2.4.3.直线与抛物线的位置关系(一)
人教版中职数学(拓展模块)2
OF x
思考4:若抛物线顶点在原点,焦 点在坐标轴上,其开口方向有哪 几种可能?
向左、向上、向下.
思考5:下列各图中抛物线的标准方程、焦点坐标和准线方程分别是什么?
yl
x2 y2
F
O x l 1 43 x2 y2 1
26
y
F
O
x
方程 y2=-2px
焦点
(- p , 0) 2
准线
x=p 2
抛物线y2=2px(p>0)的范围、 对称性、顶点、离心率、焦半径分别 是什么?
范围: x≥0,y∈R;
对称性: 关于x轴对称;
顶点: 原点;
离心率: e=1;
焦半径:
|
M. F
|=
x0
+
p 2
课题引入:过抛物线的焦点F作直线
交抛物线于A.B两点,线段AB叫做抛
物线的焦点弦,今天我们一起探讨
抛物线的
y2 16x.
课前练习: 若点M到点F(4,0)的距
离比它到直线l:x+5=0的距离少1, 求点M的轨迹方程. y M
l
y2 16x或x2 8y.
y2 16x.
OF x
探究(一): 抛物线的生成方式
思考1:如图,一个动圆M经过一定点A,
且与定直线l相切,则圆心M的轨迹是
什么?
l M
A
以点A为焦点, 直线l为准线的抛物 线.
思考2:抛物线的焦点弦 AB的长是否存在最小值? 若存在,其最小值为多 y A 少? 垂直于对称轴的焦点弦 O F x 最短,叫做抛物线的通 B 径,其长度为2p.
思考:△AOB面积如何求?
思考:为什么规定点F不在直线l
上? l
高二第一学期数学教学计划教学进度表
高二第一学期数学教学计划教学进度表第1周数学必修2:立体几何1.1空间几何体的结构1.2空间几何体的三视图和直观图(1)(2)第2周1.2空间几何体的三视图和直观图(1)(2)第3周1.3表面积体积空间几何体的复习(1)(2)第4周2.1空间点、直线、平面之间的位置关系(1)(2)(3)(4)(单元检测)第5周2.2直线、平面平行的判定及其性质(1)(2)(3)(4)第6周2.3直线、平面垂直的判定及其性质(1)(2)(3)(4)(单元检测)第7周2.3直线、平面垂直的判定及其性质(4)空间点、线、面复习(月考)第8周选修2-1:空间向量第三章3.1空间向量及其运算第9周空间向量及其运算3.2立体几何中的向量方法第10周期中考试第11周空间向量复习(单元检测)第12周第一章常用逻辑用语:1.1命题及其关系1.2充分条件与必要条件第13周1.3简单的逻辑连结词1.4全称量词与存在量词第14周常用逻辑用语复习(2课时)2.1椭圆(3课时)第15周2.1椭圆(3课时)2.2双曲线(2课时)第16周2.2双曲线(2课时)2.3抛物线(3课时)第17周2.3抛物线(1课时)2.4直线与圆锥曲线的位置关系(3课时)第18周曲线与方程(2课时)复习(单元检测)第19周总复习第20周要练说,先练胆。
说话胆小是幼儿语言进展的障碍。
许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆那个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。
二是注重培养幼儿敢于当众说话的适应。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。
直线与抛物线的位置关系省名师优质课赛课获奖课件市赛课一等奖课件
解:因为直线AB过定点F且不与x轴平 y
行,设直线AB旳方程为 x my p
y2 2 px
2
x
my
p 2
y2
2 p(my
p)O 2
即:y2 2 pmy p2 0
A
Fx B
y1 y2 p2 (定值)
例2、过抛物线焦点作直线交抛物线y2 2 px( p 0)于 A,B两点,设A( x1 , y1 ), B( x2 , y2 ), 求证 : y1 y2 p2 .
解得 方程
1
k
1 2
.
①只有两个解,
从而方程组只有两个解.这时,直线 l 与抛物线
有两个公共点.
30 由 于是,当k
0,
即2k 2 1, 或
k
k
1
2
1
0, 解得k
1, 或k
1 2
.
时, 方程 ①没有实数解, 从而
方程组 没有解.这时,直线 l 与抛物线没有公共点.
综上, 我们可得
当k
算判别式 >0 =0 <0 相交 相切 相离
三、判断直线与抛物线位置关系旳操作程序(二) 判断直线是否与抛物线旳对称轴平行
平行
数形结合
不平行
直线与抛物线 相交(一种交点)
计算判别式 >0 =0 <0 相交 相切 相离
例 1、已知抛物线的方程为 y2 4x ,直线 l 过 定点 P(2,1) ,斜率为 k , k 为何值时,直线 l 与抛 物线 y2 4x :⑴只有一个公共点;⑵有两个公共 点;⑶没有公共点?
OF
x
圆E旳半径,且EH⊥l,因 D A
而圆E和准线l相切.
例4、已知抛物线y2=2x,过Q(2,1)作直线与抛物线 交于A、B,求AB中点旳轨迹方程.
直线与抛物线的位置关系
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少
高中数学 专题2.4.3 直线与抛物线的位置关系教案 1数学教案
直线与抛物线的位置关系【教学目标】1.知识与技能目标:掌握直线与抛物线的位置关系及判断方法2.过程与方法目标:(1)让学生学会联立方程组的解析法与坐标法(2)在推导过程中进一步渗透数形结合等数学思想和方法3.情感态度与价值观目标:(1)让学生体验研究解析几何的基本思想,培养学生主动探索的精神.(2)培养学生求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.【重点难点】1.教学重点:直线与抛物线的位置关系及其判断方法.2.教学难点:直线与抛物线的位置关系及其判断方法的应用.【教学过程】☆情境引入☆上节课我们学习了抛物线的几何性质,熟练掌握抛物线的几何性质是解答抛物线基本问题的法宝,这节课我们继续运用抛物线的几何性质研究抛物线的标准方程和直线与抛物线的位置关系.☆探索新知☆新知导学1.直线与抛物线公共点的个数可以有_______________. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线_______,若Δ>0,则直线与抛物线_______,若Δ<0,则直线与抛物线____________.特别地,当直线与抛物线的轴平行时,直线与抛物线有_____个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程______的问题. 答案:0个、1个或2个,相切,相交,没有公共点,一,根 考点一:直线与抛物线的位置关系已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[分析] 直线与抛物线公共点的个数,就是直线方程与抛物线方程联立方程组解的个数,由判别式可讨论之.[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1). (2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点; k =1±32或k =0时,l 与C 只有一个公共点; 1-32<k <0或0<k <1+32时,l 与C 有两个公共点. [方法规律总结] 判断直线与抛物线的位置关系主要用代数法,要特别注意,平行于抛物线轴的直线与抛物线有且仅有一个公共点. 考点二:弦长问题顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为________ __________________.[方法规律总结] 直线与抛物线相交弦长问题,一般将直线与抛物线方程联立,消元化为一元二次方程,用根与系数的关系求解.若斜率为k 的直线与抛物线两交点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. 考点三:对称问题已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1),B (y 22,y 2)关于直线l 对称.则⎩⎪⎨⎪⎧ k ·y 1-y 2y 21-y 22=-1,y 1+y 22=k f(y 21+y 222-1+1.)得⎩⎪⎨⎪⎧y 1+y 2=-k ,y 1y 2=k 22+1k -12. ∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0. 故实数k 的取值范围是-2<k <0.针对训练:1.已知点A (0,2)和抛物线C :y 2=6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0.由⎩⎪⎨⎪⎧ x =0,y 2=6x .得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0).如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组⎩⎪⎨⎪⎧ y =kx +2,y 2=6x .由方程组消去x 得方程,ky 2-6y +12=0 ①当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点⎝ ⎛⎭⎪⎫23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y +8=0. 因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2.2.已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1),B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=________. 3.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,求A 、B 两点间的距离.[分析] 本题考查抛物线上的对称问题,可利用A 、B 两点在抛物线上,又在直线上,设出直线方程利用条件求解. ☆课堂小结☆ ☆课后作业☆练习5 A 组 6,7题 ☆课后作业☆练习 A 组 1-3题。
直线与抛物线
O
C(2p,0)
B
x
l
高考链接:过定点Q(2p,0)的直线与y2 = 2px(p>0)交于相异两 点A、B,以线段AB为直径作圆H(H为圆心),试证明抛物线顶点 在圆H上。
练习:
1、已知抛物线的顶点在原点,对称轴为x轴,焦点在 16 直线3x-4y-12=0上,那么抛物线通径是 .
y k x1 联立 2 y 4x
k
消去 x 得 ky 2 4 y 4 0
例 2.已知正方形 ABCD 的一边 CD 在直线 y x 4 上, B 在抛物线 y 2 x 上,求正方形的边长. 顶点 A 、
解:设 AB 的方程为 y=x+b, y xb 由 2 消去 x 得 y2-y+b=0, y x
得到一元一次方程
直线与抛物线的 对称轴平行(重合)
得到一元二次方程 计算判别式 >0 =0 <0
相交(一个交点)
相交
相切
相离
三、判断直线与抛物线位置关系的操作程序(二) 判断直线是否与抛物线的对称轴平行 平行 不平行 计算判别式 直线与抛物线 相交(一个交点)
>0
相交
=0
相切
<0
相离
例1 已知抛 物线的方程为 y 2 4 x , 直线 l 过 定 点 P (2,1) , 斜率为 k , k 为何值时 ,直线 l 与抛物 线 y 2 4 x : ⑴只有一个公共点;⑵有两个公共点; ⑶没有公共点?
O
A
C(2p,0) B
x
y
2
L:x=2p
=2px(p>0) 交于 A 、 B
y
A
知识讲解_直线与抛物线的位置关系(理)_基础
直线与抛物线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】【要点梳理】 要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点诠释:上述定义可归结为“一动三定”:一个动点,一定点F (即焦点),一定直线(即准线),一定值1(即动点M 到定点F 的距离与定直线l 的距离之比).要点二、抛物线的标准方程 抛物线标准方程的四种形式:22y px =,22y px =-,22x py =,22x py =-(0)p >抛物线抛物线的定义与标准方程 抛物线的几何性质 直线与抛物线的位置关系 抛物线的综合问题抛物线的弦问题抛物线的准线要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定值”是指用定义法或待定系数法确定p 的值.要点三、抛物线的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。
抛物线是无界曲线。
对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。
抛物线只有一条对称轴。
顶点:坐标原点抛物线y 2=2px (p >0)和它的轴的交点叫做抛物线的顶点。
抛物线的顶点坐标是(0,0)。
离心率:1e =.抛物线y 2=2px (p >0)上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。
高中数学 第二章2.4.2 抛物线的简单几何性质讲解与例
2.4.2 抛物线的简单几何性质问题导学一、抛物线几何性质的应用活动与探究1已知抛物线的顶点在原点,焦点F 在x 轴正半轴上.若抛物线上一动点P 到A ⎝ ⎛⎭⎪⎫2,32,F 两点距离之和的最小值为4,且A 为抛物线内一点,求抛物线方程.迁移与应用1.抛物线y 2=2px (p >0)上一点M 的纵坐标为-42,该点到准线的距离为6,则抛物线方程为________________.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =__________.注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.二、抛物线的焦点弦活动与探究2已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.迁移与应用1.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A ,B 两点,若A ,B 在准线上的射影为A 1,B 1,则∠A 1FB 1等于( ).A .45°B .90° C.60° D.120°2.过抛物线y 2=2px (p >0)的焦点F 作一条直线交抛物线于A ,B 两点,求1|AF |+1|BF |的值.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点,则弦AB 称为焦点弦.设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 的倾斜角),y 1y 2=-p 2,x 1x 2=p 24等.三、直线与抛物线的位置关系活动与探究3已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥OB (O 为坐标原点),求弦AB 的长.迁移与应用1.直线y =kx -2与抛物线y 2=8x 交于A ,B 两点,且AB 中点的横坐标为2,则k 的值为( ).A .-1B .2C .2或-1D .42.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若AB 恰被Q 平分,求AB 所在的直线方程.1.直线与抛物线位置关系的判定:直线方程与抛物线方程联立得方程ax 2+bx +c =0,当a =0时,直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,且只有一个交点;当a ≠0时,两者位置关系的判定和椭圆、双曲线相同,用判别式法即可,即①相交:两个不同交点⇔a ≠0且Δ>0;②相切⇔a ≠0且Δ=0;③相离⇔a ≠0且Δ<0.2.凡涉及抛物线的弦长、弦的中点问题,要注意“点差法”的运用,体现“设而不求”的优越性.答案:课前·预习导学 【预习导引】1.⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 x =-p 2 y =p2 x ≤0y ≤0 x 轴 y 轴 (0,0)预习交流1 提示:抛物线与双曲线的一支不相同.双曲线的一支有渐近线,离心率e >1;抛物线没有渐近线,它的离心率是唯一的,e =1.2.x 0+p2x 1+x 2+p 2p预习交流2 提示:抛物线方程化为y 2=13x ,2p =13,故其通径长为13.预习交流3 提示:不正确,若直线与抛物线相切,则它们只有一个公共点,但当直线与抛物线只有一个公共点时,直线不一定与抛物线相切,还可能是相交,这时直线与抛物线的对称轴平行或重合.这一点与圆、椭圆是不同的,要注意区别.课堂·合作探究 【问题导学】活动与探究1 思路分析:先根据题目条件设出抛物线方程,再结合图形,探讨抛物线上的动点P 满足到A ,F 两点距离之和取最小值时的条件,进而列出等量关系.解:设所求的抛物线方程为y 2=2px (p >0),其焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线l :x =-p2.如图所示,若A 点在“抛物线所包含的区域之内”, 过点P 作准线的垂线,垂足为H ,由抛物线定义可知|PF |=|PH |. 当H ,P ,A 在同一条直线上时, |PA |+|PF |取最小值|AH |=2+2p =4,解得p =4,故所求的抛物线方程为y 2=8x . 迁移与应用 1.y 2=16x 或y 2=8x 解析:由于抛物线的准线方程是x =-p2,而点M 到准线的距离为6,所以M 点的横坐标是6-p2,于是M ⎝ ⎛⎭⎪⎫6-p2,-42,代入方程得32=2p ⎝ ⎛⎭⎪⎫6-p2,解得p =8或p =4,故方程为y 2=16x 或y 2=8x .2.2 解析:圆x 2+y 2-6x -7=0的圆心为(3,0),半径为4,抛物线y 2=2px 的准线为x =-p 2.由⎪⎪⎪⎪⎪⎪3+p 2=4,得p =2或-14(舍).活动与探究2 思路分析:(1)由倾斜角可知斜率,从而得到l 的方程,与抛物线方程联立,结合抛物线定义可求得|AB |的值;(2)由|AB |=9求得弦AB 中点的横坐标即可求得M 到准线的距离.解:(1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5,而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知 |AB |=|AF |+|BF |=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3.又准线方程是x =-32,所以M 到准线的距离为3+32=92.迁移与应用 1.B 解析:如图,由抛物线定义知|AA 1|=|AF |,|BB 1|=|BF |,所以∠AA 1F =∠AFA 1.又∠AA 1F =∠A 1FO , 所以∠AFA 1=∠A 1FO . 同理∠BFB 1=∠B 1FO .于是∠AFA 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1. 故∠A 1FB 1=90°.2.解:已知抛物线的焦点,02p F ⎛⎫⎪⎝⎭,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2). 对于直线AB ,分两种情况考虑: (1)若直线AB 的倾斜角为90°, 则有|AF |=|BF |=p ,所以112||||AF BF p+=; (2)若直线AB 的倾斜角不等于90°, 设直线AB 的方程为2p y k x ⎛⎫=- ⎪⎝⎭, 与抛物线方程联立并消去y ,整理得k 2x 2-(k 2+2)px +224k p =0,由韦达定理得,x 1+x 2=22(2)k p k +,x 1x 2=24p .另一方面,由抛物线定义得|AF |=x 1+2p ,|BF |=x 2+2p. 于是121111||||22p p AF BF x x +=+++ =()122121224x x pp p x x x x +++++=()()22222222=2424k p pk p k p p p pk ++++⋅+. 活动与探究3 思路分析:要求弦AB 的长,只需求出A ,B 两点的坐标.为此,设出A ,B 两点的坐标,利用OA ⊥OB 以及A ,B ,P 三点共线的条件求解.解:∵A ,B 两点在抛物线y 2=6x 上,可设A ⎝ ⎛⎭⎪⎫y 216,y 1,B ⎝ ⎛⎭⎪⎫y 226,y 2. ∵OA ⊥OB ,∴OA u u u r ·OB uuu r=0.由OA u u u r =⎝ ⎛⎭⎪⎫y 216,y 1,OB uuu r =⎝ ⎛⎭⎪⎫y 226,y 2, 得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36.①∵点A ,B 与点P (4,2)在一条直线上,∴y 1-2y 216-4=y 1-y 2y 216-y 226,化简得y 1-2y 21-24=1y 1+y 2, 即y 1y 2-2(y 1+y 2)=-24. 将①代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35).∴|AB |=(x 1-x 2)2+(y 1-y 2)2=610.迁移与应用 1.B 解析:∵直线y =kx -2与抛物线y 2=8x 交于两点,∴k ≠0.由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4kx -8x +4=0,∴x 1+x 2=4k +8k2.而AB 中点的横坐标为2, ∴4k +8k2=4,解得k =-1或k =2.而当k =-1时,方程k 2x 2-4kx -8x +4=0只有一个解,即A ,B 两点重合,∴k ≠-1. 2.解:方法1:显然AB 不垂直于x 轴,故可设弦AB 所在的直线方程为y -1=k (x -4),联立方程组⎩⎪⎨⎪⎧y -1=k (x -4),y 2=8x ,消去x ,整理得ky 2-8y -32k +8=0.此方程的两根是弦AB 的端点A ,B 的纵坐标,由韦达定理得y 1+y 2=8k.又Q 点是弦AB 的中点,∴y 1+y 2=2.∴k =4. 故弦AB 所在的直线方程为y -1=4(x -4), 即4x -y -15=0.方法2:设弦AB 的端点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 则有2118y x =,2228y x =,两式相减得(y 1+y 2)(y 1-y 2)=8(x 1-x 2). 由于Q 点是弦AB 的中点,∴y 1+y 2=2,于是y 1-y 2x 1-x 2=4,即直线AB 的斜率k =4,故弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 当堂检测1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的斜率为3-,那么|PF |=( ).A .43B .8C .83D .16答案:B 解析:如图,直线AF 的方程为3(2)y x =--,与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6. ∴|PF |=x 0+2=8.2.直线y =kx +2与抛物线y 2=8x 只有一个公共点,则k 的值为( ). A .1 B .1或3 C .0 D .0或1答案:D 解析:联立22,8y kx y x=+⎧⎨=⎩得(kx +2)2-8x =0.整理得k 2x 2+(4k -8)x +4=0.当k =0时,方程变为-8x +4=0,只有一解,这时直线与抛物线只有一个公共点;当k ≠0时,由Δ=0得(4k -8)2-16k 2=0,解得k =1. 综上,k =0或1.3.过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122p =__________.答案:2 解析:如图,抛物线焦点为0,2p ⎛⎫ ⎪⎝⎭,设A (x 1,y 1),B (x 2,y 2),直线AB :y -2p =x ,即y =x +2p . 联立x 2=2py ,得2,22,p y x x py ⎧=+⎪⎨⎪=⎩消去y 得x 2-2px -p 2=0,∴x 1=(1+2)p ,x 2=(1-2)p .∴|AD |+|BC |=y 1+y 2=x 1+2p +x 2+2p=2p +p =3p ,|CD |=|x 1-x 2|=22p . 由S 梯形ABCD =12(|AD |+|BC |)·|CD |=13221222p p ⋅⋅=,解得p 2=4,∴p =±2.∵p >0,∴p =2.4.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.答案:-4 解析:由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴212242(2)2y y ⎧=⎨-=⎩,①,② ∴128,2,y y =⎧⎨=⎩∴P (4,8),Q (-2,2). 又∵抛物线可化为212y x =, ∴y ′=x ,∴过点P 的切线斜率为4'4x y ==. ∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为2'2x y =-=-,∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2.联立48,22,y x y x =-⎧⎨=--⎩得x =1,y =-4,∴点A 的纵坐标为-4.5.已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;答案:解:将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 5l 的方程;若不存在,说明理由. 答案:假设存在符合题意的直线l ,其方程为y =-2x +t .由22,4y x t y x=-+⎧⎨=⎩得y 2+2y -2t =0.∵直线l与抛物线C有公共点,∴Δ=4+8t≥0,解得12t≥-.另一方面,由直线OA与l的距离55d=,可得55=,解得t=±1.∵11,2⎡⎫-∉-+∞⎪⎢⎣⎭,11,2⎡⎫∈-+∞⎪⎢⎣⎭,∴符合题意的直线l存在,其方程为2x+y-1=0.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。
抛物线知识点全面总结及经典例题
x(p>0)
2
y p 2
y≤0 x∈R
y轴
例1:已知抛物线关于x轴对称,它的顶点 在坐标原点,并且经过点M2(22, ),求
它的标准方程。
变式:顶点在坐标原点,对称轴为坐标 轴,并且经过点M(2,2 2 ),抛物 线的标准方程。
例2:已知抛物线的方程为y2=4x,直线 l 经过点P(-2,1),斜率为k.当k为何值 时,直线与抛物线:只有一个公共点;有
1 FA
|
|
1 FB
|
是否为定值?
y
A ( x1, y1 )
这一结论非常奇妙, 变中有不变,动中有不动.
F
O
x
B ( x2, y2 )
例9、正三角形的一个顶点位于坐标原点,另外两个
顶点在抛物线 y2 2 px( p 0)上,求这个三角形的边长。
解:如图,设正三角形OAB的顶点A、
y
A (x1,y1)
(2)已知抛物线的方程是 y 6x2,求它的焦点坐标和准
线方程;
(3)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.
解:(1)因为焦点在x轴的正半轴上,p=3,所以焦点坐
标是
(3 2
,
0)
,准线方程是
x
3 2
.
(2)因为抛物线的标准方程 x2 1 y,焦点在y轴的正
半轴上,p 是y 1
X1=X2. 由此可得|y1|=|y2|,,即线段AB关于x轴对称。
(x2,y2)
B
因为x轴垂直于AB,且 AOX 30,所以 y1 tan 30 3
x1
y12 2p
,
x1
直线和抛物线的位置关系
(2)M过(p,0) (3)M过(2p,0)
x1x2=p2;y1y2=-2p2. x1x2=4p2;y1y2=-4p2.
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
得到一元一次方程
直线与抛物线的 对称轴平行或重合
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
例1 求过定点P(0,1)且与抛物线 y2 2x
只有一个公共点的直线的方程.
{ { 解:
(1)若直线斜率不存在,则过点P的直线方程是
x0
x 0
xy=0.
由 y2 2x 得 y0
OF
x
B` B
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
(5)以AB为直径的圆与准线相切.
证明:如图,
y
M M1
A A1
B B1 2
AF BF 2
AB 2
l A1
A
故以AB为直径的圆与准线相切.
F
O
M1
M
X
B1
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
yc
-
py1 2x1
-
py1 2 y12
p2 y1
直线与抛物线的位置关系课件人教A版选修
1
实例1
给定一条直线和一条抛物线,它们相交于两个点。
2
实例2
给定一条直线和一条抛物线,它们相切于一个点。
3
实例3
给定一条直线和一条抛物线,它们不相交。
直线和抛物线的应用领域
• 物理学中,直线和抛物线用于描述物体的运动轨迹。 • 工程学中,直线和抛物线用于建筑和桥梁的设计。 • 经济学中,直线和抛物线用于市场需求和供给的分析。
直线与抛物线的位置关系 课件人教A版选修
本课件将介绍直线和抛物线的定义、特点及方程形式,以及它们在坐标系中 的表示。还将探讨直线和抛物线的交点和位置关系,并通过实例学习它们的 应用领域。
直线和抛物线的定义
1 直线
直线是由无限多点构成的,任意两点都可用 一次线段相连来代表。
2 抛物线
抛物线是由与一个点距离相等的点构成的, 该点被称为焦点。
图像
直线的图像是由无数相连的点组成的一条直线,而 抛物线的图像则呈现出一种弧形。
直线和抛物线的交点和位置关系
相交
当直线和抛物线有一个或多个 交点时,它们相交。
相切
当直线与抛物线有且仅有一个 交点时,它们相切于此交点。
不相交
当直线和抛物线没有交点时, 它们不相交。
通过实例学习直线和抛物线的位置关系
直线和抛物线的特点及方程形式
直线的特点
直线具有恒定的斜率和常数项,线性方程的一 般形式是y = mx + c。
抛物线的特点
抛物线具有二次项、一次项和常数项,二次函 数的一般形式是y = ax^2 + bx + c。
直线和抛物线在坐标系中的表示
坐标系
直线和抛物线可以在平面直角坐标系中表示,x轴和 y轴分别表示水平方向和垂直方向。
2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.4.3 直线与抛物线的位置关系
线有一个交点是直线与抛物线相切的必要不充分条件.
(3)若直线 l 与抛物线有两交点 A(x1,y1),B(x2,y2), 则|AB|= 1+k2|x1-x2|= 1+k2· (x1+x2)2-4x1x2, 或 |AB|= 1 1+ 2|y1-y2|=
栏 目 链 接
k
1 1+ 2·
k
(y1+y2)2Βιβλιοθήκη 4y1y2.栏 目 链 接
p p 则 kAB= ,直线 AB 的方程为 y-y0= (x-x0),线段 AB 的垂直 y0 y0 y0 平分线的方程为 y-y0=- (x-x0). p
变 式 迁 移
1.若直线x-y=2与抛物线y2=4x交于A、B两点,
则线段AB的中点坐标是____________.
2 y =4 x , 解析:由 y=x-2,
栏 目 链 接
k2
(y1+y2)2-4y1y2= 2 230 (-22) = . 3
1 2 1+ 2 - 9
点评:处理中点问题的基本方法是点差法和联立方程的方 法,有时直线与抛物线方程联立时消 y 更简便些.此类问题还 要注意斜率不存在的情况,避免漏解.一般地,已知抛物线 y2 =2px(p>0)上两点 A(x1,y1),B(x2,y2)及 AB 的中点 P(x0,y0),
中点弦及弦长问题 已知抛物线y2=6x,过点P(4,1)引一条弦
栏 目 链 接
P1P2使它恰好被点P平分,求这条弦所在的直线方程及
|P1P2|的值.
解析:方法一 设直线上任意一点坐标为(x,y), 弦两端点 P1(x1,y1),P2(x2,y2). ∵P1,P2 在抛物线上, 2 ∴y 2 1=6x1,y2=6x2. 两式相减,得(y1+y2)(y1-y2)=6(x1-x2). y1-y2 6 ∵y1+y2=2,∴k= = =3 , x1-x2 y1+y2
直线与抛物线位置关系
【学习目标】直线与抛物线的位置关系及判断方法(1) 直线和抛物线有三种位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一 个公共点)。
(2)直线和抛物线的位置关系的判断: 设直线方程:,m kx y +=抛物线方程:,22px y =两方程联立消去y 可得方程:222(22)0k x km p x m +-+=222(22)0k x km p x m +-+=,一般形式为20,Ax Bx C ++=若A=0,则直线与抛物线的对称轴平行或重合,直线与抛物线相交且只有一个交点;若A 0≠其判别式为∆=24B AC -当∆>0时,直线与抛物线相交且直线和抛物线有两个交点;当∆=0时,直线与抛物线相切且只有一个交点;当∆<0时,直线与抛物线相离,没有交点。
(注意:把直线和圆锥曲线的方程联立后得到方程20,ax bx c ++=它不一定是一元二次方程,要分析2x 的系数a ,才能确定。
如果不能确定,要分类讨论)。
(3)中点弦问题:在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.考向一:直线与抛物线的位置关系例1 已知抛物线24y x =过定点A(-2, 1)的直线l 的斜率为k,下列情况下分别求k 的 取值范围:(1)l 与抛物线有且仅有一个公共点;(2)l 与抛物线恰有两个公共点;(3) l 与抛物线没有公共点.考向二:弦长及中点弦问题例2、已知抛物线x y 22=,过点)1,2(Q 作一直线交抛物线于A 、B 两点,试求弦AB 的中点轨迹方程。
2.4.3直线与抛物线的位置关系 (第1课时,共1课时)考向三、 对称问题例3:已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.考向四 定点与定值问题①定值问题 在几何问题中,有些问题和参数无关,这就是定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。
直线和抛物线的位置关系整理
直线和抛物线的位置关系1.直线与抛物线的位置关系:(1)位置关系的判定:联立直线:l y kx m =+和抛物线22(0)y px p =>消y 整理得:2222()0k x km p x m +-+=当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点0∆=⇔直线与抛物线相切,只有一个公共交点0∆<⇔直线与抛物线相离,没有公共交点当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于1122(,),(,)A x y B x y ,则弦长AB =AB = 2.焦点弦问题: 设过抛物线)0(22≠=p px y 的焦点(,0)2p F 的直线与抛物线交于),(),,(1111y x B y x A , 直线与的斜率分别为21,k k ,直线的倾斜角为,则有 ①221p y y -=;②4221p x x =;③421-=k k ;④α221sin 2p p x x AB =++=, ⑤αcos 1-=p FA ,αcos 1+=p FB ;⑥112AF BF p+=, ⑦过,A B 两点做准线的垂线,垂足分别为,M N ,则090MFN ∠=, ⑧通径P AB 2=;⑨以弦AB 长为直径的圆总与准线相切题型一:交点个数问题例1. 抛物线C:x 4y 2=,直线L 过点P(0,1), 若L 与C 只有一个公共点,求直线L 的方程。
变式练习:已知直线l :1y kx =+和抛物线28y x =(1)若直线l 与抛物线有两个公共点,求k 的取值范围(2)若直线l 与抛物线只有一个公共点,求k 的取值范围(3)若直线l 与抛物线没有公共点,求k 的取值范围题型二:弦长问题例2.过抛物线x 2y 2=的焦点作倾斜角为45的直线交抛物线于A,B 两点,则线段AB 的长是多少?变式练习:已知抛物线x y 42=截直线b x y +=2所得的弦AB 的长为53,P 是其对称轴上一点,若S △PAB =39,求P 点的坐标。
专题14 直线与抛物线的位置关系(解析版)
专题14 直线与抛物线的位置关系 一、定点1、已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M . (1)若点F 到直线ll 的斜率;(2)设A ,B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值答案: (12)证明见详解.解析: (1)设出直线方程,根据点到直线的距离公式,即可求得直线;(2)设出直线方程,联立抛物线方程,根据韦达定理,利用直线垂直,从而得到的斜率关系,即可证明. 【详解】(1)由条件知直线l 的斜率存在,设为0k , 则直线l 的方程为:0(4)y k x =-, 即0040k x y k --=.从而焦点(1,0)F 到直线l(2)证明:设直线AB 的方程为(0)y kx b k =+≠,联立抛物线方程24y x =,消元得:222(24)0k x kb x b +-+=. 设()11,A x y ,()22,B x y , 线段AB 的中点为()00,P x y ,因为PM AB ⊥,1PM AB k k ∴⋅=-. 将M 点坐标代入后整理得:即可得:222kb k -=. 【点睛】本题考查抛物线中的定值问题,涉及直线方程的求解,韦达定理,属综合基础题.2、在平面直角坐标系xOy 中,已知抛物线()220y px p =>上一点其焦点F 的距离为4.(1)求抛物线的方程与准线方程;(2)直线l 与抛物线相交于,A B 两点(,A B 位于x 轴的两侧),若3OA OB ⋅=,求证直线l 恒过定点.答案: (1)22y x =,(2)见详解解析: (1)先计算n ,根据抛物线的定义,可得.(2)假设直线方程,然后与抛物线方程联立,利用韦达定理,表示出3OA OB ⋅=,可得结果. 【详解】(1在抛物线上,72,pn =或7p = 当7p =时, 所以,抛物线的方程为22y x=,(2)设直线l 的方程为x y a λ=+,由22x y ay xλ=+⎧⎨=⎩,得,2220.y y a λ--= 设()()1122,,,A x y B x y , 则12122,2y y y y a λ+==-.由221212121222y y OA OB x x y y y y ⋅=+=⋅+()22234a OA OB a -⋅=-=得3a =或1a =-.当1a =-时,1222,,y y a A B =-=位于x 轴的同侧,舍去;当3a =时,1226,,y y a A B =-=-位于x 轴的两侧,即直线l 的方程为3x y λ=+, 所以,直线l 恒过()3,0. 【点睛】本题主要考查抛物线中过顶点的问题,难点在于找到方程x y a λ=+中,a λ的关系,属中档题.3、已知1F 、2F 分别为椭圆1C :22221(0)y x a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15||3MF =.(1)求椭圆1C 的方程;(2)已知点(1,3)P 和圆O :222x y b +=,过点P 的动直线l 与圆O 相交于不同的两点,A B ,在线段AB 上取一点Q ,满足:AP PB λ=-,AQ QB λ=,(0λ≠且1λ≠±).求证:点Q 总在某定直线上.答案:(1(2)+33x y =. 试题分析:(1)设()00M x y ,,由已知得M 的坐标,代入椭圆的方程中可求得,,a b c ,可得椭圆1C 的方程;(2)由向量的坐标运算和向量相等的条件,以及点在圆上可得出点Q 所在的直线.详解:(1)设()00M x y ,,因为点M 在抛物线2C 上,且又点M 在抛物线1C 上,所以,且1c =,即221b a =-,解得224,3a b ==,所以椭圆1C 的方程(2)设()()1122,,A B x y x y ,,(),Q x y ,因为AP PB λ=-,所以()()1122131,3x y x y λ=-----,,即有()()()121211312x x y y λλλλ⎧-=-⎪⎨-=-⎪⎩,,, 又AQ QB λ=,所以()()1122,x x y y x x y y λ-=---,,即有()()()()1212+1+3+1+4x x x y y y λλλλ⎧=⎪⎨=⎪⎩,,,所以()()()()13+24⨯⨯得:()()()2222211222+++13x y x x y y λλ=--,又点A 、B 在圆223x y +=上,所以22221122+3+3x y x y ==,,又1λ≠±,所以+33x y =,故点Q 总在直线+33x y =上.【点睛】本题考查椭圆和抛物线的简单几何性质,以及直线与圆的交点问题,属于较难题.二、定值1、抛物级22(0)x py p =>的焦点F 到直线2py =-的距离为2. (1)求抛物线的方程;(2)设直线1y kx =+交抛物线于()11,A x y ,()22,B x y 两点,分别过A ,B 两点作抛物线的两条切线,两切线的交点为P ,求证:PF AB ⊥.答案: (1)24x y =;(2)证明见解析试题分析:(1)利用抛物线的定义求出p 即可得出结论;(2)联立直线和抛物线的方程,得出韦达定理,设切线PA 的斜率为PA k ,切线PB 的斜率为PB k ,点P 坐标为(),m n ,利用已知条件对函数214y x =求导得出切线的斜率,写出切线方程,求出两切线的交点坐标,利用1PF AB k k ⋅=-,即可得出结论.详解:(1)由题意知:0,2p F ⎛⎫ ⎪⎝⎭, 则焦点F 到直线2py =-的距离为:222p p p ⎛⎫--== ⎪⎝⎭, 所以抛物线的方程为:24x y =; (2)证明:把直线1y kx =+代入24x y =消y 得:2440x kx --=,又216160k ∆=+>, 利用韦达定理得121244x x kx x +=⎧⎨⋅=-⎩,由题意设切线PA 的斜率为PA k ,切线PB 的斜率为PB k ,点P 坐标为(),m n ,,切线PA 的方程为:()()i ii -利用韦达定理化简整理得:2m k =,把2m k =代入()i 整理得:则()()2,1,0,1P k F -,则PF AB ⊥ 【点睛】本题主要考查了利用定义求抛物线的方程,直线与抛物线应用.做这道题的时候要注意,利用韦达定理,得出两根的关系,设出两切线的交点,认真计算.属于中档题. 2、已知圆()22:11F x y +-=,动点(),M x y ()0y ≥,线段FM 与圆F 交于点N ,MH x ⊥轴,垂足为H ,(1)求动点M 的轨迹C 的方程;(2)设()()000,2P x y y >为曲线C 上的一点,过点P 作圆F 的两条切线,12,k k 分别为,求点P 的坐标. 答案: (1)24x y =(2试题分析:()1利用抛物线的概念及标准方程直接得结论;()2设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F 到切线的距离为求解. 详解:()1圆F 的圆心为()0,1F ,半径为1,又MH x ⊥轴,垂足为H∴动点()(),0M x y y ≥到点()0,1F 等于到直线1y =-的距离.故动点()(),0M x y y ≥的轨迹是以()0,1F 为焦点的抛物线,2p ∴=,则动点M 的轨迹C 的方程是24x y =;()2设过点P 的切线方程为()00y y k x x -=-,即000kx y y kx -+-=,则圆心()0,1F 到切线的距离为化简得,()()2220000012120x k x y k y y ---+-=,两切线斜率分别为1k ,2k ,,又()00,P x y 为曲线C 上的一点,由()1知,2004x y =,,即20113430y y -+=, 或03y =, 02y >,03y ∴=,则 ∴点P【点睛】本题考查了抛物线的概念及标准方程和定点与定值问题.属于中档题.3、等腰直角△AOB 内接于抛物线2:2C y px =(0p >),其中O 为抛物线的顶点,OA OB ⊥,△AOB 的面积是16. (1)求抛物线C 的方程;(2)抛物线C 的焦点为F ,过F 的直线交抛物线于M ?N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,证明:12λλ+是一个定值.答案: (1)24y x =;(2)证明见解析.试题分析:(1)设点()11,A x y ,()22,B x y ,由抛物线方程、两点之间距离公式可得12x x =,结合面积即可得点A 坐标,代入即可得解;(2)设直线():10MN x my m =+≠,点()33,M x y ,()44,N x y ,由平面向量的知识. 详解:(1)设点()11,A x y ,()22,B x y ,则2112y px =,2222y px =,因为△AOB 为等腰直角三角形,OA OB ⊥,所以22221122x y x y +=+,所以22112222x px x px ,化简得()()121220x x x x p -++=,由1>0x ,20x >,0p >可得1220x xp ,所以120x x -=即12x x =,所以点A 、点B 关于x 轴对称, 又△AOB 的面积是16不妨设点()4,4A ,所以1624p =⋅,解得2p =, 所以抛物线C 的方程为24y x =;(2)证明:由题意可知点()1,0F ,直线MN 的斜率存在且不为0, 设直线():10MN x my m =+≠,点()33,M x y ,()44,N x y ,,3,x EM ⎛ =,()331,x y MF -=-,4,x EN ⎛=()441,x y NF -=-,因为1EM MF λ=,2EN NF λ=,由241y xx my ⎧=⎨=+⎩消去x 可得2440y my --=,>0∆, 所以344y y m +=,344y y =-, 所以12λλ+是一个定值,且121λλ+=-.【点睛】本题考查了抛物线方程的求解及直线、平面向量与抛物线的综合应用,考查了运算求解能力,属于中档题.4、如图所示,倾斜角为α的直线经过抛物线28y x =的焦点F ,且与抛物线交于,A B 两点.(1)求抛物线的焦点F 的坐标及准线l 的方程;(2)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P .证明||||cos2α-FP FP 为定值,并求此定值.答案: (1),02p F ⎛⎫ ⎪⎝⎭;2x =-(2)证明见解析;定值为8试题分析:(1)根据抛物线标准方程得28p =,从而易得焦点坐标和准线方程; (2)设点,A B 的坐标分别为()(),,,A A B B x y B x y .直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-,代入抛物线方程整理后可和A B x x +,这样可得AB 中点E 的坐标(,)E E x y ,由直线m 与AB 垂直可得m 的方程,在此方程中令0y =得P x ,计算化简||||cos2α-FP FP 得定值.详解:解(1)设抛物线的标准方程为22y px =,则28p =,从而4p =. 因此焦点,02p F ⎛⎫⎪⎝⎭的坐标为(2,0),又准线方程的一般式为2p x =-.从而所求准线的方程为2x =-.(2)设点,A B 的坐标分别为()(),,,A A B B x y B x y .直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-.将此式代入28y x =,得()22224240k x k x k -++=. 故()2242++=A B k x x k.记直线m 与AB 的交点为(),E E E x y ,则()22222A B E k x x x k++==,故直线m 的方程为令0y =,得点P 的横坐标.【点睛】本题考查由抛物线的标准方程求焦点坐标和准线方程,考查直线与抛物线相交中的定值问题.直线与抛物线相交,可设交点坐标为()(),,,A A B B x y B x y ,再写出直线方程与抛物线方程联立消元后应用韦达定理得,A B A B x x x x +,本题中由此可得中点坐标(,)E E x y .这就是解析几何中的设而不求的思想方法,务必掌握住.5、已知()11,A x y ,()22,B x y 是抛物线C :()220x py p =>上不同两点.(1)若抛物线C 的焦点为F ,()00,D x y 为AB 的中点,且042AF BF y +=+,求抛物线C 的方程;(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交点Q ,且线AB ,求出直线AB 的方程;若不存在,请说明理由. 答案: (1)28x y =;(2)存在,AB :试题分析:(1)根据抛物线的定义求解即可.(2)设AB :()0,0y kx m k m =+≠>,联立直线与抛物线的方程,再转换可得进而利用点坐标与韦达定理代入化简求解即可. 详解:解:(1)由抛物线的定义得12AF BF y y p +=++00242y p y =+=+,∴4p =,∴所求抛物线方程为28x y =.(2)由题意得AB 的斜率存在设AB :()0,0y kx m k m =+≠>,222202y kx mx pkx pm x py=+⎧⇒--=⎨=⎩,∴122x x pk +=,122x x pm =-,,21222y y pk m +=+,作'AA x ⊥轴,'BB x ⊥轴,垂足为'A ,'B ,【点睛】本题主要考查了抛物线的定义运用,同时也考查了联立直线与抛物线的方程,利用韦达定理表达弦长进行化简求解的问题.属于中档题.6、已知O 为原点,抛物线()2:208C x py p =<<的准线与y 轴的交点为H ,P 为抛物线C 上横坐标为4的点,已知点P 到准线的距离为5. (1)求C 的方程;(2)过C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,若以AH 为直径的圆过B ,求.答案: (1)24x y =;(2)4.试题分析:(1,求得p 后即可得解;(2)设()11,A x y ,()22,B x y ,直线AB 的方程为()10y kx k =+≠,联立方程组结合韦达定理可得124x x =-,由圆的性质、进而可得221216x x -=,再由抛物线的性质即可得解.详解:(1,解得2p =或8p =(舍), ∴抛物线方程为24x y =;(2)由题意抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,()0,1H -, 由题意可知,直线AB 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线AB 的方程为()10y kx k =+≠, 代入抛物线方程可得2440x kx --=,>0∆, ∴124x x k +=,124x x =-,①由AH BH ⊥可得1HB k k ⋅=-,∴整理得()()1212110y y x x -++=,即把①代入②得221216x x -=,【点睛】本题考查了抛物线性质的应用及方程的求解,考查了直线与抛物线的综合问题,关键是对题目条件合理转化,属于中档题.7、设抛物线C :()220y px p =>的焦点为F ,经过点F 的动直线l 交抛物线C 于()()1122A x y B x y ,、,两点,且12 4.y y =-(1)求抛物线C 的方程;(2)若点M 是抛物线C 的准线上的一点,直线MF 、MA 、MB 的斜率分别为012k k k 、、,求证:当01k =时,12k k +为定值.答案: (1)24y x =;(2)122k k +=.试题分析:(1)设直线l 方程为即可求解;(2)根据条件求出M 点坐标,12k k +用12,y y 表示,再利用根与系数关系,即可证明结论. 【详解】(1)抛物线C :()220y px p =>的焦点设直线l 方程为 ,消去x 得,2220y pmy p --=,22212124(1)0,2,4p m y y pm y y p ∆=+>+==-=-,2p =,所以抛物线方程为24y x =;(2)抛物线准线方程为2x =-,设 直线l 方程为1x my =+,212124,4y y m y y p +==-=-所以12k k +为定值. 【点睛】本题考查求抛物线的标准方程及其性质,考查直线与抛物线的位置关系,要注意根与系数关系设而不求的应用,属于中档题.8、已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到直线 (Ⅰ)当2C 的准线与直线的距离为15时,求1C 及2C 的方程;(Ⅱ)设过点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M ,N 两点.当时,求||MN 的值. 试答案: (Ⅰ)1C :,2C :212y x =(Ⅱ)试题分析:(1)依据题设条件“1C 的长轴长、短轴长及点F 到直线求得2a c =,从而求出1C 的右准线方程为4x c =,然后借助题设“2C 的准线与直线的距离为15”建立方程求出3c =,求出1C 及2C 的方程;(2)先建立直线l 的方程l :y x c =-,后与椭圆方程联立,借助求出c 的值,再与曲线1C 的方程联立求出 解:(Ⅰ)设1C :,其半焦距为c (0)c >.则2C :24y cx =.,得2a c =.1C 的右准线方程为,即4x c =.2C 的准线方程为x c =-.由条件知515c =,所以3c =,故6a =,从而1C :,2C :212y x =.(Ⅱ)由题设知l :y x c =-,设()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y .,即2223412x y c +=由2223412x y c y x c ⎧+=⎨=-⎩,知34,x x 满足227880x cx c --=,,所以129x x += 点睛:圆锥曲线是高中数学教材中较为典型的传统内容,也是高考每年重点考查的知识内容之一.本题以椭圆与抛物线两种圆锥曲线为背景设置问题,旨在考查椭圆、抛物线的标准方程与几何性质等基础知识,以及运用代数中的方程解决几何问题的各种综合能力.解答本题的第一问时,先依据题设条件“1C 的长轴长、短轴长及点F 到直线求得2a c =,从而求出1C 的右准线方程为4x c =,然后借助题设“2C 的准线与直线的距离为15”建立方程求出3c =,求出1C 及2C 的方程;求解本题的第二问,先建立直线l 的方程l :y x c =-,后与椭圆方程联立,求出c 的值,再与曲线1C 的方程联立求出的值使得问题获解.9、已知抛物线21:4C y x =与圆2222:C x y r +=一个交点的横坐标线l 与1C 相切于点P ,与2C 交于不同的两点A ,B ,O 为坐标原点. (1)求2C 的方程;(2)若OA OB ⊥,求.答案: (1)221x y +=;(2试题分析:(1)将抛物线方程和圆方程联立,消去y ,得到关于x 的方程,然后将交点代入方程中,可求出圆的半径,可得2C 的方程;(2)设直线l 的方程为x ky m =+,与抛物线方程联立成方程组,消元后判别式等于零,得到20k m +=,直线方程与圆的方程联立方程组,消元后利用根与系数的关系,再结合OA OB ⊥,可得22210m k --=,从而可求出k ,m 的值,从而可求出点P 的坐标,详解:(1)联立抛物线1C 与圆2C 的方程:22224y xx y r⎧=⎨+=⎩,得2240x x r +-=,解得21r =,所以2C 的方程为221x y +=.(2)设直线l 的方程为x ky m =+,联立直线l 与抛物线1C 的方程24x ky my x=+⎧⎨=⎩,得2440y ky m --=,由于直线l 与1C 相切,所以()()24440k m ∆=---=,即20k m +=①联立直线l 与圆2C 的方程:221x ky m x y =+⎧⎨+=⎩,得()2221210k y kmy m +++-=设()11,A x y ,()22,B x y ,则由OA OB ⊥得,12120x x y y +=,即()()()()221212121210ky m ky m y y k y y km y y m +++=++++=化简得,22210m k --=②,将①代入②得:2210m m +-=,解得1m =-或12m =(舍去),21k =,所以1k =±, 故直线l 的1x y =±-. 解方程组214x y y x =±-⎧⎨=⎩得,切点P 的坐标为()11,2P ,()21,2P -. (1)当P 的坐标为()11,2P 时,此时()0,1A ,()1,0B -,故2224PA PB =⨯=; (2)当P 的坐标为()21,2P -时,此时()1,0A -,()0,1B -,故2224PA PB =⨯=. 所以,4PA PB =.【点睛】本题主要考查抛物线方程、圆的方程、向量等综合知识,考查推理论证、转化与化归及运算求解能力,属于较难题.三、面积1、已知点()0,2A ,()2,0B .若点C 在抛物线2y x =上,则使得ABC ∆的面积为2的点C 的个数为( )A .1B .2C .3D .4答案: D解析: 由题意可得22AB =,AB 的方程为221x y +=,2(,)C m m ,求出点C 到AB 的距离d 的值,再代入面积公式得21|2|22222m m +-⨯⨯=,由此求得m 的值,从而得出结论.详解:由题意可得22AB =,AB 的方程为221x y+=,即20x y +-=. 设点2(,)C m m ,则点C 到AB 的距离2|2|2m m d -=+.由于ABC ∆的面积为2,故有21|2|22222m m +-⨯⨯=,化简可得2|2|2m m +-=, 222m m ∴+-=①,或222m m +-=-②.解①求得1172m -+=或1172m --=;解②求得0m =或1m =-. 综上可得,使得ABC ∆的面积为2的点C 的个数为4.故选:D. 【点睛】本题主要考查抛物线的简单性质的应用,点到直线的距离公式,一元二次方程的解法,属于中档题.2、在直角坐标系xOy 中,PAF △是以PF 为底边的等腰三角形,PA 平行于x 轴,点()1,0F ,且点P 在直线1x =-上运动.记点A 的轨迹为C.(1)求C 的方程. (2)直线AF 与C 的另一个交点为B ,等腰PAF △底边的中线与直线1x =-的交点为Q ,试问QAB 的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.答案: (1)()240y x x =≠;(2)存在,值为4.试题分析:(1)根据抛物线的定义得轨迹C 为抛物线(去除顶点),从而可得其方程; (2)设直线AB 的方程为1x ty =+,()11,A x y ,()22,B x y ,直线方程代入抛物线方程整理可得1212,y y y y +,由抛物线的焦点弦弦公式求得弦长AB ,再求出点Q 到直线AB 的距离,求得三角形面积(表示为t 的函数),由函数性质可得最小值. 详解:(1)由题意得PA 与直线1x =-垂直,且PA PF =, 故点A 到定点()1,0F 的距离和到直线1x =-的距离相等, 由抛物线的定义可得,C 是以()1,0F 为焦点, 直线1x =-为准线的抛物线(除原点O),故C 的方程为()240y x x =≠.(2)存在.设直线AB 的方程为1x ty =+,()11,A x y ,()22,B x y ,由214x ty y x=+⎧⎨=⎩,得2440y ty --=, 则()21610t ∆=+>,124y y t +=,124y y =-. 因为111x ty =+,221x ty =+,所以21242x x t +=+,又P 的坐标为()11,y -,所以PF故PAF △底边的中线所在的直线方程为令1x =-,得 故Q 的坐标为()1,2t -.点Q 到直线ABQABS=故当0t =时,QABS取得最小值4.【点睛】本题考查用定义求轨迹方程,考查抛物线的焦点弦性质及抛物线中三角形面积问题.解题方法是“设而不求”的思想方法,即设交点坐标()11,A x y ,()22,B x y ,设直线AB 的方程为1x ty =+,代入抛物线方程应用韦达定理得1212,y y y y +,然后用1212,y y y y +去表示出弦长,把三角形面积表示为参数t 的函数,再由函数知识得最小值.3、已知抛物线C :2y x a =+,点P 是C 上的不同于顶点的动点,C 上在点P 处的切线l 分别与x 轴轴交于点A 、B .若存在常数t 满足对任意的点P 都有PA tPB =. (Ⅰ)求实数a ,t 的值;(Ⅱ)过点P 作l 的垂线与C 交于不同于P 的一点D ,求PBD △面积的最小值.答案:试题分析:(Ⅰ)先求导数,利用导数几何意义得切线斜率,根据点斜式得切线方程,即得A 、B 坐标,根据坐标化简PA tPB =,最后根据等式恒成立得a ,t 的值;(Ⅱ)先设D ,根据向量垂直坐标表示得P 与D 横坐标关系,再根据两点间距离公式得结果.详解:(Ⅰ)设1111(,)(0,)P x y x y a ≠≠,则211y x a =+,22y x a y x '=+∴=2111111111:2()2222()l y y x x x y y x x x y y x x y a ∴-=-∴-=--=--,,,即11:22l y y a x x +-=.l 分别与x 轴轴交于点A 、B ,()10,2B a y -.PA tPB =∴0∵存在常数t 满足对任意的点P 都有PA tPB =∴ (Ⅱ)设22(,)D x y ,DP PB ⊥0DP PB ∴⋅=()()()()222121211121211,,2,,2DP PB x x y y x y x x x x x x ⋅=--⋅--=---⋅ ()()2221121122x x x x x x =----∵12x x ≠,10x≠,故()112120x x x ++=,即又DP PB ⊥,故PBD △的面积为()()()()222222221614141211411()88x x x x x f x x x +-+-+'=⋅=⋅.11(0,),()0;(,),()0;2323x f x x f x ''∴∈<∈+∞>∴()f x 在10,23⎛⎤ ⎥⎝⎦上是减函数,在1,23⎡⎫+∞⎪⎢⎣⎭上是增函数. ∴当123x =时,()f x 的最小值是439.故PBD △面积的最小值是439. 【点睛】本题考查抛物线切线方程、等式恒成立、抛物线中三角形面积、利用导数求最值,考查综合分析求解能力,属较难题.4、已知点F 是抛物线2:4C x y =的焦点,P 是其准线l 上任意一点,过点P 作直线PA ,PB 与抛物线C 相切,A ,B 为切点,PA ,PB 与x 轴分别交于Q ,R 两点.(1)求焦点F 的坐标,并证明直线AB 过点F ; (2)求四边形ABRQ 面积的最小值.答案: (1)(0,1)F ,证明见解析;(2)3试题分析:(1)由点斜式设出直线,AP BP 的直线方程,再由P 在,PA PB 上,得出直线AB 的方程,从而证明直线AB 过点F ;(2)将直线AB 的方程与抛物线方程联立,结合韦达定理,抛物线的性质,点到直线的距离公式得出PAB S ∆,PQR S ∆,再由四边形ABRQ 的面积PAB PQR S S S ∆∆=-,结合导数得出四边形ABRQ 面积的最小值. 详解:(1)由题意可知(0,1)F又P 在,PA PB 上,所以直线AB过焦点(2)由(1代入2:4C x y =得20240x x x --= 则1201224x x x x x +=⎧⎨=-⎩由(1则四边形ABRQ 的面积当2t ≥时,()0f t '>即函数()f t 在[2,)+∞上是增函数 则四边形ABRQ 面积的最小值为3【点睛】本题主要考查了抛物线中直线过定点问题,抛物线中的四边形的面积问题,属于中档题.5、已知抛物线()2:20C y px p =>经过点(1)写出抛物线C 的标准方程及其准线方程,并求抛物线C 的焦点到准线的距离; (2)过点()2,0且斜率存在的直线l 与抛物线C 交于不同的两点A ,B ,且点B 关于x与x 轴交于点M . (i 的坐标;(ii与OAB 面积之和的最小值.答案: 1焦点到准线的距离为1;(2)(i )(2,0)M -,(ii 试题分析:(1)由抛物线C 经过点,求得抛物线的方程为22y x =,再结合抛物线的几何性质,即可求解;(2)(i )设过点()2,0的直线:2l x my =+,联立方程组,求得1212,y y y y +,再由直线AD 的方程,0y =,即可求解M 的坐标;(ii )利用三角形的面积公式,求得OAM ∆与OAB ∆面积之和的表示,结合基本不等式,即可求解.详解:(1)由题意,抛物线()2:20C y px p =>经过点解得1p =,所以抛物线的方程为22y x =,1.(2)(i )设过点()2,0的直线:2l x my =+, 代入抛物线22y x =的方程,可得2240y my --=,设直线l 与抛物线C 的交点112222(,),(,),(,)A x y B x y D x y -,且10y >,则212122,4,4160y y m y y m +==-∆=+>,所以直线AD的方程为令0y =,可得()21211()2y y y x y -⋅-=-,所以21211122()()4x y y y y y y =-⋅-+==-,所以2x =-,所以(2,0)M -,1212111422OAB OAM S y y y y S y y y ∆∆-++=+=++=11114422242y y y y =+≥⋅=, 当且仅当1142y y =时,即12y =时等号成立, 所以OAM ∆与OAB ∆面积之和的最小值为42.【点睛】本题主要考查抛物线的标准方程及几何性质、及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等。
2020秋高中数学人教版2-1学案:2.4.2.2直线与抛物线的位置关系含解析
2020秋高中数学人教A版选修2-1学案:2.4.2.2直线与抛物线的位置关系含解析2.4.2。
2直线与抛物线的位置关系自主预习·探新知情景引入一只很小的灯泡发出的光,会分散地射向各方,但把它装在手电筒里,经过适当调节,就能射出一束较强的平行光,这是什么原因呢?提示:手电筒内,在小灯泡的后面有一个反光镜,镜面的形状是一个由抛物线绕它的对称轴旋转所得到的曲面,这种曲面叫抛物面,抛物线有一条重要性质,从焦点发出的光线,经过抛物面上的一点反射后,反射光线平行于抛物线的轴射出,手电筒就是利用这个原理设计的.新知导学直线与抛物线的位置关系直线与抛物线公共点的个数可以有__0个、1个或2个__。
将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线__相切__,若Δ>0,则直线与抛物线__相交__,若Δ<0,则直线与抛物线__没有公共点__。
特别地,当直线与抛物线的轴平行时,直线与抛物线有__一__个公共点.预习自测1.在抛物线y2=8x中,以(1,-1)为中点的弦所在直线的方程是(C)A.x-4y-3=0B.x+4y+3=0C.4x+y-3=0D.4x+y+3=0[解析]设弦两端点为A(x1,y1)、B(x2,y2),则y1+y2=-2。
∵A、B在抛物线上,∴y错误!=8x1,y错误!=8x2,两式相减得,(y1+y2)(y1-y2)=8(x1-x2),∴错误!=-4,∴直线AB方程为y+1=-4(x-1),即4x+y-3=0。
2.过抛物线焦点F的直线与抛物线相交于A、B两点,若点A、B在抛物线准线上的射影分别为A1,B1,则∠A1FB1为(C)A.45°B.60°C.90°D.120°[解析]设抛物线方为y2=2px(p〉0).如图,∵|AF|=|AA1|,|BF|=|BB1|,∴∠AA1F=∠AF A1,∠BFB1=∠FB1B。
抛物线与直线
探究新知 例1:判断直线 y = 6与抛物线 y2 =4x的 位置关系及求交点坐标?
相交(9,6)
问题:直线与抛物线的对称轴平行时都有一个交点吗? 注意,当直线与抛物线的对称轴平行时有一个交点
y
O
x
探究新知
例2 已知抛物线的方程为y 2 = 4x, 直线l过定点P -2,1 , 斜率为k,k为何值时, 直线l与抛物线y 2 = 4x : 只有一个公共点;有两个公共点;没有公共点?
(2)若消元得到一次方程,则方程组只有一组解,直线和 抛物线的对称轴平行或重合,为相交关系.
典型例题:
例6、已知抛物线C:y2=4x,设直线与抛物线两交点为A、 B,且线段AB中点为M(2,1),求直线l的方程.
解:由题意可知,直线斜率一定存在,故可设的方程为y -1 k(x - 2) k 0) l l ( , 设直线与抛物线的交点 坐标A(x1 , y1 ), B(x2 , y 2 ),则x1 x 2 4, y1 y 2 2
2 y1 4 x1 y y2 4 由 2 1 2 x1 x2 y1 y2 y 2 4 x2
即k AB 2
此时直线l的方程为y -1 2(x - 2),即2x - y - 3 0
y 2 4x 由 消x得y 2 - 2y - 6 0 0 2x - y - 3 0
2.4.1抛物线的几何性质
喷泉
直线与圆、椭圆、双曲线的位置关系的判断方法
1、根据几何图形判断的直接判断
形
2、直线与圆 锥曲线的公 共点的个数
Ax+By+c=0
解的个数 f(x,y)=0(二次方程)
数
直线与椭圆位置关系 把直线方程代入椭圆方程 得到一元二次方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4.
3.直线与抛物线的位置关系(一)
【学习目标】
通过本节的学习,能运用性质解决直线与抛物线位置有关的简单问题,进一步体会数形结合的思想.
【自主学习】
1、直线与抛物线的位置关系
设直线:l y kx b =+,抛物线2
2(0)y px p =>,直线与抛物线的交点的个数等价于方程组22y kx b y px
=+⎧⎨=⎩解的个数,也等价于方程2220kx px bp -+=解的个数. 三、当0k ≠时,
当0∆>时,直线和抛物线____,有____公共点;
当0∆=时,直线和抛物线____,有____公共点;
当0∆<时,直线和抛物线____,有____ 公共点.
四、当0k =,即直线方程为0y y =时,则直线y b =与抛物线22(0)y px p =>相交,有一
个公共点.
五、特别地,当直线的斜率不存在时, 即直线方程为x m =,则
当0m >, l 与抛物线相交,有两个公共点;
当0m =时,与抛物线相切,有一个公共点;
当0m <时,与抛物线相离,无公共点.
注: 直线与抛物线只有一个公共点时,它们可能相切,也可能相交.
【典型例题】
例1 已知抛物线的方程是x y 42
=,直线l 过定点(2,1)P -,斜率是k .k 为何值时,直线l 与抛物线x y 42
=:只有一个公共点;两个公共点;没有公共点?
例2斜率为1的直线经过抛物线x y 42
=的焦点,与抛物线相交于两点A 、B ,求线段AB 的长.
解法一:解方程组,得交点的坐标,利用两点间距离公式解之.
思路二:同思路一相同,但不解方程组,利用根与系数的关系和弦长公式解之.
思路三:利用根与系数关系及抛物线的定义来解之.
【课堂检测】
1.过点(0,1)且与抛物线2y x =只有一个公共点的直线有 ( )
(A)一条 (B)两条 (C)三条 (D)无数条
2.过抛物线x y 42=的焦点F 作倾斜角为
34
π的直线交抛物线于A 、B 两点,则AB 的长是 ( ) (A)42 (B)4 (C)8 (D)2
3.过定点(0,1)P 且与抛物线22y x =只有一个公共点的直线方程___________.
4. 若直线 2x y -=与抛物线 24y x = 交于A 、B 两点,则线段AB 的中点坐标是______.。