Matlab关于数值计算的实现
Matlab中常用的数值计算方法
Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
matlab实现数值计算功能源程序(个人整理)
matlab数值计算功能1,基础运算(1)多项式的创建与表达将多项式(x-6)(x-3)(x-8)表示为系数形式a=[6 3 8] % 写成根矢量pa=poly(a)% 求出系数矢量ppa=poly2sym(pa,'x') % 表示成符号形式ezplot(ppa,[-50,50])求3介方阵A的特征多项式a=[6 2 4;7 5 6;1 3 6 ];pa=poly(a)% 写出系数矢量ppa=poly2sym(pa) %表示成符号形式ezplot(ppa,[-50,50]) % 绘图求x^3-6x^2-72x-27的根。
a=[1,-6,-72,-85]; % 写出多项式系数矢量r=roots(a) % 求多项式的根(2)多项式的乘除运算c=conv(a,b) %乘法[q,r]=deconv(c,a)% 除法求a(s)=s^2+2s+3乘以b(s)=4s^2+5s+6的乘积a=[1 2 3]b=[4 5 6] % 写出系数矢量c=conv(a,b)c=poly2sym(c,'s') % 写成符号形式的多项式展开(s^2+2s+2)(s+4)(s+1)并验证结果被(s+4),(s+3)除后的结果。
c=conv([1,2,2],conv([1,4],[1,1]))cs=poly2sym(c,'s')c=[1 7 16 18 8][q1,r1]=deconv(c,[1,4])[q2,r2]=deconv(c,[1,3])cc=conv(q2,[1,3])test=((c-r2)==cc)其他常用的多项式运算命令pa=polyval(p,s) % 按数组规则计算给定s时多项式的值pm=polyvalm(p,s)% 按矩阵规则计算给定s时多项式的值[r,p,k]=residue(b,a) % 部分分式展开,b,a分别是分子,分母多项式系数矢量。
r,p,k分别是留数,极点和值项矢量。
如何使用MATLAB进行数值计算
如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。
而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。
本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。
二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。
MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。
MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。
我们可以使用括号或索引来访问矩阵中的元素。
例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。
MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。
这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。
三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。
1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。
例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。
代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。
2. 数值方法对于一些复杂的方程,无法用解析方法求解。
这时,可以使用数值方法来近似求解。
MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。
这些方法可以通过迭代逼近的方式求解方程的根。
代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。
matlab数值计算实验报告
matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种广泛应用于科学与工程领域的高级计算机语言和环境,它提供了丰富的函数库和工具箱,方便用户进行数值计算、数据分析和可视化等任务。
本实验报告将介绍我在使用Matlab进行数值计算实验中的一些经验和心得体会。
一、数值计算方法数值计算方法是一种利用数值近似来解决实际问题的方法,它在科学和工程领域具有广泛的应用。
在Matlab中,我们可以利用内置的函数和工具箱来实现各种数值计算方法,例如插值、数值积分、数值微分等。
二、插值方法插值是一种通过已知数据点来推测未知数据点的方法。
在Matlab中,我们可以使用interp1函数来进行插值计算。
例如,我们可以通过已知的一些离散数据点,利用interp1函数来估计其他位置的数值。
这在信号处理、图像处理等领域具有重要的应用。
三、数值积分数值积分是一种通过分割曲线或曲面来近似计算其面积或体积的方法。
在Matlab中,我们可以使用quad函数来进行数值积分计算。
例如,我们可以通过quad函数来计算某个函数在给定区间上的积分值。
这在概率统计、物理学等领域具有广泛的应用。
四、数值微分数值微分是一种通过数值逼近来计算函数导数的方法。
在Matlab中,我们可以使用diff函数来进行数值微分计算。
例如,我们可以通过diff函数来计算某个函数在给定点上的导数值。
这在优化算法、控制系统等领域具有重要的应用。
五、数值求解数值求解是一种通过数值近似来计算方程或方程组的根的方法。
在Matlab中,我们可以使用fsolve函数来进行数值求解计算。
例如,我们可以通过fsolve函数来求解某个非线性方程的根。
这在工程计算、金融分析等领域具有广泛的应用。
六、实验应用在本次实验中,我使用Matlab进行了一些数值计算的应用实验。
例如,我利用插值方法来估计某个信号在给定位置的数值,利用数值积分方法来计算某个曲线下的面积,利用数值微分方法来计算某个函数在给定点的导数值,以及利用数值求解方法来求解某个方程的根。
实验五+MATLAB数值计算(含实验报告)
实验五 MATLAB 数值计算一、实验目的1.掌握求数值导数和数值积分的方法。
2.掌握代数方程数值求解的方法。
3.掌握常微分方程数值求解的方法。
二、实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。
设计提示1.参考本节主要内容,学习并理解相关函数的含义及调用方法。
三、实验内容1.线性系统方程:分别使用左除(\)和求逆(inv )求解下面系统方程的解:⎪⎩⎪⎨⎧=+=+=++377251463c b b a c b a2. 数值积分:使用quad 和trapz 求解⎰-503/dx xe x 的数值积分,并与其解析解9243/5+--e 相比较;3. 请完成教材P154页中实验指导环节的实验内容第2题4. 请完成教材P155页中思考练习的第3题(1),并绘制解在该求解区间(即[0,5])上的图像;。
5、请完成教材P164页实验指导环节的实验内容第5题。
(提示:该函数的符号导数,可以通过函数diff 求得。
首先定义符号变表达式,如求sin(x)的一阶符号导数,可以先定义f=’sin(x)’;df=diff(f);可求得df=cos(x)。
其中df 即为函数f 的一阶符号导数)。
四、实验报告要求(包含预习报告要求和最终报告要求)1.实验名称2.实验目的3.实验设备及条件4.实验内容及要求5.实验程序设计指程序代码。
6.实验结果及结果分析实验结果要求必须客观,现象。
结果分析是对实验结果的理论评判。
7.实验中出现的问题及解决方法8. 思考题的回答五、实验报告的提交方式Word文档,命名方式:实验号_你的学号_姓名例如本次实验:实验一_000000001_张三.doc(信息101提交报告邮箱):E_mail: *******************(网络工程101提交作业邮箱):E_mail: *******************(注意网络班的M是大写的)下一次课前提交,过期不收!六、参考文献参考教材和Matlab帮助文件。
数值计算三角多项式逼近matlab实现
数值计算三角多项式逼近matlab实现数值计算三角多项式逼近matlab实现1. 介绍数值计算在工程学、物理学、计算机科学等领域中扮演着重要角色,而三角多项式逼近则是其中的一种重要技术。
在这篇文章中,我们将探讨数值计算中的三角多项式逼近,并以matlab实现为例进行详细讲解。
2. 三角多项式逼近的基本概念三角多项式是对一个周期函数进行周期延拓,再用傅里叶级数展开而成的一种多项式。
而三角多项式逼近则是利用这种三角多项式来逼近给定的函数。
在实际问题中,我们往往会遇到一些复杂的函数,而通过三角多项式逼近,我们可以用更简单的形式来近似表示这些函数。
3. 三角多项式逼近的深度探讨在数值计算中,三角多项式逼近是一种常见的逼近方法,它有着广泛的应用。
比如在信号处理中,我们可以利用三角多项式逼近来对信号进行分析和处理;在图像处理中,三角多项式逼近也可以用来对图像进行压缩和重建。
在实际问题中,我们可以利用三角多项式逼近来解决一些复杂的数值计算问题,比如对函数的逼近、插值和拟合等。
4. 三角多项式逼近的matlab实现在matlab中,我们可以使用内置的函数或自定义函数来实现三角多项式逼近。
其中,利用fft(快速傅里叶变换)算法可以方便地实现对给定函数的三角多项式逼近。
利用matlab的向量化运算和矩阵运算,我们可以高效地编写三角多项式逼近的代码,并得到准确的逼近结果。
matlab还提供了丰富的图形化界面和绘图函数,我们可以直观地观察逼近效果并进行结果分析。
5. 个人观点与总结通过对三角多项式逼近的深入探讨和matlab实现的详细讲解,我们对这一数值计算技术有了更深入的理解。
三角多项式逼近作为一种重要的逼近方法,在实际问题中具有广泛的应用价值,而matlab作为强大的数值计算工具,则为我们提供了方便高效的实现途径。
我个人认为,掌握三角多项式逼近的原理和实现方法,对于提高数值计算的效率和精度有着重要的意义。
希望本文能够对读者有所帮助,引发更多关于三角多项式逼近的讨论和思考。
学习使用MATLAB进行数值计算和数据分析
学习使用MATLAB进行数值计算和数据分析---第一章:MATLAB的基本介绍MATLAB是一种强大的数值计算和数据分析软件,广泛应用于科学研究、工程设计等领域。
它的主要特点是简洁直观的用户界面和丰富的数学函数库。
在本章中,我们将介绍MATLAB的基本特性和使用方法。
1.1 MATLAB的历史与发展MATLAB是由MathWorks公司于1984年首次推出的。
起初,它作为一个用于矩阵计算的工具被广泛使用。
随着时间的推移,MATLAB逐渐拓展了功能,加入了许多其他数学和工程计算的功能,如符号计算、数据统计和可视化。
如今,MATLAB已经成为一种非常受欢迎的工具。
1.2 MATLAB的安装和环境设置要开始使用MATLAB,首先需要从MathWorks官网下载并安装MATLAB软件。
安装完成后,打开MATLAB并设置工作目录和默认工作文件夹。
工作目录是指存储MATLAB代码和数据文件的文件夹,而默认工作文件夹是指MATLAB打开时默认选择的文件夹。
1.3 MATLAB的基本语法和命令MATLAB的基本语法和命令非常简单易懂。
它采用类似于其他编程语言的命令行交互方式,用户可以直接在命令行输入MATLAB语句并执行。
例如,可以输入"2+2"并按回车键得到结果4。
此外,MATLAB还具有许多内置的数学函数和运算符,可以进行各种数值计算和数据分析。
1.4 MATLAB脚本和函数在MATLAB中,可以使用脚本和函数来组织和执行一系列MATLAB命令。
脚本是一系列命令的集合,可以一次性运行。
函数是一段可以重复使用的代码,可以接受输入参数并返回输出结果。
通过编写脚本和函数,可以提高MATLAB代码的可重复性和可维护性。
第二章:数值计算MATLAB作为一种数值计算工具,提供了丰富的数学函数和算法,可以用于解决各种数值计算问题。
在本章中,我们将介绍MATLAB在数值计算方面的一些常用功能和技巧。
2.1 数值计算方法MATLAB中包含了许多数值计算方法,如数值积分、数值微分、线性代数求解等。
如何在MATLAB中进行数值计算
如何在MATLAB中进行数值计算在科学计算领域,MATLAB被广泛应用于数值计算,它提供了强大而简便的工具和函数,可以帮助科学家们进行复杂的数学计算和数据分析。
本文将介绍如何在MATLAB中进行数值计算,并探讨一些常用的技巧和技术。
MATLAB中的数值计算是通过矩阵和向量运算来实现的,因此熟悉矩阵运算和向量操作是使用MATLAB进行数值计算的关键。
首先,让我们来看看如何定义和操作矩阵和向量。
在MATLAB中,可以使用矩阵和向量来存储和操作多个数值。
矩阵是一个二维数组,而向量是一个一维数组。
通过使用方括号和逗号来定义矩阵和向量。
例如,以下是一个3x3的矩阵的定义:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];可以通过使用A(i, j)的形式来访问矩阵中的元素,其中i和j分别表示行和列的索引。
例如,要访问第二行第三列的元素,可以使用A(2, 3)。
向量可以通过类似的方式定义,只需要使用一个维度。
例如,以下是一个包含5个元素的行向量的定义:v = [1, 2, 3, 4, 5];可以使用v(i)的形式来访问向量中的元素,其中i表示索引。
例如,要访问第四个元素,可以使用v(4)。
在进行数值计算时,通常需要进行一些基本的运算,如加法、减法、乘法和除法。
在MATLAB中,这些运算可以直接应用于矩阵和向量。
加法运算可以使用加号来实现。
例如,要将两个矩阵A和B相加,可以使用以下代码:C = A + B;减法运算可以使用减号来实现。
例如,要将矩阵A减去矩阵B,可以使用以下代码:D = A - B;乘法运算可以使用乘号来实现。
例如,要将矩阵A乘以矩阵B,可以使用以下代码:E = A * B;除法运算可以使用除号来实现。
例如,要将矩阵A除以矩阵B,可以使用以下代码:F = A / B;除了基本的运算,MATLAB还提供了很多其他的函数和工具箱,可以帮助进行更复杂的数值计算和数据分析。
例如,MATLAB提供了一些常用的数学函数,如幂函数、指数函数、对数函数、三角函数等等。
MATLAB数值计算教程
MATLAB数值计算教程第一章:MATLAB入门1.1 MATLAB简介MATLAB(Matrix Laboratory)是一款强大的数值计算软件,广泛用于工程、科学和金融领域。
它的特点是简单易用、高效快速,并且拥有丰富的工具箱和函数库。
1.2 MATLAB环境搭建要使用MATLAB进行数值计算,首先需要安装MATLAB软件,并进行必要的配置。
通过官方网站下载安装程序,根据提示进行安装即可。
安装完成后,打开MATLAB环境,即可开始使用。
1.3 MATLAB基本操作在MATLAB环境中,可以通过命令行窗口输入和执行命令,也可以使用脚本文件进行批量处理。
常用的基本操作包括变量赋值、算术运算、函数调用等。
例如,使用"="符号赋值变量,使用"+"、"-"、"*"、"/"等符号进行算术运算。
第二章:向量和矩阵操作2.1 向量操作在MATLAB中,向量是一种特殊的矩阵,可以通过一组有序的元素构成。
向量可以进行基本的算术运算,如加法、减法、乘法、除法,还可以进行向量的点积、叉积等操作。
可以使用内置函数和运算符来实现。
2.2 矩阵操作矩阵是MATLAB中最常用的数据结构之一,使用矩阵可以进行多个向量的组合和运算。
可以进行矩阵的加法、减法、乘法、除法等操作,也可以进行矩阵的转置、求逆、求特征值等操作。
MATLAB提供了大量的函数和工具箱来支持矩阵的操作。
第三章:数值计算方法3.1 数值积分数值积分是一种用数值方法计算定积分的方法。
在MATLAB 中,可以使用内置函数来进行数值积分,如trapz函数和quad函数。
也可以使用Simpson法则、复合辛普森法等方法实现数值积分。
3.2 数值微分数值微分是一种用数值方法计算导数的方法。
在MATLAB中,可以使用内置函数进行数值微分,如diff函数和gradient函数。
数值计算方法matlab程序
数值计算⽅法matlab程序function [x0,k]=bisect1(fun1,a,b,ep)if nargin<4ep=1e-5;endfa=feval(fun1,a);fb=feval(fun1,b);if fa*fb>0x0=[fa,fb];k=0;return;endk=1;while abs(b-a)/2>epx=(a+b)/2;fx=feval(fun1,x);if fx*fa<0b=x;fb=fx;elsea=x;fa=fx;k=k+1;endendx0=(a+b)/2;>> fun1=inline('x^3-x-1');>> [x0,k]=bisect1(fun1,1.3,1.4,1e-4)x0 =1.3247k =7>>N=500;endif nargin<3ep=1e-5;endx=x0;x0=x+2*ep;while abs(x-x0)>ep & kx0=x;x=feval(fun1,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=iterate1(fun1,1.5)x0 =1.3247k =7>> fun1=inline('x^3-1');>> [x0,k]=iterate1(fun1,1.5)x0 =Infk =9>>Steffesen加速迭代(简单迭代法的加速)function [x0,k]=steffesen1(fun1,x0,ep,N) if nargin<4N=500;endx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;y=feval(fun1,x0);z=feval(fun1,y);x=x0-(y-x0)^2/(z-2*y+x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fun1=inline('(x+1)^(1/3)');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =3>> fun1=inline('x^3-1');>> [x0,k]=steffesen1(fun1,1.5)x0 =1.3247k =6Newton迭代function [x0,k]=Newton7(fname,dfname,x0,ep,N) if nargin<5N=500;endendx=x0;x0=x+2*ep;k=0;while abs(x-x0)>ep & kx0=x;x=x0-feval(fname,x0)/feval(dfname,x0);k=k+1;endx0=x;if k==Nwarning('已达最⼤迭代次数')end>> fname=inline('x-cos(x)');>> dfname=inline('1+sin(x)');>> [x0,k]=Newton7(fname,dfname,pi/4,1e-8) x0 =0.7391k =4⾮线性⽅程求根的Matlab函数调⽤举例:1.求多项式的根:求f(x)=x^3-x-1=0的根:>> roots([1 0 -1 -1])ans =1.3247-0.6624 + 0.5623i-0.6624 - 0.5623i2.求⼀般函数的根>> fun=inline('x*sin(x^2-x-1)','x')fun =Inline function:fun(x) = x*sin(x^2-x-1)>> fplot(fun,[-2 0.1]);grid on-1.5956>> x=fzero(fun,[-1 -0.1])x =-0.6180[x,f,h]=fsolve(fun,-1.6)x =-1.5956f =1.4909e-009h =1(h>0表⽰收敛,h<0表⽰发散,h=0表⽰已达到设定的计算函数值的最⼤次数)第三章:线性⽅程组的数值解法1. ⾼斯消元法function [A,x]=gauss3(A,b)%本算法⽤顺序⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);A;endx=zeros(n,1);%上⾯为消元过程x(n)=A(n,n+1)/A(n,n);for k=n-1:-1:1x(k)=(A(k,n+1)-A(k,(k+1):n)*x((k+1:n)))/A(k,k);end%上⾯为回代过程>> A=[2 3 4;3 5 2;4 3 30];>> b=[6,5,32]'b =>> [A,x]=gauss3(A,b)A =2.00003.00004.0000 6.00000 0.5000 -4.0000 -4.00000 0 -2.0000 -4.0000x =-1382列选主元的⾼斯消元法:function [A,x]=gauss5(A,b)%本算法⽤列选主元的⾼斯消元法求解线性⽅程组n=length(b);A=[A,b];for k=1:n-1%选主元[ap,p]=max(abs(A(k:n,k)));p=p+k-1;if p>kt=A(k,:);A(k,:)=A(p,:);A(p,:)=t;end%消元A((k+1):n,(k+1):(n+1))=A((k+1):n,(k+1):(n+1))-A((k+1):n,k)/A(k,k)*A(k,(k+1):(n+1)); A((k+1):n,k)=zeros(n-k,1);end%回代x=zeros(n,1);x(n)=A(n,n+1)/A(n,n);>> A=[2 3 4;3 5 2;4 3 30]; b=[6,5,32]';>> [A,x]=gauss5(A,b)A =4.0000 3.0000 30.0000 32.00000 2.7500 -20.5000 -19.00000 0 0.1818 0.3636x =-1382三⾓分解法:Doolittle 分解function [L,U]=doolittle1(A)n=length(A);U=zeros(n);L=eye(n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for k=2:nU(k,k:n)=A(k,k:n)-L(k,1:k-1)*U(1:k-1,k:n);L(k+1:n,k)=A(k+1:n,k)-L(k+1:n,1:k-1)*U(1:k-1,n)/U(k,k); End y=zeros(n,1);x=y;y(1)=b(1);for i=2:ny(i)=b(i)-L(i,1:i-1)*y(1:i-1);endx(n)=y(n)/U(n,n);for i=n-1:-1:1x(i)=(y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);end>> A=[1 2 3;2 5 2 ;3 1 5];b=[14 18 20]';>> [L,U,x]=doolittle1(A,b)3 -8 1U =1 2 30 1 -40 0 -36x =2.83331.33332.8333平⽅根法:function [L,x]=choesky3(A,b)n=length(A);L=zeros(n);L(:,1)=A(:,1)/sqrt(A(1,1));for k=2:nL(k,k)=A(k,k)-L(k,1:k-1)*L(k,1:k-1)';L(k,k)=sqrt(L(k,k));for i=k+1:nL(i,k)=(A(i,k)-L(i,1:k-1)*L(k,1:k-1)')/L(k,k); endendy=zeros(n,1);x=y;y(1)=b(1)/L(1,1);for i=2:ny(i)=(b(i)-L(i,1:i-1)*y(1:i-1))/L(i,i);endx(n)=y(n)/L(n,n);for i=n-1:-1:1x(i)=(y(i)-L(i+1:n,i)'*x(i+1:n))/L(i,i);end>> A=[4 -1 1;-1 4.25 2.75;1 2.75 3.5]-1.0000 4.2500 2.75001.00002.75003.5000>> b=[4 6 7.25]'b =4.00006.00007.2500[L,x]=choesky3(A,b)L =2.0000 0 0-0.5000 2.0000 00.5000 1.5000 1.0000x =111>>迭代法求⽅程组的解Jacobi迭代法:function [x,k]=jacobi2(a,b,x0,ep,N)%本算法⽤Jacobi迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endif nargin<4ep=1e-5;endif nargin<3x0=zeros(n,1);y=zeros(n,1);while norm(x-x0,inf)>ep & kk=k+1;x0=x;for i=1:ny(i)=b(i);for j=1:nif j~=iy(i)=y(i)-a(i,j)*x0(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendy(i)=y(i)/a(i,i);endx=y;enda=[4 3 0;3 4 -1; 0 -1 4];b=[24 30 -24]';[x,k]=jacobi2(a,b)x =3.00004.0000-5.0000k =59Gauss-seidel迭代法:function [x,k]=gaussseide2(a,b,x0,ep,N)%本算法⽤Gauss-seidel迭代求解ax=b,⽤分量形式n=length(b); k=0;if nargin<5N=500;endendif nargin<3x0=zeros(n,1);y=zeros(n,1);endx=x0;x0=x+2*ep;while norm(x-x0,inf)>ep & kk=k+1;x0=x;y=x;for i=1:nz(i)=b(i);for j=1:nif j~=iz(i)=z(i)-a(i,j)*x(j);endendif abs(a(i,i))<1e-10|k==Nwarning('a(i,i) is too small');returnendz(i)=z(i)/a(i,i);x(i)=z(i);endend[x,k]=gaussseide2(a,b)x =3.00004.0000-5.0000k =25最速下降法function [x,k]=zuisuxiajiang(A,b,x0,ep,N)N=500;endif nargin<4ep=1e-8;endif nargin<3x0=ones(n,1);endx=x0;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kk=k+1;x0=x;lamda=(d'*d)/(d'*A*d);x=x0+lamda*d;r=b-A*x;d=r;endif k==Nwarning('已达最⼤迭代次数')end共轭梯度算法function [x,k]=gongertidufa(A,b,x0,ep,N) %本算法⽤共轭梯度算法求解正定⽅程组Ax=b,,n=length(b);if nargin<5N=500;endif nargin<4ep=1e-8;x0=x+2*ep;r=b-A*x;d=r;k=0;while norm(x-x0,inf)>ep & kx0=x;lamda=(r'*r)/(d'*A*d);r1=r;x=x0+lamda*d;r=b-A*x;beta=(r'*r)/(r1'*r1);d=r+beta*d;endif k==Nwarning('已达最⼤迭代次数') end常微分⽅程数值解function [x,y]=Euler1(fun,xspan,y0,h)%本算法⽤欧拉格式计算微分⽅程y'=f(x,y)的解。
如何在MATLAB中进行数值计算
如何在MATLAB中进行数值计算1.基本数学操作:-加法、减法、乘法、除法:使用+、-、*、/操作符进行基本算术运算。
-幂运算:使用^或.^(点乘)操作符进行幂运算。
- 开平方/立方:可以使用sqrt(或power(函数进行开平方和立方运算。
2.矩阵操作:- 创建矩阵:可以使用矩阵构造函数如zeros(、ones(、rand(等创建矩阵。
- 矩阵运算:使用*操作符进行矩阵相乘,使用transpose(函数进行矩阵转置。
- 矩阵求逆和求解线性方程组:使用inv(函数求矩阵的逆,使用\操作符求解线性方程组。
3.数值积分和微分:- 数值积分:使用integral(函数进行数值积分。
可以指定积分函数、积分上下限和积分方法。
- 数值微分:使用diff(函数进行数值微分。
可以指定微分函数和微分变量。
4.解方程:- 一元方程:使用solve(函数可以解一元方程。
该函数会尝试找到方程的精确解。
- 非线性方程组:使用fsolve(函数可以求解非线性方程组。
需要提供初始值来开始求解过程。
-数值方法:可以使用牛顿法、二分法等数学方法来求解方程。
可以自定义函数来实现这些方法。
5.统计分析:- 统计函数:MATLAB提供了丰富的统计分析函数,如mean(、std(、var(等用于计算均值、标准差、方差等统计量。
- 直方图和密度估计:使用histogram(函数可以绘制直方图,并使用ksdensity(函数进行核密度估计。
- 假设检验:使用ttest(或anova(函数可以进行假设检验,用于比较多组数据之间的差异。
6.数值优化:- 非线性最小化:使用fminunc(函数可以进行非线性最小化。
需要提供目标函数和初始点。
- 线性规划:使用linprog(函数可以进行线性规划。
需要提供目标函数和限制条件。
- 整数规划:使用intlinprog(函数可以进行整数规划。
需要提供目标函数和整数约束。
7.拟合曲线:- 线性拟合:使用polyfit(函数进行线性拟合。
数值计算实例MATLAB实现(附带详细源码)
数值计算实例MATLAB实现附带详细源码1.在化学反应中,A 的一个分子和 B 的一个分子结合形成物质 C 的分子。
若在时刻t 时,物质 C 的浓度为() y t ,则其是下述初值问题的解()()() ,00y k a y b y y '=--=其中k 为正常数,a 和 b 分别表示 A 和 B 的初始浓度。
假设k = 0.01, a =70毫摩/升, b = 50 毫摩/升. 该方程的真解为0.20.2350(1)()75t te y t e---=- (1)自己编写程序,使用四阶经典Runge-Kutta (龙格-库塔法),以步长为0.5h =,在区间[0, 20]上给出() y t 的近似解; (2)列表给出真解和近似解的比较;(3)讨论当t →∞时,近似解的变化趋势,并分析该数值结果。
解:数学原理:四阶经典Runge-Kutta (龙格-库塔法)112341213243(22)6(,)(,)22(,)22(,)m m m m m m m m m m hu u k k k k k f t u h hk f t u k h hk f t u k k f t h u hk +=++++==++=++=++程序设计见附录 结果如下表:(3)近似解变化趋势当t→∞时,由以下极限方程可知:0.20.2350(1)()75lim()tttey tey t--→∞⎧-=-⎪⎨⎪⎩随着t→∞,近似值越来越接近真实值,极限的真实值为50,lim()50ty t→∞=,变化趋势也可由一下曲线图表示:感想:四阶Runge-Kutta法计算的结果精度非常好,其结果与真实解误差不大。
2.考虑定义在闭区间[−5, 5]上的函数()2112()5f x x -=+ ;(1)利用等距节点构造次数分别为 n = 4,8,16, 32 的插值多项式()n p x ,并分别画()()()()481632,,,p x p x p x p x ;(2)利用chebyshev 零点构造次数分别为 n = 4,8,16, 32 的插值多项式()n pp x()()()()481632,,,pp x pp x pp x pp x ;(3)画出当 n = 32 时,两种插值多项式的比较图,误差图,并给出相应的误差估计;(4)在这个问题中能观察到龙格现象吗? 解:数学原理:拉格朗日插值多项式:001122()()()()()n n n L x l x y l x y l x y l x y =+++011011()()()()(),0,1,2,()()()()k k n k k k k k k k n x x x x x x x x l x k n x x x x x x x x -+-+----==----0()()()nn n in k k k k k j k jj kx x L x l x y y x x ===≠-==-∑∑∏程序设计见附录(1) 利用等距节点构造次数分别为 n = 4,8,16, 32 的插值多项式如下: ()43240.00160.00.0640.60061400p x x x x x ++=++()876542830.00280.00640.02500.02500.00640.00260.000168.001p x x x x x x x x x ++++++=++()1615141312161110987654320.00210.00280.00410.0064 60.01120.02500.09290.09290.02050 0.01120.00640.00410.002.00160180.021.000p x x x x x x x x x x x x x x x x x ++++++++++++++=++()3231302928272632252423222120191817160001600018000210002400028000340004100050006400083001120016100250004350092902906029p x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .x x .=+++++++++++++++++151413121110987654320600929004350025000161001120008300064000500041000340002800024000210001800016x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .+++++++++++++++(2)利用chebyshev 零点构造次数分别为 n = 4,8,16, 32 的插值多项式如下:()43240.00160.00320.00320.0016x x p x x p x =++++()87654328+0.00190.00320.01080.01080.00320.00196=0.0.0106001pp x x x x x x x x x +++++++()161514131211109168765432=0.0016 0.0017 0.0019 0.00230.00320.00520.01080.0403 1.00000.04030.01080.00520.00320.00230.0019 0.0017 0.0016 pp x x x x x x x x x x x x x x x x x ++++++++++++++++()323130292827263225242322212019181700016000160001700017000190002100023000270003200040000520007100108001860040301428pp x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .x x =+++++++++++++++++16151413121110987654320142800403001860010800071000520004000320002700023000210001900017000170001600016.x .x .x .x .x .x .x .x .x .x .x .x .x .x .x .+++++++++++++++++(3)两种插值多项式的比较误差图如下(a)等距插值误差 (b) chebyshev零点插值误差(4) 等距插值在高次插值中能观察到龙格现象,而chebyshev零点插值观察不到龙格现象。
Matlab关于数值计算的实现要点
Matlab关于数值计算的实现摘要:数值计算(numerical computation computation),主要研究更好的利用计算机更好的进行数值计算,解决各种数学问题。
数值分析包括离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性等。
在数学方面,数值计算的主要研究数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解等。
同时,数值计算在物理,化学,经济等方面也有研究,本文暂且不表。
M atlab软件历经二十多年来的发展,已成为风靡世界的数学三大软件(matlb,Mathematica l,Maple)之一,在数学类科技应用软件中在数值计算方面首屈一指。
Matlab以矩阵为数据操作的基本单位,使得矩阵运算十分便捷快速,同时Matlab还提供了海量的计算函数,而且使用可靠地算法进行计算,能使用户在繁复的数学运算中解脱,Matlab还具有方便且完善的图形处理功能,方便绘制二维和三维图形并修饰。
目录1.数值分析(离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性)2.数值计算(数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解)3.图形处理功能(方便绘制二维和三维图形并修饰)4.总结1.数据统计与分析Matlab 可以进行求矩阵的最大最小元素,平均值与中值,关于矩阵元素的求和与求积,累加和与累乘积,标准方程,相关系数,元素排序。
现在以求标准方差举例说明Matlab 的实现。
在Matlab 中,实现标准方差计算的函数为std 。
对于向量(Y ),std (Y )实现返回一个标准方差,而对于矩阵(A ),std (A )返回一个行向量,该行向量的每个元素对应着矩阵A 各行或各列的标准方差。
一般调用std 函数的格式为std (A ,flag ,dim )Dim 取1或者2分别对应求各列或各行的标准方差,flag 取1时,按照标准方差的计算公式∑-=-=Ni x x S i N 121)(11来计算。
matlab数值计算实验报告
matlab数值计算实验报告Matlab数值计算实验报告一、实验目的本次实验的目的是通过使用Matlab软件进行数值计算,掌握Matlab的基本操作和数值计算方法,了解数值计算的基本原理和方法,提高数学建模和计算能力。
二、实验内容本次实验主要包括以下内容:1. Matlab基本操作:包括Matlab软件的安装、启动、界面介绍、基本命令和语法等。
2. 数值计算方法:包括数值积分、数值微分、线性方程组的求解、非线性方程的求解、插值和拟合等。
3. 数学建模:通过实际问题的建模,运用Matlab进行数值计算,得到问题的解答。
三、实验步骤1. Matlab基本操作(1)安装Matlab软件:根据官方网站提供的下载链接,下载并安装Matlab软件。
(2)启动Matlab软件:双击Matlab图标,启动Matlab软件。
(3)界面介绍:Matlab软件界面分为命令窗口、编辑器窗口、工作区窗口、命令历史窗口、变量编辑器窗口等。
(4)基本命令和语法:Matlab软件的基本命令和语法包括数学运算、矩阵运算、逻辑运算、控制语句等。
2. 数值计算方法(1)数值积分:使用Matlab中的quad函数进行数值积分,求解定积分。
(2)数值微分:使用Matlab中的diff函数进行数值微分,求解函数的导数。
(3)线性方程组的求解:使用Matlab中的inv函数和\运算符进行线性方程组的求解。
(4)非线性方程的求解:使用Matlab中的fsolve函数进行非线性方程的求解。
(5)插值和拟合:使用Matlab中的interp1函数进行插值和拟合。
3. 数学建模(1)实际问题的建模:选择一个实际问题,将其转化为数学模型。
(2)运用Matlab进行数值计算:使用Matlab进行数值计算,得到问题的解答。
四、实验结果通过本次实验,我掌握了Matlab的基本操作和数值计算方法,了解了数值计算的基本原理和方法,提高了数学建模和计算能力。
在实际问题的建模和运用Matlab进行数值计算的过程中,我深刻体会到了数学建模和计算的重要性,也发现了Matlab在数学建模和计算中的重要作用。
数值计算方法实验指导(Matlab版)
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。
matlab数值计算实验报告
matlab数值计算实验报告数值计算实验报告实验目的本实验的目的是通过MATLAB编程,实现数值计算的多种方法,体会数值计算的方法,并且对数值计算的应用有更加深入的了解,对数值计算有更加系统的认识。
实验内容1. 实验中以MATLAB编程求解等折线上的单点,给出相应的曲线图,并用相应的代码计算出可变参数系数n,写出实验步骤和实验结果。
步骤:(1)设计MATLAB程序,即根据题中给出的函数,确定参数n、x、y的取值范围;(2)在MATLAB中求解单点,并绘制出曲线图;(3)得出可变参数系数n的值。
实验结果:可变参数系数n的值为:n=2.3125。
2. 通过MATLAB编程,实现有Bezier曲线的绘制,给出相应的曲线图,并用相应的代码计算出可变参数系数n,写出实验步骤和实验结果。
步骤:(1)设计MATLAB程序,即根据题中给出的函数,确定参数n、x、y的取值范围;(2)在MATLAB中求解单点,并绘制出Bezier 曲线图;(3)得出可变参数系数n的值。
实验结果:可变参数系数n的值为:n=3.5。
3. 利用MATLAB编程,实现有牛顿迭代法求解非线性方程组,给出相应的收敛图,并用相应的代码计算出可变参数系数A、B和X,写出实验步骤和实验结果。
步骤:(1)根据实验题目给出的非线性方程组,确定A、B、X 的取值范围;(2)用MATLAB编程实现牛顿迭代法求解,在迭代收敛的过程中对收敛的每个步骤的X值画出收敛图;(3)得出可变参数系数A、B和X的值。
实验结果:可变参数系数A的值为:A=3.7;可变参数系数B的值为:B=5.5;可变参数系数X的值为:X=2.0。
实验结论通过本次实验,我们学习了利用MATLAB编程实现数值计算的多种方法,包括等折线上求解单点,Bezier曲线绘制,牛顿迭代法求解非线性方程组等等。
并且我们对数值计算的应用有了更加深入的了解,对数值计算有了更加系统的认识。
利用Matlab进行精确数值计算的技术方法
利用Matlab进行精确数值计算的技术方法引言随着科技的不断发展,精确数值计算在各个领域的应用越来越广泛。
而Matlab 作为一款功能强大的数值计算软件,被广泛应用于科学研究、工程设计等领域。
本文旨在介绍利用Matlab进行精确数值计算的技术方法,包括符号计算、精确数值解、误差分析等方面。
一、符号计算符号计算是指利用数学符号进行计算和推导的方法。
Matlab提供了一系列的符号计算函数,如syms、solve等,可以在计算中保留符号的精确性。
首先,需要在Matlab中定义符号变量,可以使用syms函数。
例如,定义一个符号变量x,可以写作syms x。
然后,可以使用符号变量进行计算和推导。
例如,可以使用solve函数求解方程组,利用subs函数进行代入计算等等。
符号计算在精确数值计算中具有重要意义。
它不仅可以对数学表达式进行精确求解,还可以补充数值计算的不足之处,提高计算结果的准确度。
二、精确数值解除了符号计算,Matlab还提供了精确数值解的方法。
通过使用高精度计算库或者自定义函数,可以在Matlab中进行精确数值计算。
高精度计算库可以提供更高精度的计算结果。
在Matlab中,可以通过安装并调用高精度计算库,如Symbolic Math Toolbox等,实现高精度计算。
另外,也可以通过自定义函数的方式,实现精确数值计算。
例如,可以使用矩阵乘法、多项式插值、数值积分等方法,提高计算结果的准确性。
Matlab提供了很多数值计算函数,如matmul、interp1、integral等,可以用于精确数值计算的实现。
精确数值解方法的优势在于可以在保持数值计算效率的同时,提高计算结果的精度。
通过合理选择计算方法,并结合算法优化,可以有效解决数值计算中的精度问题。
三、误差分析在精确数值计算中,误差是不可避免的。
误差分析是对计算误差进行定量分析和控制的过程。
Matlab提供了一系列的误差分析函数,如fplot、plot等,可以用于误差分析的可视化展示。
如何在MATLAB中进行数值计算
如何在MATLAB中进行数值计算MATLAB是一种用于数值计算和科学计算的程序设计语言和环境。
它提供了各种函数和工具箱,用于处理数值计算问题,包括线性代数、数值积分、数值微分、常微分方程求解、优化、插值等。
下面将介绍如何在MATLAB中进行数值计算的基本步骤和常用函数。
首先,启动MATLAB软件,创建一个新的脚本文件(.m文件),用于编写和保存MATLAB代码。
1.数值计算基础在MATLAB中进行数值计算的基本单位是矩阵和向量。
可以使用MATLAB提供的各种函数来创建和操作矩阵和向量。
例如,可以使用"zeros"函数创建一个全零的矩阵,使用"ones"函数创建一个全一的矩阵,使用"rand"函数生成一个随机矩阵。
2.线性代数计算MATLAB提供了丰富的线性代数函数,用于处理线性方程组、矩阵运算和特征值计算等问题。
例如,可以使用"inv"函数计算矩阵的逆,使用"det"函数计算矩阵的行列式,使用"eig"函数计算矩阵的特征值和特征向量。
3.数值积分MATLAB提供了多种数值积分方法,用于计算函数的定积分。
可以使用"quad"函数进行一维数值积分,使用"quad2d"函数进行二维数值积分,使用"quad3d"函数进行三维数值积分。
4.数值微分MATLAB提供了多种数值微分方法,用于计算函数的导数和偏导数。
可以使用"diff"函数计算函数的导数,使用"gradient"函数计算函数的梯度,使用"hessian"函数计算函数的Hessian矩阵。
5.常微分方程求解MATLAB提供了多种数值方法,用于求解常微分方程组。
可以使用"ode45"函数求解一阶常微分方程,使用"ode15s"函数求解刚性常微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab关于数值计算的实现摘要:数值计算(numerical computation computation),主要研究更好的利用计算机更好的进行数值计算,解决各种数学问题。
数值分析包括离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性等。
在数学方面,数值计算的主要研究数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解等。
同时,数值计算在物理,化学,经济等方面也有研究,本文暂且不表。
M atlab软件历经二十多年来的发展,已成为风靡世界的数学三大软件(matlb,Mathematica l,Maple)之一,在数学类科技应用软件中在数值计算方面首屈一指。
Matlab以矩阵为数据操作的基本单位,使得矩阵运算十分便捷快速,同时Matlab还提供了海量的计算函数,而且使用可靠地算法进行计算,能使用户在繁复的数学运算中解脱,Matlab还具有方便且完善的图形处理功能,方便绘制二维和三维图形并修饰。
目录1.数值分析(离散傅里叶变换,考虑截断误差,计算误差,函数的敛散性与稳定性)2.数值计算(数值微分与积分,数据的处理与多项式计算,最优化问题,线性方程与非线性方程的求解,常微分方程的数值求解)3.图形处理功能(方便绘制二维和三维图形并修饰)4.总结1.数据统计与分析Matlab 可以进行求矩阵的最大最小元素,平均值与中值,关于矩阵元素的求和与求积,累加和与累乘积,标准方程,相关系数,元素排序。
现在以求标准方差举例说明Matlab 的实现。
在Matlab 中,实现标准方差计算的函数为std 。
对于向量(Y ),std (Y )实现返回一个标准方差,而对于矩阵(A ),std (A )返回一个行向量,该行向量的每个元素对应着矩阵A 各行或各列的标准方差。
一般调用std 函数的格式为std (A ,flag ,dim )Dim 取1或者2分别对应求各列或各行的标准方差,flag 取1时,按照标准方差的计算公式∑-=-=Ni x x S i N 121)(11来计算。
若flag 取2,则用公式∑-==Ni x x S i N122)(1进行计算。
默认的flag 取值为0,dim 取值为1。
课本page1432. 离散傅里叶变换离散傅里叶变换广泛应用于信号的分析,光谱和声谱分析、全息技术等各个领域。
但直接计算dft 的运算量与变化的长度N 的平方成正比,当N 较大时,计算量太大。
随着计算机技术的迅速发展,在计算机上进行离散傅里叶变换计算成为可能。
特别是快速傅里叶变换算法的出现,为傅里叶变换的应创造了条件。
(1):傅里叶变换算法的简述。
傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。
许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分. f(t)是t 的周期函数,如果t 满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f (x )单调或可划分成有限个单调区间,则F (x )以2T 为周期的傅里叶级数收敛,和函数S (x )也是以2T 为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
则有下图①式成立。
称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。
F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。
F(ω)是f(t)的像。
f(t)是F(ω)原像。
①傅立叶变换②傅立叶逆变换(2)离散傅里叶变化的实现Matlab提供了对向量或对矩阵进行离散傅里叶变换的函数.1. g(x):返回向量的离散傅里叶变换.设晓得长度为n,若为2的幂次,则为以2为基数快速傅里叶变换,否则为运算速度很慢的非2次幂次的算法。
对于矩阵x,个g(x)应用于矩阵每一列。
2.g(x,n)计算n点离散傅里叶变化。
限定向量的长度为n,若x的长度小于n,则不足部分不上0;若大于n,则删去超出的那些元素。
对于矩阵X,它同样应用于矩阵的每一列,只是限定了向量长度为n3.g(x,[],dim):这是对于矩阵而言的函数调用格式,,前者的功能与g(x)基本相同,而后者则与g(x,n)基本相同。
只是当参数dim=1时,改函数作用于x的每一列;当dim=2时,则作用x的每一行。
值得一提的是,当一只给出的样本数n0是2的幂次时,可以取一个n使他大于n0且是2的幂次,然后利用函数格式g(x,n)进行快速的傅里叶变换。
是七速度大大的提升。
例如:给定函数:g(t)=12sin(2pi*10t+pi\4)+5cos(2pi*40t)取N=100,试从x为0-1采样,绘制相应的振幅-频率图。
程序如下:N=100 采样点数T=1; % 采样时间终点t=linspace(0,T,N);% 给出N个采样时间ti(I=1:N)x=12*sin(2*pi*10*t+pi/4)+5*cos(2*pi*40*t);% 求各采样点样本值xdt=t(2)-t(1);% 采样周期f=1/dt;% 采样频率(Hz)X=fft(x); % 计算x的快速傅立叶变换XF=X(1:N/2+1); % F(k)=X(k)(k=1:N/2+1)f=f*(0:N/2)/N; % 使频率轴f从零开始plot(f,abs(F),'-*') % 绘制振幅-频率图xlabel('Frequency');ylabel('|F(k)|');2.数值计算一、数值微分与积分Matlab数值积分MATLAB提供最简单的积分函数是梯形法trapz,我们先说明梯形法语法trapz(x,y),其中x,y 分别代表数目相同的阵列或矩阵,而y与x的关系可以由是一函数型态(如y=sin(x))或是不以函数描述的离散型态。
我们看一简单积分式以下为MA TLAB 的程式(and(1,101)产生101个均匀随机数,每个数都介于0-1之间)>> x=0:pi/100:pi;>> y=sin(x);>> k=trapz(x,y)k =1.9998clearx=sort(rand(1,101)*pi);y=sin(x);trapz(x,y)ans =1.99812.TLAB 另外提供二种积分函数,它们分别是辛普森法quad 和牛顿-康兹法quad8。
三种方法的精确度由低而高,分别为trapz, quad, quad8。
由于这二种方法依据的积分法不同于梯形法,因此它们的语法就和trapz 不同;其语法为quad('function',a,b) (quad8语法相同),其中function是一已定义函数的名称(如sin, cos, sqrt, log 等),而a, b是积分的下限和上限。
和trapz比较,quad, quad8不同之处在于这二者类似解析式的积分式,只须设定上下限及定义要积分的函数;而trapz则是针对离散点型态的数据做积分。
我们看一简单积分式以下为MATLAB 的程式>> a=0; b=0.5;>> kq=quad('sqrt',a,b)kq =0.2357>> kq8=quad8('sqrt',a,b)kq8 = 0.2357⎰--203521dx x xclearfun=inline('1./(x.^3-2*x-5)') ezplot(fun,[0,2])[q,n]=quad(fun,0,2) % [q,n] = quad(fun,a,b,⋯) %同时返回%函数计算的次数n q =-0.4605 n = 533.积分与三重积分⎰⎰+πππ2)]cos()sin([dxdyy x x yfun=inline('y*sin(x)+x*cos(y)') Q=dblquad(fun,pi,2*pi,0,pi) Q = -9.8698[x,y]=meshgrid(pi:.1:2*pi,0:.1:pi); z=fun(x,y); mesh(x,y,z)Matlab数值微分若有一函数f(x) 在x=a 的微分可表示为上述微分项在几何上的意义为在x=a 点的切线斜率. 下面介绍的差分表示式,数值差分即是用来求数值微分的方法。
差分表示法我们知道一微分项的计算,可以在二相邻点x+h 和x 间函数取下列极限求得若将原连续的空间以多个离散点取代。
则上述的极限以离散点的方式计算,即是以下的差分式(difference equation)上式被称为前向差分而高阶微分项可以利用低阶微分项来计算,举例来说一个二阶微分式可以表示为上述提及的后向差分式,在MA TLAB 有对应的diff 函数来计算二相邻点的差值,它的语法为diff(x),其中x代表一组离散点。
假设有x, y(x)的数据为x=[1 3 5 7 9], y=[1 4 9 16 25]则diff(x)=[2 2 2 2], diff(y)=[3 5 7 9],注意二者皆以后向差分计算且数据点只剩4 个而不是5个。
而dy/dx 的数值微分则为dy/dx=diff(y)./diff(x)。
因此要计算下列多项式在[-4, 5] 区间的微分>> x=linspace(-4,5); % 产生100个x的离散点>> p=[1 -3 -11 27 10 -24]; %被积函数各项的系数>> f=polyval(p,x);>> plot(x,f) % 将多项式函数绘图>> title('Fifth-deg. equation')>> dfb=diff(f)./diff(x); % 注意要分别计算diff(f)和diff(x) >> xd=x(2:length(x)); % 注意只有99个df值,而且是对应x2,x3,...,x100的点>> plot(xd,dfb ) % 将多项式的微分项绘图>> title('Derivative of fifth-deg. equation')>> num=f(3:length(f))-f(1:length(f)-2); % 注意中央差分是f(k+1)-f(k-1)>> deno=x(3:length(f))-x(1:length(f)-2); % 注意中央差分是x(k+1)-x(k-1)>> df_c=num./deno;>> xd=x(2:length(x)-1); % xd的点数只有98个>> plot(xd,df_c)>> title('Derivative of fifth-deg. polynomial')二、线性方程与非线性方程的求解1.线性方程组求解在MATLAB中,线性方程的求解分为两种:一是直接解法,就是在没有舍入误差的情况下,通过有限的矩阵的初等运算来求的方程组的解;二是符号解法。