的视 图,表示物体的宽度和深度。
左视图反映了物体的左右、上下关系 ,与主视图共同确定物体的前后关系 。
常见的空间几何体有长方体、 球体、圆柱体、圆锥体等。
每个几何体都有其特定的构成 方式和特点,如长方体由六个 面组成,球体是一个连续曲面 的几何体等。
几何体的度量属性
长度
面积
体积
角度
用于度量线段的长度。
用于度量平面图形的面 积。
用于度量三维空间中物 体所占的体积。
用于度量两条射线之间 的夹角。
03
俯视图
俯视图是从上往下观察得到的视图,表示物体的平面布局和 高度。
俯视图反映了物体的左右、前后关系,与主视图共同确定物 体的深度。
04
三视图与直观图的转换
三视图到直观图的转换方法
投影法
组合法
根据三视图中的投影关系,将三个视 图分别投射到三个相互垂直的平面上, 形成直观图。
结合投影法和坐标法,先根据投影关 系将三视图转换为平面图形,再通过 坐标法将平面图形转换为立体图形。
案例三
总结词:对比分析
详细描述:对于一些复杂的几何体,仅通过三视图可能难以完全理解其结构和形状,此时可以通过对 比分析三视图与直观图,更好地理解几何体的构造和特点。
感谢您的观看
THANKS
具有空间性和直观性,通过空间 想象和直观感知来研究几何对象源自之间的关系。立体几何的重要性
实际应用
(完整版)五年级立体几何拓展----三视图专属奥数讲义
学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。
立体几何篇(球、三视图)
立体几何篇(空间球专题)空间球:三个重要的模型三个重要的技巧三个重要的模型1、正方体模型2、正四面体模型3、长方体模型1、正方体模型正方体的常用结论(假设边长为a )(1)外接球a r 231=,棱切球a r 222=,内切球a r 213= (2)最大投影面积为23a ,最小投影面积为2a2、正四面体正四面体的常用结论(假设边长为b )(1)任何一个正四面体都对应一个正方体且a b 2=(2)外接球即为正方体的外接球b a r 46231==;棱切球即为正方体的内切球b a r 42222==; 内切球半径为外接球半径的31,b r r 1263113== 等体积331431r S h S V ••=•= h r h r 434113=•= 3113=r r b h 36= (3)正四面体的高等于b 36,且正四面体内任意一点到四个面的距离之和为定值(正四面体的高) (4)正四面体对棱互相垂直,对棱之间的距离为b 22; (5)最大投影面积为221b ,最小投影面积为242b例1、正三棱锥ABC S -的侧棱与底面边长相等,如果F E ,分别为AB SC ,的中点,那么异面直线EF 与SA 所成的角等于_______________________例2、已知ABC S -是一体积为72的正四面体,连接两个面的垂心F E ,,则线段EF 的长是_______________________3、长方体模型长方体的常用结论(c b a ,,为长方体的长、宽、高)(1)三边两两垂直或三面两两垂直,即称“墙角”可补成对应长方体,体对角线即为直径,即有22224R c b a =++;(2)具有公共斜边的直角三角形,斜边即为球的直径。
例3、(辽宁高考)已知点D C B A P ,,,,是球O 表面上的点,⊥PA 平面ABCD ,四边形ABCD 的边长为32正方形,若62=PA ,则OAB ∆的面积为___________例4、(浙江高考)如图,已知球O 点面上四点D C B A ,,,,⊥DA 平面ABC ,BC AB ⊥,3===BC AB DA ,则球O 的体积等于_______________4、空间球的三个重要的准则1、外接球的球心在底面三角形的外心向上作的垂线;2、常用垂径勾股定理;3、内切球常用等体积;4、复杂的可以建系求解。
立体几何初步知识点全总结
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
《高一立体几何三视图》课件
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
高中数学立体几何总结
高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。
(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。
2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。
3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。
(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。
2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。
(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。
2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。
3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。
(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。
2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。
(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。
2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。
(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。
当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。
2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。
高考数学一轮复习 第八章 立体几何 第1讲 简单几何体及其直观图、三视图教学案 理
【第1讲简单几何体及其直观图、三视图】之小船创作一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征(1)画法:常用斜二测画法.(2)规则:①在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使x′O′y′=45°,它们确定的平面表示水平平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段.③已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的12. 3.三视图 (1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法 ①基本要求:长对正,高平齐,宽相等. ②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.常用结论1.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.二、教材衍化1.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )答案:(1)×(2)×(3)×(4)×(5)×(6)×二、易错纠偏常见误区|K(1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错;(3)斜二测画法的规则不清致误.1.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的主视图与俯视图如图所示,则该几何体的左视图为( )解析:选B.先根据主视图和俯视图还原出几何体,再作其左视图.由几何体的主视图和俯视图可知该几何体为图①,故其左视图为图②.故选B.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO 为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的几何特征(自主练透) 1.下列说法正确的是( )A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)(2020·宜宾模拟)已知棱长都为2的正三棱柱ABCA1B1C1的直观图如图.若正三棱柱ABCA1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为( )(2)(2020·湖南衡阳二模)如图,正方体ABCDA1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCDA1B1C1D1在平面α上的俯视图的面积为( )A.2 B.1+ 3 C.2 3 D.22【解析】(1)由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中有两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.故选B.(2)由题意得AB在平面α内,且平面α与平面ABCD 所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.【答案】(1)B (2)B角度二已知三视图,判断几何体(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥D.四棱柱(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2C.3 D.4【解析】(1)由题三视图得直观图如图所示,为三棱柱,故选B.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =PA =2,AB ⊥AD ,PA ⊥平面ABCD ,故△PAD ,△PAB 为直角三角形,因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC ,又BC ⊥AB ,且PA ∩AB =A ,所以BC ⊥平面PAB ,又PB ⊂平面PAB ,所以BC ⊥PB , 所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22,故△PCD 不是直角三角形,故选C.【答案】 (1)B (2)C【迁移探究1】 (变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,PA =AB =AD =2,BC =1,经计算可知,PB =PD =22,PC =3,CD =5,故最长棱为PC ,且|PC |=3.【迁移探究2】 (变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC ,且S △PBC =12BC ·PB =12×1×22=2,即最小面的面积为 2. 角度三 已知几何体的某些视图,判断其他视图(1)(2020·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是( )(2)(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的主视图和俯视图如图中粗实线所示,则该楔体的左视图的周长为( )A .3丈B .6丈C .8丈D .(5+13)丈【解析】 (1)圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间,故选B.(2)由题意可知该楔体的左视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝ ⎛⎭⎪⎪⎫322=52(丈),所以该楔体左视图的周长为3+2×52=8(丈).故选C. 【答案】 (1)B (2)C三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是( ) A.2 B.2 2 C.2 3 D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥PABCD截去三棱锥PABD后得到的三棱锥PBCD.其中四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.空间几何体的直观图(自主练透) 1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为( )A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四边形ABCD为矩形.2.已知等边三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2B.38a2C.68a2D.616a2解析:选D.如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.3.在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析:因为OE=(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.答案:22(1)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变(2)平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( ) A.16 B .26 C.36D .12【解析】 几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,主视图和左视图中分别有一个直角.主视图和左视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A. 【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】 第一步,根据题意,画正方体,在正方体内画出俯视图,如图①.第二步,找直角,在俯视图、主视图和左视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥ABCD,如图②.[基础题组练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选 B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.2.如图所示的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A.①② B.②③ C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.3.(2020·陕西彬州质检)一个几何体的三视图如图所示,其中主视图中△ABC 是边长为1的等边三角形,左视图为正六边形,那么该几何体的左视图的面积为( ) A.38 B .34 C .1 D .32 解析:选A.由三视图可知该几何体为正六棱锥,其直观图如图所示.该正六棱锥的底面正六边形的边长为12,侧棱长为1,高为32.左视图的底面边长为正六边形的高,为32,则该几何体的左视图的面积为12×32×32=38,故选A. 4.(2020·江西省名校学术联盟质检)如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为( )A .{1,5}B .{1,6}C .{1,2,5}D .{1,2,22,6}解析:选B.如图所示,该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.5.(一题多解)(2020·河南非凡联盟4月联考)某组合体的主视图和左视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O′A′B′C′的面积为( )A.12 B.3 2 C.6 2 D.6解析:选B.法一:由题图易知,该几何体为一个四棱锥(高为23,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O′A′B′C′的面积为4×32sin 45°=3 2.法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的24,即可得结果.6. 某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:127.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥VABCD的高为6.答案:69.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图如图所示(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3). 10.已知正三棱锥V ABC 的主视图和俯视图如图所示.(1)画出该三棱锥的直观图和左视图;(2)求出左视图的面积.解:(1)如图.(2)左视图中VA =42-⎝ ⎛⎭⎪⎪⎫23×32×232=12=2 3. 则S △VBC =12×23×23=6. [综合题组练]1.(2020·河南开封一模)如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )解析:选B.由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C ,D.由于两球不等,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,所以排除A.B 正确.2.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析:选D.根据几何体的三视图可得,左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与主视图面积之比的最大值为( )A.1 B.2C. 3 D.2解析:选D.主视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其主视图均是三角形且点P在主视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S主视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以S俯视图S主视图的最大值为a212a2=2,故选D.4.(2020·河北衡水二模)某几何体的三视图如图所示,三视图中的点P ,Q 分别对应原几何体中的点A ,B ,在此几何体中从点A 经过一条侧棱上点R 到达点B 的最短路径的长度为( )A .aB .2a C.52a D .3a解析:选D.由几何体的三视图可知,该几何体为棱长为a 的正四面体(如图1),将侧面三角形CDB 绕CD 翻折到与面ACD 在同一平面内(如图2),连接AB 与CD 交于一点R ,该点即为使路径最短的侧棱上的点R ,且最短路径为AB 长,在△ACB 中,由余弦定理易知AB =a 2+a 2-2a ·a ·cos 120°=3a .故选D.5.已知正方体ABCD A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎥⎥⎤0,13 B .⎝ ⎛⎦⎥⎥⎤0,12 C.⎣⎢⎢⎡⎭⎪⎪⎫12,1 D .⎣⎢⎢⎡⎦⎥⎥⎤12,23 解析:选B.由题意,正方体ABCD A 1B 1C 1D 1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0<BM≤12时,截面为四边形,当BM>12时,截面为五边形,故选B.6.已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ为直角三角形,则该直角三角形斜边长的最小值为( )A.2 2 B.3C.2 3 D.4解析:选C.如图,不妨设N在B处,AM=h,CQ=m,则MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.Δ=h2-8≥0即h2≥8,该直角三角形斜边MB=4+h2≥2 3.故选C.7.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.解析:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.答案:968.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-1。
高中数学立体几何PPT课件
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
立体几何和三视图
立体几何和三视图一、知识点回顾1、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
▲长对正,高平齐 ,宽相等2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=+=++圆台二、专题讲解1、空间角问题(1)直线与直线所成的角 ①两平行直线所成的角:规定为 0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为 0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
高考数学立体几何专题1空间立体几何的三视图、表面积和体积
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
高考数学(理)之立体几何与空间向量 专题01 空间几何体的结构及其三视图和直观图(解析版)
立体几何与空间向量01 空间几何体的结构及其三视图和直观图【考点讲解】一、具体目标:①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
②会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。
③会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).二、知识概述:1.空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面:在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高:在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.2.空间几何体的三视图三视图:几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.3.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.4.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.三、备考策略:1.以考查三视图、几何体的结构特征以及几何体的面积体积计算为主,三视图基本稳定为选择题或填空题,难度中等以下;几何体的结构特征往往在解答题中考查,与平行关系、垂直关系等相结合.2.与立体几何相关的“数学文化”等相结合,考查数学应用的.3.备考重点:(1) 掌握三视图与直观图的相互转换方法是关键;(2)掌握常见几何体的结构特征.四、常考题型:三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征. 4. 三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图画出几何体地面的直观图;(2)观察正视图和侧视图找到几何体前、后、左、右的高度;(3)画出整体,然后再根据三视图进行调整. 1. 【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324【解析】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.故选B. 【答案】B2.【2018年高考全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )【真题分析】A .172B .52C .3D .2【分析】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.【解析】根据圆柱的三视图以及其本身的特征,知点M 在上底面上,点N 在下底面上,且可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B . 【答案】B3.【2018年高考全国Ⅰ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A . 【答案】A4.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )俯视图正视图A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 【答案】C5.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【解析】本题要求会利用三视图的性质还原原立体图形,然后再应用立体图形的性质进行计算或验证. 由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ====则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个,故选C. 【答案】C6.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16【解析】解决此类问题的关键是由三视图准确确定空间几何体的形状和结构特征,要求熟悉常见几何体的三视图.由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【答案】B7.【2017年高考北京卷理数】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.B.C.D.2【解析】几何体是四棱锥P ABCD-,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l=++=,故选B.【答案】B8.【2017年高考全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .【答案】B9.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .【答案】A10.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【答案】401.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60B.30C.20D.10【解析】本题主要考查的将三视图还原成几何体后求体积的问题。
三视图与立体几何
三视图与立体几何立体几何是几何学的一个重要分支,主要研究物体的形状、大小、位置以及它们之间的相互关系。
而在立体几何中,三视图则是一种常用的具体表达方式。
本文将介绍三视图的概念、作用以及其在立体几何中的应用。
一、三视图的概念与作用三视图是从三个不同方向观察物体得出的投影图,分别是俯视图、前视图和侧视图。
它们能够以二维平面的形式展示出物体的三个主要视图,方便我们对物体进行全面的观察和分析。
三视图通常用于工程图纸、机械制图以及建筑设计等领域,对于准确表达物体的形状和结构非常重要。
1. 俯视图:俯视图是从物体的上方向下观察所得的投影图。
它展示了物体在水平面上的形状和尺寸,能够清楚地显示物体的横向轮廓。
俯视图常用于展示物体的平面结构和布局,以及物体各部分之间的相对位置关系。
2. 前视图:前视图是从物体的正面观察所得的投影图。
它展示了物体在垂直于俯视方向的平面上的形状和尺寸,能够清楚地显示物体的纵向轮廓。
前视图常用于展示物体的外观和整体形状。
3. 侧视图:侧视图是从物体的侧面观察所得的投影图。
它展示了物体在与俯视和前视方向垂直的平面上的形状和尺寸,能够清楚地显示物体的侧面轮廓。
侧视图常用于展示物体的厚度和倾斜情况。
三视图的作用主要体现在以下几个方面:1. 便于分析和理解:三视图能够以直观的方式展示物体的外观和结构,便于我们对物体进行分析和理解。
通过观察三视图,我们可以推导出物体的各种几何特征,如体积、面积、轮廓等。
2. 便于制图和设计:对于需要进行工程图纸、机械制图或者建筑设计的工作,三视图是必不可少的工具。
它们可以作为参考,帮助我们绘制准确的图纸和设计方案,确保物体的形状和结构符合要求。
3. 便于交流和沟通:在工程和设计领域,人们往往需要分享和交流自己的设计和构想。
通过三视图,我们可以以简单的方式将我们的想法传达给他人,减少误解和沟通障碍。
二、三视图在立体几何中的应用三视图在立体几何中具有广泛的应用。
它们不仅在实际工程和设计中起到重要作用,也在学术研究和教学中广泛使用。
高中数学立体几何三视图课件
正 视 图 反 映 了 物 体 的 高 度 和 长 度
侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
c(高) b(宽) a(长)
判断下列三视图的正误:
长未对正
宽不相等
高不平齐
例1: 圆柱的三视图
俯
正视图
侧视图
侧
俯视图
圆柱 正
例2: 圆锥的三视图
侧视图 四 棱 台
正视图
俯 视 图
正
不同的几何体可能有某一,两个视图相同.所以我们 只有通过全部三个视图才能全面准确的反映一个几 何体的特征。
三视图还原立体几何简单与否因人而 异,空间想象力强的人,一眼便能看出是什么 样的图形.我就觉得这种题目还是挺简单的, 哈哈. 首先我给你几个最常见的例子.1.三面都是 长方,就是长方体;2.上面看圆,两个侧面看 长方,就是圆柱;3.上面看圆,两侧面看三角, 就是圆锥;4.上面看多边形,两侧面看三角, 就是棱锥;5.上面看多边形,两侧看长方,就 是棱柱;6.上面看圆,两侧看梯形,就是圆台 ;7.三面都是圆,就是球.
①圆柱可以由 矩形 绕其一边所在直线旋转得到.
②圆锥可以由直角三角形绕其 直角边 所在直线旋转得到. 直角腰 ③圆台可以由直角梯形绕 所在直线或等腰梯形绕上、下 底中点连线所在直线旋转得到,也可由平行于底面的平面截 圆锥得到. ④球可以由半圆或圆绕直径 所在直线旋转得到.
答案
2.空间几何体的三视图 空间几何体的三视图是 正投影 得到,这种投影下与投影面
•
其次要注意的是,三视图显示了图形的 长宽高,从上方看的图显示了长宽或者直 径之类的东西,从侧面看的图显示了长和 高,或者宽和高,或者直径和高之类的. 第三要是你空间想象力不强,那么就得 多练习.至于方法,我觉得多锻炼逆向思维 能力是最好的.你可以随便想象出一个立 体图形,然后自己给那个图形画三视图,然 后再只看你的三视图想象你刚才想的图形 ,反复练习,多总结,我想你会有启发、收获 的.
立体几何-三视图
三视图
为了使空间图形的直观图更准确地反映空间图形的大小和形状,往往需要把图形向几个不同的平面分别作正投影,然后把这些投影图放在同一个平面内,并有机地结合起来表示物体的形状和大小。
通常,总是选取三个两两互相垂直的平面作为投影面。
一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫作俯视图。
一个投影面放置在正前方,这个投影面叫作直立投影面,投影到这个平面内的图形叫作正视图。
和直立、水平两个投影面都垂直的投影面叫作侧立投影面,通常把这个平面放在直立投影面的右侧,投影到这个平面内的图形叫作左视图。
将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫作空间图形的三视图。
画三视图的规则:
1,首先确定正视、俯视、左视的方向。
同一几何体,相对我们的角度不同,其三视图也不同,应确立主视、俯视方向,从而确立左视方向,这样才能找到投射面并画出三个方向上的几何体外轮廓投影,即得三视图。
2,主视图、俯视图、左视图的联系是:“长对正,高平齐,宽相等”,保持固定位置有利于作图。
3,被挡住的轮廓线画出虚线,看到的轮廓线画成实线。
作图步骤:
1,确定视图方向;
2,布置视图;
3,先画出能反映物体真实形状的一个视图;
4,运用“长对正、高平齐、宽相等”的原则画出其他视图;
5,检查,加深,加粗。
简单组合体的三视图
组合体的生成方式:
由三视图还原成实物图(直观图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何及三视图(四十八)
1.(优质试题·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()
A.一个圆台、两个圆锥B.两个圆台、一个圆柱
C.两个圆台、一个圆锥D.一个圆柱、两个圆锥
答案 D
解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.
2.以下关于几何体的三视图的论述中,正确的是()
A.正方体的三视图是三个全等的正方形
B.球的三视图是三个全等的圆
C.水平放置的正四面体的三视图都是正三角形
D.水平放置的圆台的俯视图是一个圆
答案 B
解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.
3.如图所示,几何体的正视图与侧视图都正确的是()
答案 B
解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.
4.一个几何体的三视图如图,则组成该几何体的简单几何体为()
A .圆柱和圆锥
B .正方体和圆锥
C .四棱柱和圆锥
D .正方体和球
答案 C
5.(优质试题·沧州七校联考)三棱锥S -ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )
A .16 3 B.38 C .4 2 D .211
答案 C
解析 由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形.在△ABC 中,AC =4,AC 边上的高为23,所以BC =4.在Rt △SBC 中,由SC =4,可得SB =4 2. 6.(优质试题·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( ) A .2 2 B .6 2 C .1 D. 2 答案 A
解析 因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V =1
3×22×1×3=2 2.
7.(优质试题·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为( ) A. 2 B. 3 C .2 D .4 答案 A
解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为1
2×2×
(3)2-1= 2.
8.(优质试题·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()
A.①②B.③④
C.①③D.②④
答案 D
解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.
9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()
答案 D
解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图
中还有一条虚线,故该几何体的俯视图不可能是D,故选D.
10.(优质试题·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()
A.①②③B.②③④
C.①③④D.②④③
答案 B
解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(优质试题·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()
A.4 B.3 2
C.2 2 D.2 3
答案 D
解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图
可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=
PB2+BC2=8+22=12,则PC=23,故选D.
12.(优质试题·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz 平面为投影面,则得到的正视图可以为()
答案 A
解析 设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S -ABC 如图①所示,在xOz 平面的投影如图②所示.
其中S ′是S 在xOz 平面的投影,A ′是A 在xOz 平面的投影,O 是B 在xOz 平面的投影,SB 在xOz 平面的投影是S ′O ,并且是实线,CA 在xOz 平面的投影是CA ′,且是虚线,如图③. 13.(优质试题·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为( )
A .2 2
B .4
C .2 3
D .2 6
答案 C
解析 由三视图知该几何体为棱锥S -ABD ,其中SC ⊥平面ABCD ,将其放在正方体中,如图所示.四面体S -ABD 的四个面中△SBD 的面积最大,三角形SBD 是边长为22的等边三角形,所以此四面体的四个面中面积最大为
3
4×8=2 3.故选C.
14.(优质试题·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm 的半圆,则该圆锥的高为________cm. 答案
3
解析 设圆锥的底面圆半径为r cm ,则2πr =2π,解得r =1 cm ,∴h =
22-1= 3 cm.
15.(优质试题·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则这个四面体的正视图的面积为________.
答案 2 2
解析 由俯视图可得,原正四面体AMNC 可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为1
2×2×22=2 2.
16.(优质试题·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________. 答案 13
解析 将正三棱柱ABC -A 1B 1C 1沿侧棱AA 1展开,再拼接一次,如图所示,
在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.
由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d =
122+52=13.
17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O 1A 1B 1C 1如图2,其中O 1A 1=6,O 1C 1=2,则该几何体的侧面积为________.
答案96
解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96.
1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()
A.四棱柱B.三棱柱
C.长方体D.三棱锥
答案 B
解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放
的三棱柱.
2.(优质试题·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()
A.4 2 B.34
C.41 D.5 2
答案 C
解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.
3.(优质试题·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()
答案 C
解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.
4.(优质试题·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()
答案 C
解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.
5.(优质试题·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点
A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的
正视图是()。