无线收发系统的设计

合集下载

基于 51 单片机的无线数据收发系统设计

基于 51 单片机的无线数据收发系统设计

基于 51 单片机的无线数据收发系统设计摘要:系统使用 51 单片机通过NRF24L01 模块远程传输数据,接收端通过NRF24L01 模块接收无线数据。

处理后由液晶进行数据显示,可根据需要设置声音提示。

系统接收与发送端模块均单片机、无线发送模块/ 接收、显示、声音提示模块。

关键词:51 单片机;NRF24L01;液晶显示;无线通讯1硬件设计1.1系统组成该系统将数据经过控制器由无线发送模块进行远距离发送,再通过接收端进行无线数据接收。

接收的数据经控制器处理后由液晶显示器显示,并根据需要可以实现一定的声音提示。

1.2无线收发模块本设计使用无线通讯技术实现数据的传送,能够实现此功能的硬件电路模块总类较多。

为符合设计需求,采用以NRF24L01 为核心的无线通讯模块。

该方案可以使系统具有低成本,低功耗,体积小等特点。

NRF24L01 无线模块出至 NORDIC 公司。

其工作频段在 2.4G— 5GHz,该模块正常工作电压为 1.9V—3.6V,内部具有 FSK 调制功能,集成了 NORDIC 公司自创的增强短脉冲协议。

该模块最多可实现 1 对 6 的数据发送与接收。

其每秒最高可传输两兆比特,能够实现地址检验及循环冗余检验。

若使用 SPI 接口,其每秒最高可传输八兆比特,多达 128 个可选工作频道,将该芯片的最小系统集成后,构成NRF24L01 无线通信模块。

1、引脚功能此模块有 6 个数据传输和控制引脚,采用 SPI 传输方式,实现全双工串口通讯,其中 CE脚为芯片模式控制线,工作情况下,CE 端协配合寄存器来决定模块的工作状态。

当4 脚电平为低时,模块开始工作。

数据写入的控制时钟由第 5 脚输入,数据写入与输出分别为 6、7 脚,中断信号放在了第 8 脚。

2、电器特性NRF24L01 采用全球广泛使用的 2.4Ghz 频率,传输速率可达 2Mbps,一次数据传输宽度可达 32 字节,其传输距离空旷地带可达2000M 此模块增强版空旷地带传输距离可达 5000M—6000M, 因内部具有 6 个数据通道,可实现 1 对 6 数据发送,还可实现 6 对 1 数据接收,其工作电压为 1.9V-3.6V,当没有数据传输时可进入低功耗模式运行,微控制器对其控制时可对数据控制引脚输入 5V 电平信号,可实现 GFSK 调制。

基于nRF2401的短距离无线收发系统设计

基于nRF2401的短距离无线收发系统设计

基于nRF2401的短距离无线收发系统设计【摘要】该短距离无线收发系统采用nordic公司的nrf2401无线收发芯片和atmel公司的单片机at89c51rb2,以实现数据点对点的无线传输功能。

该无线收发模块主要由nrf2401芯片和一些外围元件组成,文中对采用的芯片的结构和原理做了详细的介绍,对于硬件系统中各组成部分特点,本文也分别做了分析和研究,对nrf2401的配置、crc码的原理,包括at89c51rb2和nrf2401之间的spi接口也都做出具体的描述。

系统的程序设计得到很好的完成。

并在nrf2401无线收发芯片的基础上进行了扩展,提出了增加发射功率的方案,加大了无线通信的距离。

【关键词】短距离无线通信收发模块单片机一、引言短距离无线通信技术是指可在最远100米范围内传输数据的解决方案。

本文研究的无线数据传输系统是短距离无线通信技术在工业数据监控中的具体应用,要实现的是点对点数据传输功能。

选取了nordic的nrf2401无线收发模块,该模块由于较低的价格、简单的开发,在低成本应用场合显示了独特的优势。

nrf240无线收发模块可利用at89c51rb2对其进行控制。

二、nrf2401芯片的介绍nrf2401具有全球无线市场通信功能,一般工作频率是2.4ghz,支持多点间通信,它的传输速率可以到达1mbit/s。

它采用soc工艺,只需少量外围元件便可组成射频收发电路,因此它具有体积小、功耗低、外围元件简单,成本低的优点。

是业界口碑很好的射频系统级芯片。

nrf2401工作状态是144位,具有四种工作模式分别是:空闲模式、关机模式、收发模式和配置模式。

在收发模式下系统的程序简单且系统稳定性较高,所以nrf2401一般工作于shock burst tm收发模式。

下面就把nrf2401的shock burst tm收发模式的配置方法介绍给大家。

三、系统硬件电路的设计无线收发电路主要由无线射频芯片nrf2401和单片机at89c51rb2组成,系统方框图如图1所示。

无线收发系统设计

无线收发系统设计

无线收发系统设计首先,无线收发系统的设计需要确定使用的无线通信技术。

常见的无线通信技术包括Wi-Fi、蓝牙、Zigbee和RFID等。

根据实际需求和应用场景的特点,选择合适的无线通信技术。

其次,需要设计无线收发系统的硬件部分。

硬件部分包括发射机和接收机两个主要组成部分。

发射机通常包括信号源、调制电路和功率放大器等。

信号源用于产生要发送的信号,调制电路用于将信号进行调制,将信息嵌入到载波中,功率放大器则用于将调制后的信号放大,以便进行传输。

接收机通常包括天线、解调电路和信号处理电路等。

天线用于接收到达的无线信号,解调电路用于将调制后的信号还原为原始信号,信号处理电路则用于对解调后的信号进行处理,以得到所需的信息。

此外,还需要设计无线收发系统的软件部分。

软件部分用于控制无线收发系统的工作,并处理信号传输过程中的各种问题。

软件部分通常包括以下几个模块:调制解调模块、信号处理模块和通信协议模块等。

调制解调模块用于进行信号的调制和解调,信号处理模块用于对接收到的信号进行必要的处理,以得到所需信息,通信协议模块则用于控制无线收发系统的工作,确保信息的可靠传输。

最后,无线收发系统的设计还需要考虑到一些特殊因素。

例如,信号的传输距离、速率和功耗等。

根据实际需求和应用场景的特点,对这些因素进行合理的设计和优化。

总结起来,无线收发系统的设计需要确定使用的无线通信技术,设计硬件部分和软件部分,并考虑特殊因素。

通过合理的设计和优化,可以实现无线收发系统的功能,满足实际需求和应用场景的要求。

无线收发器设计指南:现代无线设备与系统篇

无线收发器设计指南:现代无线设备与系统篇

目录分析
随着无线通信技术的飞速发展,无线收发器在现代无线设备与系统中扮演着举 足轻重的角色。本书《无线收发器设计指南:现代无线设备与系统篇》旨在为 读者提供关于无线收发器设计的全面指南,帮助读者深入了解现代无要介绍无线收发器的基本概念、发展历程和应用领域。 我们将讨论无线收发器在无线通信系统中的地位和作用,以及其基本组成和分 类。
书中还深入探讨了现代无线设备的关键技术,包括蓝牙、Wi-Fi、蜂窝通信等。 这些技术在当今的无线通信领域中发挥着越来越重要的作用,而这本书为我们 提供了一个全面了解这些技术的窗口。通过阅读这些内容,我不仅了解了各种 技术的优缺点和适用场景,还对它们在未来的发展趋势有了更深入的认识。
《无线收发器设计指南:现代无线设备与系统篇》是一本非常值得一读的书籍。 它不仅让我深入了解了无线通信的原理和技术,还启发了我对未来无线通信发 展的思考。我相信这本书对于任何从事无线通信领域工作的工程师、设计师或 研究人员都会有所启示和帮助。
在这一章中,我们将介绍无线收发器的测试与验证技术。测试是确保无线收发 器性能的关键步骤,包括功能测试、性能测试和可靠性测试等。同时,我们还 将介绍一些先进的测试仪器和工具,如信号源和频谱分析仪等。
在这一章中,我们将通过分析一些具体的无线收发器应用案例,深入探讨其在 现代无线设备与系统中的应用。这些案例包括蓝牙、Wi-Fi、蜂窝通信 (2G/3G/4G/5G)等。通过这些案例的分析,读者可以更好地理解无线收发器的 实际应用和优化方法。
在当今高度信息化的时代,无线通信已经成为我们生活中不可或缺的一部分。 当我们使用手机、平板电脑或笔记本电脑进行语音通话、视频会议和数据传输 时,我们都在依赖无线通信技术。
然而,对于大多数人来说,无线通信背后的原理和技术仍然是一个神秘的世界。 为了揭开这个神秘面纱,我阅读了《无线收发器设计指南:现代无线设备与系 统篇》这本书,这是一本为无线通信工程师和设计师提供全面、深入洞察无线 收发器设计的指南。

基于stm32的无线收发系统

基于stm32的无线收发系统

基于stm32的无线收发系统基于STM32的无线收发系统随着物联网技术的发展,无线收发系统在各种应用中得到了广泛的应用,例如智能家居、智能健康监测、工业自动化等领域。

而基于STM32的无线收发系统,具有功耗低、性能稳定、功能丰富等特点,因此在无线通信领域备受关注。

本文将介绍基于STM32的无线收发系统的设计与制作过程。

一、系统架构设计基于STM32的无线收发系统的设计通常包括硬件设计和软件设计两个方面。

硬件设计主要包括主控单元、无线收发模块、电源管理模块等部分,而软件设计则涉及到系统的逻辑控制、数据处理、通信协议等方面。

1. 主控单元选择在基于STM32的无线收发系统中,选用STM32系列微控制器作为主控单元是一个常见的选择。

STM32系列微控制器具有低功耗、高性能和丰富的外设资源等特点,适合用于无线收发系统的控制和数据处理。

根据具体的应用需求,可以选择不同型号的STM32微控制器,如STM32F1、STM32F4等系列。

2. 无线收发模块选择无线收发模块是无线收发系统的核心部分,它负责实现无线通信功能。

在基于STM32的无线收发系统中,可以选择一些常见的无线收发模块,如NRF24L01、CC1101等。

这些无线收发模块具有功耗低、传输距离远、通信稳定等特点,适合用于无线传感器网络、遥控器等场景。

3. 电源管理模块设计基于STM32的无线收发系统通常需要考虑功耗管理的问题。

在设计时需要合理设计电源管理模块,以提高系统的能效和续航时间。

电源管理模块包括电源转换、电池管理、低功耗设计等方面,需要综合考虑系统的供电需求和功耗特性。

4. 软件设计基于STM32的无线收发系统的软件设计是整个系统设计的重要部分。

软件设计包括系统的逻辑控制、通信协议的实现、数据处理和存储等方面。

在软件设计中需要充分发挥STM32微控制器的性能优势,合理设计系统的任务分配和调度,提高系统的稳定性和实时性。

二、系统制作流程1. 硬件制作流程(1)电路设计:根据系统的功能需求和硬件设计要求,进行电路设计,包括主控单元的连接、外围电路的设计、无线收发模块的连接等部分。

课程设计-无线电报收发系统分解

课程设计-无线电报收发系统分解

无线电报收发系统学院:信息工程学院班级:电子101班姓名:学号:目次一、电报发射机 (4)1、调幅发射机设计的作用与目的 (5)2、电报发射机的主要技术指标 (5)3、电报发射机的设计原理图 (5)4、电报发射机各模块具体设计 (6)4.1、音频振荡器 (6)4.1.1、音频振荡器原理图 (6)4.1.2、音频振荡器仿真波形 (7)4.1.3、音频振荡器仿真频率 (7)4.2、音频放大器 (8)4.2.1、音频放大器电路原理图 (8)4.2.2、音频放大器仿真波形 (8)4.3、载波振荡器 (9)4.3.1、载波振荡器电路原理图 (10)4.3.2、载波振荡器仿真波形 (10)4.3.3、载波振荡器仿真频率 (10)4.4、振幅调制器 (11)4.4.1、振幅调制器电路原理图 (13)4.4.2、振幅调制器仿真波形 (13)4.5、功率放大器 (14)4.5.1、功率放大器电路原理图 (14)4.5.2、功率放大器仿真波形 (15)4.6、电报发射机总原理图 (16)二、电报接收机 (17)1、调幅接收机的作用及目的 (17)2、调幅接收机的主要技术指标 (17)3、电报接收机的设计原理图 (17)4、电报接收机各模块设计 (17)4.1、选频放大电路 (17)4.1.1、选频网络原理图 (17)4.1.2、放大网络原理图 (18)4.1.3、放大网络仿真波形 (18)4.2、检波解调电路 (18)4.2.1、检波解调电路原理图 (19)4.3、滤波低放电路 (19)4.3.1、低通滤波电路原理图 (19)4.3.2、低通滤波电路仿真波形 (20)4.3.3、低频放大电路原理图 (20)4.3.4、低频放大电路仿真波形 (21)5、接收机总原理图 (22)三、设计心得与体会 (23)四、参考文献 (24)无线电报收发系统学院:信息工程学院班级:电子101班姓名:学号:摘要:无线电报收发系统设计是继《高频电子线路》理论学习和实验教学之后又一重要的实践性教学环节。

无线通信中射频收发系统的研究与设计

无线通信中射频收发系统的研究与设计

• 98•无线通信中射频收发系统的研究与设计广州海格通信集团股份有限公司 郭 洋 郑超捷【摘要】本文主要针对无线通信系统中的射频收发系统进行研究与设计,在分析通信系统组成和工作原理的基础上,对射频收发系统进行优化设计。

【关键词】无线通信;射频收发系统;研究;设计在当前通信技术以及信息技术的发展背景下,蜂窝移动通信技术得到跨越式突飞猛进的发展进步,并受人瞩目。

对于通信系统而言,其功能的实现需要各种重点电子线路实现,而各种电子线路又紧紧依托于通信系统的发射机和接收机,因此必须对通信系统及其接收机、发射机进行深入研究和创新设计。

1.通信系统的组成随着通信技术以及通信系统在人们生产生活中的应用,其在人们生产生活中的作用逐渐凸显。

首先是进行信号调制,能够将传输信号进行转换,转换成为能够进行信道传输的信号。

通过通信系统图能够看出,在通信系统的发送端进行信号解调。

在通信系统中一般传输的是在零频附近的低频信号,包括以模拟信号和数字信号为代表的基带信号(baseband )。

经过调制之后的信号转变为基带信号(passband )。

最终通带信号在整个通信系统中进行传输,在接收机中接收信号,并对信号进行进一步处理,转换为原始信号,接收机的主要任务即解调。

2.无线通信中射频收发系统的工作原理2.1 射频发射机的工作原理图1 射频发射机工作原理图射频发射机的主要功能是将低频基带信号转换为高频射频,如图1所示,一般需要经过调制器和放大器、滤波器等结构实现。

低频基带信号首先经过调制器以及滤波器、混频器等进行信号处理。

首先经过数模转换器的低频基带信号需要经过调制器进行初步解调,一般通过数字调制和模拟调制两种方式实现,数字分频电路和鉴相器电路以及锁相环电路组成的本振器能够对信号进行处理,并且将处理的信号送至混频器,最后在滤波器中进行频率相乘处理。

DAC 的主要功能是将数字信号转换为模拟信号,滤波器的主要目的是对信号进行进一步处理,去除信号中的干扰信号并优化其中的有效信号,在滤波信号的选择中还需要根据无线射频发射机进行选择,一般包括信道选择滤波器、镜像抑制滤波器以及射频滤波器等。

无线通信中的射频收发系统设计

无线通信中的射频收发系统设计

这一章讨论了非线性分析的基本原理和方法,包括互调、干扰屏蔽和频谱再 生及调制等。还介绍了如何利用非线性分析改善无线通信系统的性能。
第六章:移动系统中射频专用集成电路设计方法
这一章针对移动系统中的射频专用集成电路设计进行了深入探讨,包括自动 增益控制、模/数转换动态范围和电源管理等关键技术。还介绍了如何优化这些 集成电路的性能,以满足移动系统的严格要求。
《无线通信中的射频收发系统设计》是一本全面介绍无线通信中射频收发系统设计的书籍,既适 合初学者入门学习,也适合专业人士深入探讨。通过阅读本书,读者可以深入理解射频收发系统 设计的基本原理和核心技术,掌握射频收发系统的设计和优化方法,为进一步研究和开发无线通 信技术打下坚实的基础。
精彩摘录
在无线通信领域,射频收发系统设计是至关重要的一环。它不仅是实现无线 通信的关键,也是决定无线通信质量与效率的重要因素。近年来,随着无线通信 技术的快速发展,射频收发系统设计也变得越来越复杂和精细。在这样的背景下, 一本名为《无线通信中的射频收发系统设计》的书籍为我们提供了宝贵的参考和 指导。
本书还重点介绍了射频收发系统的性能评估。通过理论分析和实验测试,本书详细阐述了如何评 估射频收发系统的性能,包括传输速率、功耗、稳定性等指标。
还介绍了如何通过优化设计和参数调整来提高系统性能。
本书讨论了射频收发系统设计的未来发展趋势。随着技术的不断进步,射频收发系统设计将面临 更多的挑战和机遇。本书展望了未来几年内无线通信技术的发展趋势,并探讨了可能的创新方向。
《无线通信中的射频收发系统设计》这本书的目录覆盖了无线通信中射频收 发系统的各个方面,从基础知识到高级技术,从理论分析到实践应用。这本书对 于从事无线通信工作的工程师和技术人员来说是一本宝贵的参考书,对于相关领 域的研究人员和学生来说也是一本极好的教材。

多通道无线数据收发器研究与设计

多通道无线数据收发器研究与设计

多通道无线数据收发器研究与设计随着无线通信技术的不断发展,人们对于高速、可靠的无线数据传输的需求也越来越迫切。

为了满足这一需求,多通道无线数据收发器作为一种重要的无线通信设备,受到了广泛的关注和研究。

多通道无线数据收发器是一种能够同时处理多个频道的无线通信设备。

它的主要功能是将输入的数据信号通过无线信道进行传输,并在接收端将信号恢复成原始的数据。

与传统的单通道无线数据收发器相比,多通道无线数据收发器具有更高的传输速率和更好的抗干扰能力,可以同时传输多个数据信号,提高了无线通信系统的容量和性能。

多通道无线数据收发器的研究与设计主要包括硬件设计和信号处理算法两个方面。

在硬件设计方面,需要设计高频电路、射频前端模块和数字处理模块等,以实现对不同频道的数据信号的采集、调制、放大和解调等功能。

同时,还需要考虑功耗、体积和成本等因素,使得设计出的收发器具有较高的性能和较好的实用性。

在信号处理算法方面,需要设计合适的调制和解调算法,以实现对多个频道的数据信号的传输和恢复。

常用的调制方式包括PSK(相移键控)、QAM(正交振幅调制)和OFDM(正交频分多路复用)等,解调算法则是调制算法的逆过程。

通过优化调制和解调算法,可以提高系统的传输速率和抗干扰能力,从而提高整个系统的性能。

除了硬件设计和信号处理算法的研究与设计,多通道无线数据收发器的研究还需要考虑其他因素,如频谱资源的利用、系统的可靠性和安全性等。

在频谱资源的利用方面,可以采用动态频谱分配技术,使得多个无线通信系统能够共享同一频段的频谱资源,提高频谱的利用效率。

在系统的可靠性和安全性方面,可以采用编码和加密等技术,保障数据的可靠性和保密性。

综上所述,多通道无线数据收发器作为一种重要的无线通信设备,具有很大的研究和应用价值。

通过对硬件设计和信号处理算法的研究与设计,可以提高多通道无线数据收发器的传输速率和抗干扰能力,从而满足人们对于高速、可靠的无线数据传输的需求。

基于CC2500的2.4G无线收发系统设计正文(郝兴恒)

基于CC2500的2.4G无线收发系统设计正文(郝兴恒)

基于CC2500的2.4G无线收发系统设计正文(郝兴恒)基于CC2500的2.4GHz无线收发系统设计1.系统方案设计与论证1.1设计要求利用无线芯片设计一个无线收发系统,要求设计达到以下技术要求:①低工作电压,低功耗。

②工作于免费的2.4~2.485GHz免许可证ISM频段。

③各主要技术指标可实现编程控制,要求操作简单。

④高信息传输速率(≥250kbps),支持多种调制方式。

⑤高接收灵敏度(10kbps下-100dBm;250kbps下-90dBm;1%数据包误码率,450KHz数字信道滤波带宽),可编程输出功率控制。

⑥可实现点对多点通信地址控制。

1.2设计方案与论证设计采用模块化设计,整个系统主要由无线收发模块、控制模块和电源模块构成。

1.2.1无线模块根据设计要求,查找工作在2.4GHz频段相应无线收发芯片的datasheeet,从Nordic、Maxic、TI、Silicon Labs等各大公司生产的无线收发芯片中仔细查找筛选,筛选的原则是:①满足设计性能要求②价格合理,容易购买③设计难度小,操作方便。

通过比较,最终选定TI公司的CC2500作为无线模块核心。

CC2500体积小,几乎集成了所有的无线射频功能,灵敏度高,可编程设定主要工作参数,高效的SPI接口,工作在1.8V~3.6V电压范围,功耗低,具有多种调制方式,能满足不同应用要求,纠错能力强、误码率低。

所需外围器件很少,降低了设计难度;数字特征明显,软件设计难度降低,用户操作也更加简单;收发一体,可实现双向通信。

所以,选择CC2500作为无线核心具有很大的设计优势和价格优势,设计周期短,使用简便,最终产品也能够更快的占领市场。

1.2.2控制模块无线模块选用了CC2500,由于CC2500芯片内部集成了几乎所有的射频功能,控制器只要能控制 CC2500的不同操作模式,写入缓冲数据,通过4线SPI(SI,SO,SCLK 和 CSn)总线配置接口读回状态信息就能达到要求。

基于51单片机的无线数据收发系统设计带电路图和代码

基于51单片机的无线数据收发系统设计带电路图和代码

基于51单片机的无线数据收发系统设计(带电路图和代码)1 引言伴随着短距离、低功率无线数据传输技术的成熟,无线数据传输被越来越多地应用到新的领域。

与有线通信方式相比,无线通信以其不需铺设明线,使用便捷等一系列优点,在现代通信领域占重要地位。

但以往的无线产品存在范围和方向上的局限。

例如,一些无线产品在使用时,无法将信息反馈给控制者;还有一些无线产品不能很好地显示参数或状态信息,如果能在系统中增加一块小型液晶显示电路,产品不仅能向用户显示其状态或状态的改变,而且可以大大降低成本。

正如人们所发现的,只要建立双向无线通信-双工通信并且选择成本低的收发芯片,就会出现许多新应用。

本次设计主要是利用无线收发电路,加上单片机控制与液晶显示制成一套完整的数据收发系统。

考虑到目前市场上的一些需求,设计的主要要求是方案成本低,体积小,低功耗,集成度高,尽量无需调外部元件,传输时间短,接口简单。

nRF401是国外最新推出的单片无线收发一体芯片,它在一个20脚的芯片中包括了高频发射、高频接收、PLL 合成、FSK 调制、多频道切换等功能,并且外围元件少,便于设计生产,功耗极低,集成度高,是目前集成度较高的无线数传产品,它为低速率低成本的无线技术提出了解决方案。

2 无线数据收发系统2.1 系统组成无线数据传输系统有点对点,点对多点和多点对多点三种。

本系统由于实际应用的需要,接收器和数据终端之间的数据传输通过nRF401进行,构成点对点无线数据传输系统。

整个系统中,两数据终端之间的无线通信采用433MHz 的频段作为载波频率,收发通过串口通信。

无线数据收发系统可以分为无线收发控制电路、单片机控制电路、显示电路和按键电路四部分组成,系统原理如图2-1所示:图2-1 无线数据收发系统原理图无线收发 按键 单片机系 无线收发液晶显示单片机系2.2 实现过程当我们需要发送数据时,使用按键来输入所需发送的信息。

按键与单片机AT89S52的P3.2-P3.5口相接,单片机的 P1.0口控制信息的发送与接收,并且TXD 端与收发器输入端相连,通过TXD 将数据传入收发器,收发器接收到数据后,通过FSK 调制,将信号发送出去;接收端的收发器通过解调,将载波信号转换为数字信号,完成信息传输过程;收发器的输出端通过RXD 端将数字信号输入到单片机;单片机将数据传送到显示器,这样就完成了一次数据发送与接收并显示的过程。

基于单片机的无线收发系统设计

基于单片机的无线收发系统设计

基于单片机的无线收发系统设计无线收发系统是指通过无线电波实现信息的传递与接收的一种通讯系统。

它将从传感器或者其他设备中获取的信号转化为电信号,然后通过射频信号进行传输与接收。

在实际的无线收发系统设计中,基于单片机的无线收发系统已经成为广泛应用的一种方案。

下文将从硬件和软件两方面介绍基于单片机的无线收发系统的设计思路。

一、硬件设计基于单片机的无线收发系统包括发送端和接收端两个部分。

其中发送端主要是将电信号转化为射频信号进行传输,而接收端则是将射频信号转化为电信号进行处理。

1、发射模块设计发射模块设计中最核心的是无线电频率,因此需要选择合适的发射模块芯片。

首先需要选择一款可控制衰减的功率放大器,以便根据实际需求对其进行合适的调节。

其次需要选择一款有较多输出功率档位的变频器。

最后需要进行天线设计,根据不同场景选择不同类型的天线。

(如:旋转天线,贴片天线,板载蜂窝天线等)2、接收模块设计接收模块设计中最重要的是接收机芯片。

可以选择具有数字解调功能的芯片,以便将接收到的射频信号转换为数字信号。

通过功率放大器增益的设计,可以使信号幅度调整到最佳值,然后输出给单片机进行处理。

二、软件设计软件设计中需要编写相应的代码程序,对模块控制进行设置,并实现数据的传递。

1、发射模块控制在发射模块控制中,主要是对功率放大器与变频器进行控制。

可以利用单片机的PWM功能模拟模拟电压输出,并实现对变频器的频率和功率的调节。

同时还需要设计相应的信号调制方案,以使数据正确地传输。

2、接收模块控制在接收模块控制中,主要是对解调芯片和功率放大器进行控制,并将解调后的信号数据传输给单片机进行处理。

可以利用单片机的外部中断功能实现接收到数据的中断处理,并利用单片机的USART串口功能实现数据的传输。

综上,基于单片机的无线收发系统的设计需要考虑硬件和软件两个方面。

在硬件设计中需要选择合适的发射与接收模块,并进行天线设计。

在软件设计中需要编写相应的代码程序,实现模块控制与数据传输。

无线收发器设计指南:现代无线设备与系统篇_记录

无线收发器设计指南:现代无线设备与系统篇_记录

《无线收发器设计指南:现代无线设备与系统篇》读书札记目录一、无线收发器基础概念 (2)1.1 无线通信原理简介 (3)1.2 无线收发器的功能与分类 (4)1.3 现代无线收发器的发展趋势 (5)二、无线收发器设计要素 (6)2.1 无线收发器的硬件设计 (8)2.1.1 射频前端设计 (9)2.1.2 模数转换器 (10)2.1.3 数模转换器 (12)2.1.4 天线与射频模块 (13)2.1.5 电源管理与稳压电路 (14)2.2 无线收发器的软件设计 (15)2.2.1 微控制器与嵌入式系统 (16)2.2.2 通信协议与数据处理算法 (17)2.2.3 驱动程序与固件开发 (19)2.3 无线收发器的系统设计与布局 (20)2.3.1 系统架构设计 (22)2.3.2 PCB布局与布线 (23)2.3.3 散热与电磁兼容性设计 (25)三、无线收发器应用案例分析 (26)3.1 无线传感器网络 (27)3.2 蓝牙技术 (29)四、无线收发器设计挑战与解决方案 (30)4.1 信号干扰与抑制技术 (31)4.2 无线收发器的能效优化 (32)4.3 多频段与多标准支持 (34)4.4 安全性与可靠性问题 (35)五、未来展望与建议 (37)5.1 无线收发器技术的未来发展方向 (38)5.2 对无线收发器设计的建议与展望 (40)一、无线收发器基础概念在深入探讨无线收发器的设计与应用之前,我们首先需要明确其基础概念。

无线收发器,作为无线通信的核心组件,它不仅实现了信号的发送与接收,更承载着数据传输的关键任务。

传统的无线收发器常采用分立元件或集成电路来实现信号的调制与解调。

这些技术虽然成熟稳定,但在集成度、功耗和成本等方面存在一定的局限性。

随着技术的不断进步,单片无线收发器应运而生,它集成了多种功能,包括天线、放大器、调制解调器等,大大简化了系统的设计与实现过程。

无线收发器的设计也充分考虑了通信协议的要求,不同的无线标准(如WiFi、蓝牙、ZigBee等)对信号传输的速率、带宽、功耗等参数有着不同的定义。

无线发射接收系统设计与实现

无线发射接收系统设计与实现

无线发射接收系统设计与实现1、引言对于环境信息采集是很普遍的,但是将采集的信息如何传输就是关键,传统的系统都是用有线的方法,不仅要铺设线路,而且不方便,可移植性差。

随着无线技术的不断发展,无线在各个领域中的应用也不断增加,通过嵌入式系统,用无线的方式实现数据的采集和传输是最好的解决方法,不仅简化了实施的难度,而且成本相对较低。

本文主要是以C51单片机为控制核心,用无线接收发射装置来实现环境数据采集系统。

2、系统目的设计并制作一个无线环境监测模拟装置,实现对周边温度和光照信息的探测。

该装置由1个监测终端和不多于255个探测节点组成(实际制作2个)。

监测终端和探测节点均含一套无线收发电路,要求具有无线传输数据功能,收发共用一个天线。

探测节点有编号预置功能,编码预置范围为00000001B~11111111B。

探测节点能够探测其环境温度和光照信息。

温度测量范围为0℃~100℃,绝对误差小于2℃;光照信息仅要求测量光的有无。

探测节点采用三节1.5V干电池串联,单电源供电。

监测终端用外接单电源供电。

探测节点分布示意图如图1所示。

监测终端可以分别与各探测节点直接通信,并能显示当前能够通信的探测节点编号及其探测到的环境温度和光照信息。

每个探测节点增加信息的转发功能,节点转发功能示意图如图2所示。

即探测节点B的探测信息,能自动通过探测节点A转发,以增加监测终端与节点B之间的探测距离D+D1。

该转发功能应自动识别完成,无需手动设置,且探测节点A、B可以互换位置。

3、方案设计与论证3.1、方案设计方案一:采用at89s52单片机,无线发射采用使用LC振荡器,无线接收采用超外差电路,硅光片,DS18B20,8位拨码开关。

方案二:采用at89s52单片机,无线发射采用使用声表器件,无线接收采用超再生电路,硅光片,DS18B20,8位拨码开关。

3.2、方案论证:(1)无线发射电路选择早期的发射机较多使用LC振荡器,频率漂移较为严重。

无线收发电路设计报告

无线收发电路设计报告

无线收发电路设计报告一、设计要求设计最简单的无线收发电路,要求通信距离不小于30cm。

通过无线收发电路传送单片机IO口状态。

二、设计方案选择系统框架图2.1控制芯片选择发射和接收端均采用STC12C5A60S2单片机,该单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),针对强干扰场合。

2.2调制方案选择数字通信中常用的调制方式有ASK,FSK,PSK等。

考虑到功耗及技术复杂度方面,由于FSK 或 PSK 调制解调方式需要的供电电压和功耗较高,且实现电路比较复杂,所以我们选用功耗低且易于实现的 ASK调制解调方式。

三、电路设计分析因为要求的通信距离较短,发射功率和功率的稳定度也不是很高,所以设计电路应采用少元件设计,用方便调试的LC电容三点式振荡器来产生发射电路,电路如下图所示。

西勒振荡电路,在幅度和频率稳定性方面比克拉泼振荡电路均有较大的改善。

本系统选择的是改进型的西勒电容三点式振荡器,西勒电容三点式振荡器在电路形式上增加了电容C4,电路中的C1 C2既是谐振电容又承担交流分压反馈的任务,电压的反馈系数为,频率3.1、发射部分直流分析如上图所示的电路,由LC电容三的式振荡器的性质知要使电路起振,震荡稳定稳定,则震荡三极管工作的电流大约为3.5~4mA。

再结合电路图计算出个元器件的参数如下:(1)、调制开关T1参数选择为:C-E极导通电压降小于0.3V的C9013(因为工作在低频的开关状态)。

(2)、电阻R1,R4:当TXD端为3V时。

Vbe=0.8V,T1导通,R1=(3-0.8)V/0.2mA=11k欧,为保证T1的深度饱和,R1取10K,R4是T1的极电流电阻取值范围3~7k欧,实际上去5.1k欧。

(3)、震荡三极管T2的参数的选择为:小功率三极管要求其截至频率fT=300MHZ.最大的功率PCM=500MW,直流的放大B>150。

SX1231的无线射频收发系统设计研究

SX1231的无线射频收发系统设计研究
初始化程序初始化程序包括STM8L151K2的初始化以及SX1231的收发频率、工作模式、调制方式、数据速率以及数据包处理等寄存器的初始化配置。系统上电后,STM8L151K2处于默认状态,根据系统功能需求重新进行初始化配置。SX1231也处于默认状态,需要进行配置才能工作。SX1231的初始化是一个重要的部分,正确的配置对系统最终的通信性能有很大的影响。数据发送程序无线发送程序流程。完成STM8L151K2、SX1231的初始化后,配置寄存器写入相应的初始化RF控制字;然后通过SPI连续写寄存器向TX FIFO内写入需要发送的数据;再切换到发射模式。当数据发送完后,PacketSent寄存器置1,同时映射的DIO PIN会变成高电平通知MCU数据包发送完成。然后写数据到FIFO,发送,如此循环。直到所有数据发送完成,进入Sleep模式。
SX1231的无线射频收发系统设计研究
中国政府为微功率(短距离)无线电应用增加了868MHz~ 868.6MHz的工作频率。其对无线电设备的射频要求如下:(1)发射功率限值:5mW(e.r.p);(2)发射信号的占空比限值:1%;(3)载波频率容限:100×10-6;并把该类设备归类于“各类民用设备的无线电控制装置中。从上面的规定中可以看到,该频段可用带宽为600kHz,但并没有明确在该频道使用的带宽,数据速率以及调制方式方面要求,这就给予了应用很大的空间。本文主要是基于868MHz频段的要求,设计了比较简单通用的无线收发系统,该系统可适用于该频段的不同的无线传输应用。SX1231介绍及性能描述SX1231芯片是Semtech公司推出的一款高集成度、低功耗、多频段的UHF RF收发器。其工作电压为1.8V~3.6V,24引脚QFN封装,工作频率包括3155MHz、4335MHz、 8685MHz和915MHz无许可证的ISM频段;内部集成SIGMA-DELTA小数分频锁相环、功率放大器、唤醒定时器、数字调制解调器、66字节的发送和接收数据FIFO、数据包处理、数据加密功能AES,以及6个可配置的DIO等,所有主要的RF通信参数是可编程的,大多数可动态设定。采用16节的FIR通路滤波器,因而有好的选择性;发射功率可编程输出,从-18dBm到+17dBm;有多种调制解调方式:FSK、GFSK、MSK、GMSK和OOK等;SX1231在使用时所需的外部元件很少,1个32MHz的晶振、几个电容和电感就可组成一个高可靠性的收发系统,设计简单且成本低。SX1231在1.2kbps时的灵敏度高达-120dBm,主要用在无线抄表(AMR)、无线传感器网络、家庭和建筑物自动化、无线告警和安全系统、工业监视和控制等领域。无线射频收发系统设计系统总体方案无线射频收发系统的结构框图,由STM8L151K2单片机控制SX1231实现无线数据的收发。发送模块中的STM8L151K2将数据传送给SX1231,然后SX1231对数据进行包格式处理,包括增加前导码、同步字、CRC校验码,如果需要也可以对数据进行加密处理。最后数据包经天线发送给接收模块。接收模块对接收到的射频信号放大、解调、解包之后,再将数据送给主控制器STM8L151K2进行相应的处理,如送显示屏或PC数据处理中心等。该系统包括按键和液晶显示屏等人机交互界面,以及RS232接口,这实现了与PC的通信功能。

第5章调幅无线收发系统设计与制作

第5章调幅无线收发系统设计与制作

P5 调幅无线收发系统的设计与制作学习目标✧能正确测量各类调幅器的基本特性,能正确记录测量结果并对结果作准确描述。

✧能正确测量各类检波器的基本特性,能正确记录测量结果并对结果作准确描述。

✧能根据设计要求设计调幅发射机,并能进行整机装配与联调。

✧能根据设计要求设计调幅接收机,并能进行整机装配与联调。

✧能对电路中的故障现象进行分析判断并加以解决。

✧理解调幅发射机的电路结构、工作原理和电路中元器件的作用。

✧理解调幅发射机的性能指标及其物理意义。

✧理解调幅接收机的电路结构、工作原理和电路中元器件的作用。

✧理解调幅接收机的性能指标及其物理意义。

工作任务✧调幅器基本特性的测试。

✧检波器基本特性的测试。

✧调幅发射机的设计、调试与整机装配。

✧调幅接收机的设计、调试与整机装配。

✧撰写测试与设计报告。

传输信息是人类生活的重要内容之一。

传输信息的手段很多。

利用无线电技术进行信息传输在这些手段中占有极重要的地位。

这里也许大家会有疑问:为什么不能把信号经过放大之后直接发射出去呢?这里的关键问题是所要传送的信号频率或者太低(例如语言和音乐都限于音频范围内),或者频带很宽(例如电视信号频宽从50Hz至6 .5MHz)。

这些都对直接采用电磁波的形式传送信号十分不利,原因是:1)天线要将低频信号有效地辐射出去,它的尺寸就必须很大。

例如,频率为3000 Hz的电磁波,其波长为100000M,即100KM。

如果采用1/4波长的天线,则天线的长度应为25KM。

显然这是一个非常“艰巨”的任务。

2)为了使发射与接收效率高,在发射机与接收机方面都必须采用天线和谐振同路。

但语言、音乐、图像信号等的频率变化范围很大,因此天线和谐振回路的参数应该在很宽范围内变化。

显然,这又是难以做到的。

3)如果直接发射音频信号,则发射机将工作于同一频率范围。

这样,接收机将同时收到许多不同电台的节目,无法加以选择。

为了克服以上困难,必须利用高频振荡,将低频信号“附加”在高频振荡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档