LTE无线网络组网技术
lte技术

lte技术第一篇:LTE技术原理和特点1.1 LTE技术原理LTE(Long-Term Evolution)是一种基于OFDM (Orthogonal Frequency Division Multiplexing)的4G无线通信技术。
它主要是通过频分复用将频域分成若干个子载波,每个子载波可以传输一个数据流,同时在时域上通过多路复用技术实现多个用户的数据传输。
由于OFDM技术的高效率和误码率的低值,使得LTE具有更好的覆盖范围和抗干扰能力,不断有新的技术被应用到LTE中,比如MIMO(Multiple-input and multiple-output)、VoLTE(Voice over LTE)和Carrier Aggregation(CA)等,不断提升着LTE技术的性能。
1.2 LTE技术特点(1)更高的数据速率,更低的时延。
由于LTE技术利用的是OFDM技术,在广阔的频带内分成很多的子载波,实现的是并行传输,可以提高数据速率,一般可以达到100Mbps的下行速率和50Mbps的上行速率,时延也可以控制在10ms以下。
(2)更好的数据覆盖和信号质量。
由于LTE技术的高效率和误码率的低值,使得其具有更好的覆盖范围和抗干扰能力,而且还可以通过一些技术手段例如VoLTE来提高语音通话的质量。
(3)更丰富的业务应用。
LTE技术可以支持更丰富的业务应用,不仅包括传统的语音通信和数据传输,还包括一些新型的业务应用,例如高清视频传输、IoT(物联网)等,可以为用户提供更好的服务体验。
(4)更灵活的网络组网方式。
由于LTE技术使用的网络协议灵活多变,网络组网方式也更加灵活,可以实现单网、多层次、多种技术的混合组网模式,更加方便网络管理和维护。
(5)更加低成本的部署和维护。
LTE的部署和维护成本较低,因为采用的是基于IP的全网络架构,使得网络的部署和维护工作更加简单,而且维护人员的培训成本也较低。
1.3 总结LTE技术采用OFDM技术,实现了更高的数据速率、更好的数据覆盖和信号质量、更丰富的业务应用、更灵活的网络组网方式和更加低成本的部署和维护,这些都是构成LTE技术的重要特点。
TD—LTE/LTEFDD融合组网关键技术

L T E S  ̄ E / L T E F DD的组 网部分 ,二是 融 及 覆盖范 围上可 能会存在差异 , 如果 合组 网策略 的影响因素。 T D— L T E 和F DD L T E 融合组 网之 所 以成 为趋 势 ,主要 有以下两个方面
两者标准 的融合为融合组 网奠定了非 行效 率。
常 好 的基 础 。从核 心 网层 面 来说 , T D— L T E S  ̄ E I L T E F DD核心网协议与 网
第三 个时 间段 是TDD和F DD联
合传输 。前两个阶段 需要交互比较多
的 消 息来 实 现 基 于覆 盖 和 负荷 的均
另一方面 是 ,可以使 得整个 的规 模效 应 最大 化 ,主要 是 F DD和TDD
的优先级是比较低 的,一般把 它用于
如果 是基于实现负荷均衡 ,可以使得 连续或 是深 度的覆盖 ,而比较高 的频 业 务的负荷在两个 网络上尽可能合理 段通常 用于热点和补盲 的覆盖 。第二 分配 ,从而更好地提 升两个网络 的运 是从建 网时间上来说 ,如果存在建 网 时 间先 后的话 ,可以对建 网比较 早的 网络设 置高优先级 。第三是从频 率带
异。
理层 的资源 聚合 的手段 , 使 其可以快 置 的优先级别低 ~些 ,以更好地保证
速地实现负载均衡 。 用 户在移动 中的通信连续性 。★
如 果 采 用融 合 组 网 ,从 时 间 上
这 三 个 阶 段从 基 于 覆盖 到负 荷
矽 2 0 1 筹 3 年 第 1 蔫 7 期l I 2 / - 3 , D
的原 因 :
一
在 两者之 间有覆 盖应用管理 的话 ,可 以使得 用户从一个 网络覆盖区到另外
LTE无线网络与核心网间网络组织及无线侧IP地址分配方案研究

用于相邻 e d NoeB之间数据切换,减少切换时延。
2 e oeB相关 接 口介 绍 N d
3 P 版 本定 义 的 L E网络架 构 G P R8 T
如图 1 所示。
墨墨 l 暖瓣目 l 嘲
VL N接 E和 网管 VL N 接 口,其 中业务 接 口与 S / A l A 1
根据 3 P G P的规 范要求 ,以上 接 口协议 均采用 I P
进行承 载,需要 承载在 I P网络上。 以下将介绍典 型的 无线网络与核心网间网络组织方案。
X2C E连接 ,网管接 口与 O MC连接。具体组 网如 图 3
送 至相 应 的 MME — W 、e o eB和 O 、S G N d MC。其 网
D NS CG
息爨 /
| X> \ \
/
、
./ / /
络组织方案如 图 2 所示。
3 2存在 问题分析 .
图例 :
匿
冒/
核 网房 心机A
, 自C / E 寓
在必行。考虑到无线基站数量繁多 ,若基 站部署完成后 进行大 规模的基站组 网方案和 I P地址调 整 ,可能将造 成增加 巨大的工作量 以及 影响网络质量 的问题 。因此 , 在 L E大规模部署的前期 ,很有必要进行 L E无线侧 T T 组 网和 I P地址分配的探讨 。
协议用 来在 e d NoeB和 S G 之 间进行用户数据的隧 — W 道传输 ,UD P协议封装用户数据。
3 3 LF . T 无线网络与核心 网络间网络组织方案建议 本文针对以上 的组 网方案存在 的问题 ,提出如下的 组网方案建议。
通信网络大PK:LTE与WiFi技术的对比

通信网络大PK:LTE与WiFi技术的对比1 LTE及WiFi网络技术特点分析LTE作为下一代网络首选的移动通信制式,拥有一些特有的技术,与WiFi网络技术相比,最具有优势的是通过ICIC(小区间干扰协调)技术能够实现同频组网。
ICIC主要是通过管理无线资源使得小区间干扰得到控制,是一种考虑多个小区中资源使用和负载等情况而进行的多小区无线资源管理。
具体而言,ICIC以小区间协调的方式对各个小区中无线资源的使用进行限制,包括限制时频资源的使用,或在一定的时频资源上限制其发射功率。
LTE Rel-8版本首先支持ICIC机制,基站间可以通过X2接口交换RNTP(相关窄带传输功率)、HII(高干扰指示)及OI(过载指示)三种信号,实现载波内频域数据信道小区间干扰协调。
最初的Rel-8版本主要关注宏基站异构组网的应用场景,Rel-10版本提出了eICIC(增强型小区间干扰协调机制),支持强干扰场景(如宏站与微站、宏站与家庭基站等)异构组网的情况。
目前正处于研究阶段的Rel-l1版本则提出了FeICIC(Further- eICIC)工作项,以解决eICIC中遗留的问题及进一步研究其他小区间干扰协调技术方案。
Rel-10版本中提出的eICIC大致可以分为时域干扰协调、频域干扰协调、功率控制三类。
1)功率控制方案当服务小区与相邻小区使用相同的频率资源时,该方案会适当降低服务小区或相邻小区的发射功率,以提高被干扰宏基站用户性能。
与传统闭环功率控制方案相比,功率控制是从抑制小区间干扰、优化系统整体小区边缘性能的角度出发,直到达到一个期望的SNR(信噪比)值。
功率控制方案作为一种重要的ICIC方案在异构网络中得到了广泛应用,如宏与Pico(微微蜂窝)、宏与家庭基站等异构场景。
该方案可以得到系统的后向兼容,且同时适用于FDD (频分双工)、TDD(时分双工)双工模式。
但是,功率控制方案的实现必须基于用户的测量和上报,在设计上需要考虑基站间的交互信息设计和传递。
LTE(混合组网)系统技术要求

LTE(混合组网)系统技术要求1. 引言LTE(Long-Term Evolution)是一种第四代移动通信技术,旨在提供高速数据传输和低延迟的通信体验。
混合组网是指在现有LTE网络基础上,通过与其他无线通信技术的融合实现更强大的网络覆盖和容量。
本文将重点介绍LTE混合组网系统的技术要求。
2. 系统架构LTE混合组网系统的架构应包括以下几个关键组件:•基站(eNodeB):基站是LTE网络的关键组件,负责与移动终端进行无线通信。
在混合组网系统中,基站应支持与其他无线技术的互联互通,例如GSM、WCDMA等。
•无线控制器(WRC):无线控制器是管理基站的中央控制单元,在混合组网系统中起着至关重要的作用。
WRC应支持对不同无线技术的协调和管理,确保网络的稳定运行。
•传输网络:传输网络负责将数据从基站传输到核心网络,以及反向传输。
在混合组网系统中,传输网络应适应多种技术的数据传输需求。
•核心网络:核心网络是LTE系统的中枢,负责管理用户的鉴权、身份验证、数据路由等核心功能。
混合组网系统应兼容核心网络与其他无线技术的接口。
3. 技术要求3.1 网络互联互通LTE混合组网系统应能与其他无线通信技术进行无缝互联互通。
这需要支持以下技术要求:•频谱共享:混合组网系统应支持不同无线技术之间的频谱共享,以最大程度地提高网络容量和覆盖范围。
•信道协调:不同无线技术之间的信道协调是保证网络稳定运行的关键。
混合组网系统应具备良好的信道协调能力,以避免干扰和冲突。
•无缝切换:混合组网系统应支持用户在不同无线技术之间的平滑切换,以提供更好的用户体验。
3.2 数据传输优化在混合组网系统中,数据传输的效率和质量是至关重要的。
以下是相关的技术要求:•数据优先级:混合组网系统应支持对不同类型数据的优先级管理,以确保重要数据的及时传输。
•负载均衡:混合组网系统应具备负载均衡的能力,以保持网络的高效运行,避免某部分网络过载导致其他部分负荷过重。
4G(TD-LTE)组网技术

Subframe #0 One subframe, 30720Ts DwPTS GP
UpPTS
DwPTS
GP
UpPTS
TD-LTE基本原理及与其它制式对比_FDD/TDD
对比
FDD
Frame Configuration 特殊时隙 FS1 无 GP DwPTS UpPTS
TDD
FS2 无 UE提前发送20 P-SCH在DwPTS中的第3个符号 控制信道只占前两个符号 短RACH方式
计算功率需求 N
功率匹配
功率是否匹 配 Y
覆盖估算结束
TD-LTE网络规划方法_室内链路预算(二)
2
覆盖指标确定
LTE可以提供多种业务,不同的区域类型要求提供不同的业务,不同的业务,其室内覆盖指标 要求不一样,因此,要确定室内覆盖指标,首先要划分不同的业务覆盖区域类型,按对网络 质量的要求,通常分为三类区域,详细如下表所示: 室内覆盖边缘场强的确定需要同时考虑两个方面:
_ PL
Ga_BS
链路预算:
通过对系统中前反向
信号传播途径中各种 影响因素进行考察, 对系统的覆盖能力进
RX
UL
行估计,获得保持一
定通信质量下链路所
Ga_UE UE TX Pout_UE Ò Ó õ °Ë ¥ Â ä à Á Ó ¿ Mf
允许的最大传播损耗。
Ï Â º ·Ë « ¹ ¤Æ ÷ Ë Ì È å Ë ð º Ä Lb RX ½ Ö ¨ þ Î ï ´ Í © ¸ Ë ð º Ä Lp
CDMA2000
WLAN
54Mbps(802.11a)、11Mbps(802.11b) 0.9bps/HZ
20MHZ
2.4GHZ、5GHZ
LTE基础原理及关键技术

LTE的网络架构
• LTE的主要网元
– – LTE的接入网E-UTRAN由e-NodeB组成。 LTE的核心网EPC由MME,S-GW和P-GW组成。
•
LTE的网络接口
–
–
e-NodeB间通过X2接口相互连接,支持数据和信令的直接传输。
S1接口连接e-NodeB与核心网EPC。其中,S1-MME是e-NodeB连接MME的控制面接口,S1U是e-NodeB连接S-GW 的用户面接口与传统3G网络比较,LTE的网络结更加简单扁平,降低 组网成本,增加组网灵活性,并能大大减少用户数据和控制信令的时延。
载波带宽 [MHz]
RE数目 (每个OFDM符号) RB数目 (每个slot)
1.4
72 6
3
180 15
5
300 25
10
600 50
15
900 75
20
1200 100
自适应调制和编码(AMC)
信道质量的信息反馈,即Channel Quality Indicator (CQI) UE测量信道质量,并报告(每1ms或 者是更长的周期)给eNodeB eNodeB基于CQI来选择调制方式,数 据块的大小和数据速率
的低速子数据流,调制到在每个子信道上进行传输。 • 2)MIMO:不相关的各个天线上分别发送多个数据流,利用多径衰落, 在不增加带宽和天线发送功率的情况下,提高信道及频谱利用率,下 行数据的传输质量。 • 3) 高阶调制:16QAM、64QAM • 4) HARQ:下行:异步自适应HARQ • 5) AMC:TD-LTE支持根据上下行信道互易性进行AMC调整
Subframe #4
Subframe #5
Subframe #7
LTE核心网基本原理及关键技术

TAI/TA list
RAI
位置标识
EPC网元域名标识(FQDN)
SGSN Number、HLR Number
网元标识
新引入码号:GUTI 全球唯一临时标识(Globally Unique Temporary UE Identity),类似RAI+P-TMSI
<GUTI> = <MCC><MNC><MME Group ID><MME Code><M-TMSI>, 2G/3G与LTE进行互操作时,GUTI与RAI+P-TMSI需进行映射 新引入码号:TAI 追踪区标识(Tracking Area Identity),表示用户位置信息,类似2G/3G位置区LAI或路由区RAI
PCRF
的信令接口,基于GTPv2; -S10:进行MME间互操作时,MME通过S10
S9 接口传递承载上下文信息,基于GTPv2
-S5:S-GW和P-GW间接口,包括控制面
Rx (GTPv2)和用户面(GTPv1)
Gx
AF -S8:国际漫游接口,拜访地S-GW接入归属地
P-GW,协议同S5
SGi Internet PS Service
码号分配
需要全网规划的EPC号码涉及TAC及MME GI,原有2G/3G网络中的码号规 划保持不变。
TAC的分配
- TAC:用16进制表示为x1 x2 x3 x4 - 域名为:tac-lb<x3x4>.tac-hb<x1x2>.tac.epc.mnc<MNC>.mcc<MCC> - 为保证省间互通丌冲突,可参照LAC的分配方式统一规划, x1x2的取值各省应丌同,x3x4
LTE入门介绍-基本原理

2014年
4
技术。
LTE-A开始商用,可以提供更高的数据传 输速度和更加稳定的网络连接。
LTE的优点和特点
1 高速率
2 低延迟
LTE的下行峰值速率可达到300Mbps,上行 可达到75Mbps,是目前流行的移动通信制式 中速度最快的。
LTE的往返时延较短,支持实时传输,适合 高速数据交互和视频通话等应用场景。
3 灵活的频谱分配
LTE的频域和时域资源分配非常灵活,可根 据网络流量需求自适应地调整资源的使用。
4 全球统一标准
LTE是全球通信技术领域的统一标准,确保 了各厂商之间设备的互通性。
4G与LTE 的区别
4G
泛指第四代移动通信技术,是包括LTE在内的多种技 术的概括性称呼。
LTE
是4G移动通信技术中的一种,是现在最为常用和流 行的4G通信技术。
LTE在新兴业务领域中的应用
LTE在新兴业务领域中的应用,包括了虚拟现实,云计算,远程教育和远程办 公等多个方面,为现代社会的科技创新和进步提供了无限的潜力和可能性。
LTE在5G商用初期的应用前景
LTE在5G商用初期的应用前景包括了共存和过渡,在向5G技术的转型和适应 过程中,继续发挥着重要的支撑作用。
LTE的通信标准
LTE的通信标准针对不同的移动通信网络和技术,主要包括FDD-LTE、TDDLTE、VoLTE等。
LTE的物理层和信道结构
LTE的物理层和信道结构决定了移动通信中的数据传输速率和稳定性,主要包括LTE帧结构、子帧结构、信道 带宽、全球时隙和凸形电平等。
MIMO技术在LTE中的应用
LTE的无线接入技术
LTE的无线接入技术可以根据网络流量的需求智能调整时间、空间和频谱资源, 进一步提高了网络的稳定性和效率。
LTE网络基础知识简介

建网成本
带宽需求
1.4MHz~20MHz 可变带宽
数据速率
上行峰值速率50Mbps 下行峰值速率100Mbps 提高小区边缘用户的数据传输速率
移动性支持
对0~15km/h的低速环境优化 对15~120km/h保持高性能 对120~350甚至500km/h保持连接
4
LTE网络概述—关键技术
TM9
波束赋形 Release 9 Single Layer BF Port 7 or 8/Dual 天线阵列实现单层/双层的双流 Layer BF Port 7 and 8 Release 10 CL SU-MIMO Ports 7-14(SU单用户达到8层,多用户到4层 MIMO or MU-MIMO)
LTE网络基础知识简介
目录
LTE网络概述 LTE网络基本架构 LTE网络参数介绍 LTE网络业务流程 Question & Answer
2
LTE网络概述—移动通信系统发展
使用蜂窝组网,采用模 拟技术和频分多址 (FDMA)等技术
1G 2G
目前使用最为广泛的通信系统,主要使用技术 是时分多址(TDMA)技术,如GSM网络 采用OFDM及MIMO技术,在20MHz的系统 带宽下,下行峰值速率100Mbps,上行 50Mbps(现有UE能力支持),提供VoIP及IMS 等高速数据传输服务。
• HARQ:混合重传类参数,包括初传成功率、重传率等。
26
目录
LTE网络概述 LTE网络基本架构 LTE网络参数介绍 LTE网络业务流程 Question & Answer
• 接口协议主要分三层两面,三层主要包括了物理层、数
据链路层和网络层,两面是指控制平面和用户平面。
LTE无线网络优化技术

参数问题
系统参数配置优化;
LTE无线网络优化特点
覆盖和质量的评估参数不同
• TD-LTE使用RSRP、RSRQ、SINR进行覆盖和质量的评估
影响覆盖问题的因素不同
• 工作频段的不同,导致覆盖范围的差异显著 • 需要考虑天线模式对覆盖的影响
影响接入指标的参数不同
• 除了需要考虑覆盖和干扰的影响外,PRACH的配置模式会对接入成功率 指标带来影响
LTE无线网络优化特点
LTE系统内干扰源
方向 干扰类型
原因
影响
下行 小区内干扰 小区间干扰
上行 小区内干扰
终端接收的非理想同 步造成子载波非理想 正交
不同小区采用相同子 载波
不同终端的晶振存在 频偏导致非理想正交
一般 严重 一般
小区间干扰
TDD制式的 特殊干扰
不同小区采用相同子 载波
在上下行时隙转换附 近,上行受到远端基 站下行信号的干扰
成熟期
11
保密 仅供中国移动学员培训内部使用
LTE无线网络专题优化方法
特殊场景 优化
LTE网络优化流程-单站优化
单基站的优化测试:一般是指在基站第一次开通后我们所需要做的工作
主要业务的验证
工
作
重 点
覆盖与规划覆盖的比较
环境噪声测试
12
保密 仅供中国移动学员培训内部使用
LTE网络优化流程-片区/簇优化
10
保密 仅供中国移动学员培训内部使用
目录
一、 LTE无线网络优化介绍 二、 LTE无线网络优化特点 三、 LTE无线网络优化内容 四、 LTE网络高速场景优化 五、 LTE无线网络干扰优化
优化流 程
优化方 法
LTE无线产品及组网介绍

Theo. peak rate: Theo. peak rate: Theo. peak rate: Theo. peak rate: Theo. peak rate:
DL: 173 Mbps UL: 58 Mbps
Average Capacity: 2)
1)
DL: 21 Mbps
DL: 42 Mbps UL: 11.5 Mbps
DL: 36 Mbps/cell UL: 18 Mbps/cell
UL: 384 kbps
Average Capacity: DL: 4 * 2.5 Mbps/cell UL: 4 * 1 Mbps/cell
Average Capacity: 1) DL: 4 * 2.5 Mbps/cell UL: 4 * 1.5 Mbps/cell
LTE/SAE
• OFDM based • SC-FDMA in UL • Up to 4x4 MIMO • Flat architecture
I-HSPA (Nokia Siemens Networks system concept)
• 10/2 ms TTI • Direct Tunnel • 64 • High speed UL • 64 QAM QAM+MIMO • MIMO • Flat architecture • Handover support
•更小的时延
Latency (Roundtrip delay)* GSM/ EDGE
Downlink Uplink
173 Mbps in DL 58Mbps in UL
HSPA Rel6 HSPAev o (Rel8) LTE
0 20 40 60 80 100 120 140 160
LTE宽带集群无线组网方案

LTE宽带集群无线组网方案铁路站场是车站进行各种技术作业的场地,站场无线通信系统是铁路车站运输安全及调度指挥的重要手段。
在《铁路信息化总体规划》中,明确提出2020年车站(场)宽带无线覆盖率达到60%以上;《铁路站场宽带无线接入系统总体技术要求(暂行)》规定了铁路站场(包括编组站、货运站、客运站、动车段所和集装箱中心站等)宽带无线接入系统的技术要求,明确了站场宽带无线接入系统可用于承载铁路站场列检、货检、调车、车号、客货运等语音、数据、图像通信业务。
LTE宽带集群无线组网方案采用全球先进无线通信技术4G(TD-LTE)开发设计的专业宽带多媒体数字集群系统在1张网络内、使用1个频点和通过1部终端,可同时提供专业语音集群、视频调度、数据作业、视频监控业务,并在网络安全性、可靠性、可扩展性等方面具有强大技术优势,目前已用于交通运输、公共安全、能源、无线政务等多个行业和领域。
由于采用专业的集群设计,与TD-LTE的公网系统相比,在时延、可靠性、终端定制等方面具有绝对优势,可满足专业语音集群的性能要求。
基于LTE开发的专业手持机设备支持各类信息化APP应用、语音呼叫与群组功能,以及视频群组等功能。
基于LTE芯片开发的各类铁路专用终端可基于4G网络回传传感数据和视频信息等,如4G机车台、三孔机和4G可视化高精度定位领车仪等。
既有窄带通信、Wi-Fi、公网、3G技术等因带宽和安全性无法支撑铁路大数据应用和信息化大发展,而LTE宽带集群具有适用于铁路站场的多种特性,如专用网络、系统灵活部署、扁平化网络架构、频率利用率高和广域覆盖等。
▲LTE宽带集群组网方案示意图方案优势➤安全可靠。
LTE系统可提供全套的可靠性组网方案,保障单点故障不影响网络运行;可提供端到端安全加密算法和防入侵机制,保障网络不受外界入侵,安全可靠;LTE网络由。
TD-LTE网络架构及关键技术介绍

CCO with NACC Connection establishment/release
S1
E-UTRAN
1.GSM_Connected Handover 2.GPRS Packet transfer mode CCO, Reselection Connection establishment/release
高清视频通话分辨 率至少为VGA (640×480),最高 帧率30帧/秒
TD视频电话分 辨率为QCIF (176×144),最 高帧率15帧/秒
2
彩 信
•原有方式 •直接推送
LTE
(2)Pull彩信 Push彩信
MMSC
LTE
MMSC
3
语 音
•CSFB:呼叫需从LTE回落到电路域 •VoLTE/SRVCC:由LTE与IMS提供话 音,并通过LTE与电路域互操作确保业 务连续性
MME / S-GW
MME / S-GW
X2
eNB eNB
S1
eNB
X2
S1
S1
X2
1.CELL_DCH Handover 1. E-UTRA RRC_CONNECTED 2.CELL_FACH 3.CELL_PCH 4.URA_PCH Connection establishment/release 5.UTRA_Idle Reselection Reselection
• 建议统一规划,纳入现网SGSN POOL,同时在具备条件的情况下组建MME POOL。
方案三:新建支持融合的MME设备,仅具备MME能力、接入LTE无线网,后续再考虑接入2G/TD 无线网。
方案一 方案二 有利于LTE与2G/TD互操作 直接改造现网设备,影响较大 需接2G/TD无线网,影响略小 符合 符合 简单 简单 考虑安全性,建设进度相对较慢 相对较快 尚未进行新设备同时接入LTE和 尚未进行现网SGSN融合改造试点 2G/TD无线网测试 约1亿。仅在融合改造不导致新增节点的 情况下,会节省机架等部分共用硬件。另 1.09亿 外,投资估算按用户容量和单用户造价计 算,因此与方案二基本相同。 方案三 相对略差 无影响 符合 可能引入新厂家,相对复杂 相对最快
无线自组网与专网LTE双模通信系统的设计与实现

摘要随着社会经济的不断发展,移动的车队、船队等通信系统需要实现多媒体的功能越来越多,可靠稳定的宽带移动通信系统及智能化的通信装备是其发展的关键。
宽带移动通信作为现代调度指挥的基础越发显得重要。
目前,宽带移动通信系统主要采用Wi-Fi、LTE、WiMAX、无线自组网等通信方式,各种方式在具备自身优势的同时,也存在不容忽视的问题。
Wi-Fi同频干扰严重,同技术体制的设备之间影响更为明显。
在实际使用中,无线环境更是千差万别,相邻频段的干扰将明显降低数据传输的效率;LTE无线公网传输时延大、数据易丢失,存在信息安全隐患;WiMAX标准化工作进展缓慢,空中接口标准尚未完成,缺乏网络规范、标准体系不完善等等。
可见,单一通信系统无法满足多样化功能的要求。
课题设计并实现了一种基于无线自组网与专网LTE双模通信系统的终端设备。
包括系统以及终端设备的整体设计,含硬件、软件、网络通信协议,网络通信协议包含物理层、MAC层、网络层等各层自组网和LTE子系统体系的设计。
硬件设计包含电源子系统、自组网基带子系统和CPE基带子系统等。
主要完成的工作如下:1) 完成基于无线自组网与专网LTE双模通信系统平台的设计和实现。
此平台以通用型基带处理器为核心来设计本课题硬件。
实现无线自组网与专用LTE 网络的自主切换。
2) 完成双模系统硬件架构的设计,包括:电源子系统、基带处理子系统、自组网系统、CPE系统和射频子系统等多个子系统。
3)完成双模系统软件及网络系统的设计,包括物理层、链路层、网络层和应用层协议的选择与适配。
4) 完成无线自组网与专网LTE双模通信系统设备的功能验证和系统集成测试,并进行部分性能测试。
本课题设计并实现了无线自组网与专网LTE双模通信系统,实验证明系统功能完善、性能稳定,满足移动通信对网络高带宽、低延时、高可靠(冗余性)的要求;并对未来类似产品开发提供研究参考。
关键词:无线自组网;专网LTE;路由技术AbstractWith the continuous development of the social and economy, mobile communication fleets and other communication systems need to achieve more and more functions, reliable and stable communication systems and intelligent equipment is the key to its development. Broadband mobile communication as the foundation of modern scheduling command all the more important.At present, broadband mobile communication systems mainly use Wi-Fi,LTE,WiMAX,wireless ad hoc networks and other communication methods. Various methods have their own advantages, but there are also problems that cannot be ignored. The Wi-Fi co-channel interference is serious, and the impact between the devices using the same technical system is more obvious. In actual use, wireless environment also differs in thousands ways, interference of the adjacent frequency will decrease the efficiency of data transmission;The LTE wireless public network has the characteristics of large transmission delay, easy data loss, and information security risks. At the same time, the WiMAX standardization work is progressing slowly, the air interface standard has not been completed, the network specification is lacking, the standard system is imperfect, and so on. In brief, a single communication system cannot meet the requirements of diverse functions。
LTE组网介绍及日常维护(华为)

LTE基站近端维护接入方式
登陆界面
登陆成功后界面
14
网管U2000维护接入方式
• 安装客户端 首先是我们的终端接入电信DCN网络,在ie浏览器输入以下地址,按照步骤安装: DCN网络:https://132.122.151.66/cau,按照下面的步骤安装就行了,是不是很建单啊
15
网管U2000维护接入方式
18
LTE日常维护小知识
2、如何通过U2000查询CPRI接口光功率
BBU—RRU光路及光模块问题是导致小区不可用的最常见原因之一,当出现 “BBU光模块收发异常告警”或RRU中断时,查询BBU信道板和RRU光模块收 发光功率就非常重要。那我们就来尝试一下查询方式吧。
19
LTE日常维护小知识
3、 M2000如何查询现场最关心的驻波、RSSI值
5
广东电信LTE无线组网
MME
EPC
UGW MME
EPC
UGW
东莞庄 核心层
石井
DCN
汇聚层
基站网关
ATN 接入层
enodeB
ATN
ATN
LMT
enodeB
enodeB
S1-FLEX组网,eNodeB配置到两个MME的SCTP链路; 基站GE光口速率和双工模式与对端传输设备端口模式保持一致,统一配置为1000M全双工禁止自协商; IPRAN采用N:1的组网方案,地址段掩码26位,每对B网关设备下最多规划挂60个站; 每基站规划1个VLAN,VLAN ID 为200,一个本地网全部基站的VLAN规划一致; X2接口同一接入环基站通过接入环汇聚设备对接; OM与业务链路采用相同的地址和VLAN号;
28
移动通信组网技术

移动通信组网技术是指将许多无线基站组合在一起来实现移动网络通信的技术。
在这种通信系统中,所有基站都通过特定的协议来相互通信,使得移动设备可以在不同地点之间自由切换,这样就能够全方位地覆盖用户。
变化多样,下面将介绍几种常见的技术。
一、TD-LTE技术TD-LTE技术是目前市场上使用最广泛的一种组网技术,属于第四代移动通信技术。
它可以实现更高的数据传输速度和更大的容量,能够满足越来越多的用户需求。
TD-LTE技术主要应用于LTE移动电话技术中,具有快速传输数据、低延迟等特点。
二、WCDMA技术WCDMA技术是无线通信系统中的一种语音和数据通信标准,用于高速数据传输、视频通话等应用。
该技术不但能够提供更高的通信质量和网络容量,还能够通过动态资源管理来实现不同场景下的数据传输需求。
三、CDMA2000技术CDMA2000技术是第三代CDMA技术的升级版,主要应用于高速数据传输、语音和无线互联网等领域。
该技术在功能上与CDMA相似,但增加了更多的网络容量,能够提供更高的数据传输速度和更广泛的移动通信覆盖范围。
四、GSM技术GSM技术是一种标准的数字通信系统,主要用于语音和短信通信。
GSM技术主要用于第二代手机通信系统,并且仍然在许多国家得到广泛地应用。
该技术能够提供高质量的无线通信,同时还可以通过不同的频段来实现不同地理位置的覆盖,适用于城市和农村地区。
五、TD-SCDMA技术TD-SCDMA技术是一种用于无线通信系统的数字传输技术,主要用于高质量的语音通信、无线互联网和数据传输。
该技术可以充分利用现有的无线频谱,并提高用户体验。
TD-SCDMA技术的使用可以解决不同操作商之间的竞争问题,提高无线网络的效果,实现可靠性和可扩展性。
六、Wi-Fi技术Wi-Fi技术是一种无线局域网技术,能够在一定范围内实现高速的无线数据传输。
该技术不但能够实现宽带互联网接入,还可以用于流媒体的无线传输和信息交流,是现代的重要组成部分。
LTE基本原理及关键技术简介

28
LTE与EVDO数据互操作
29
LTE与EVDO数据互操作
根据目前现有终端的测试结果: LTE-EHPRD方向 激活态时延约为:4.8s;空闲态:5.3s; EHRPD-LTE 空闲态(标准方案):2.1s;空闲态(终端方案):160s(同终端定时器有关); 30
LTE与CDMA语音互操作
31
4)HARQ技术
自动重传请求(Automatic Repeat reQuest) 5)链路自适应技术—AMC eNodB根据终端上报的CQI PCI RANK等参数来决定采用的编码调制方式。
6)快速MAC调度技术
常用调度算法:最大C/I算法;轮询算法;正比公平算法(PF),目前增强PF调度算法。 7)小区干扰消除 小区间干扰消除技术方法包括:加扰;跳频传输;发射端波束赋形以及IRC;小区间 干扰协调;功率控制。
2013年网络运行维护考核指
标》;《中国电信CDMA网络 DTCQT测试技术规范(2012 版)》; LTE关注指标数据来源于: 《中国电信运维业〔2014〕5 号.pdf》和《关于印发中国电 信LTE相关规范和指导意见的 通知中国电信网发〔2013〕 31号.pdf》。
接入性能 分组业务建立成功率 指标
35
LTE与EVDO对比-网络结构对比
LTE网络结构相对于EVDO的网络结构,减少了基站控制器的环
节,这样决定了LTE网络具有如下的优点:
网络结构更趋扁平化和简单化; 减少网络节点,降低系统复杂度以及传输和无线接入时延; 减少网络部署和维护成本;
LTE与EVDO对比-主要技术对比
主要技术比较 开始时间 规范协议 占用频带 带宽 多址技术 核心网络 业务类型 网络体系结构 数据峰值速率 接入方式 交换方式 3GEVDO 2002年 3GPP2 800MHZ 1.25M CDMA IP网络 数据通信 结构复杂,带有基站控制器 结构简单、全IP、无基 站控制器、网络扁平化 4GLTE 2005年 3GPP 1.8/2.1/2.6GHZ 1.4MHz, 3MHz, 5MHz, 10Mhz, 15Mhz, 20MHz; 灵活带宽配置 FDMA/TDMA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层间或区域与区域间隔离较好,则可以是20MHz同频组网 隔离不好又需要支持较多用户(如场馆,展馆),则可以考 虑10MHz异频组网
小区用户数可以认为 是系统负荷的体 现,系统负荷升 高,则系统干扰水 平上升,所需的干 扰余量越大,基站 覆盖半径越小
PDCCH不同格式的配 置对应不同的聚合 等级,占用的资源 不同,使其可支持 的用户数也不同。 而不同的聚合等级 又会影响PDCCH的 解调门限,从而影 响其覆盖性能。
对于PUCCH,如果 需要支持多用户则 需要配置更多的时 频资源,对于上行 信道,RB资源配置 增大引起底噪声抬 升,从而会使其覆 盖性能下降
覆盖
容量
系统内 同频干扰
系统间干扰
13
TD-LTE
最少的投入,最优的覆盖
2300MHz~2400MHz所在频段无线电波衰减快
覆盖研究 必要性
LTE偏重高速数据业务,对覆盖和通讯质量要求高
如何满足用户覆盖速率,需要获得系统配置策略
如何提升LTE系统覆盖能力 TD-LTE系统覆盖目标是满足边缘用户基本速率要求的基 础上获得最大的覆盖距离
TD-LTE中,特殊时隙内上下行转换点保护间隔GP将影响系统的最 大覆盖距离 覆盖距离=C×GP/2,C为光速
特殊时隙比例 3:10:1
理论覆盖半径(Km)
107.1 21.4 96.4
10:2:2
3:9:2
22
TD-LTE
CP配置对覆盖的影响
时间长度
1ms 2ms
Preamble 格式
0 1 2
Pathloss(dB) = 46.3 + 33.9 log( f ) 13.82 log( Hb)
a( Hm) + (44.9 6.55log( Hb)) log(d ) + Cm
其中,f为载频(单位MHz),Hb为基站高度(单位m),Hm为UE高 度,d为UE与eNB之间的距离(单位km),Cm为城市修正因子 当地理类型为urban时,
在对TD-LTE覆盖 规划时,可以为边 缘用户指定速率目 标,即在覆盖区域 的边缘,要求用户 的数据业务满足某 一特定速率的要求
频谱效率定义为通 过一定距离传输的 信息量与所用的频 谱空间和有效传输 时间之比。相对于 用户的速率目标, 频谱效率单位化了 用户的传输时间资 源和频率资源
18
TD-LTE
传输流数 调制编码 (MCS)等级
用 户 目 标 速 率
用户带宽 N*RB
TD-LTE系统可灵活采用多种系统资源配置方式,支持不同场景的覆盖 TD-LTE试验网演示期间,需要覆盖用户期望获得高速率的体验覆 盖原则可采用高MCS等级+多带宽方式
26
TD-LTE
其它技术或参数对覆盖的影响(1)
• 天线挂高和下倾角的影响
对固定的下倾角而言,基站天线挂高与覆盖距离成正比
27
TD-LTE
其它技术或参数对覆盖的影响(2)
• 频率复用系数的影响
频率复用系数越大,小区 间干扰越小,则CIR可达 到的极限也越大,对应覆 盖半径应该越大,有助于 改善覆盖性能。典型的情 况如频率复用系数为3, 异频组网的情况,CIR极 限较大,此时影响覆盖性 能的主要是系统噪声,也 即噪声受限
TD-LTE系统无线传播特性
TD-LTE系统所处(C)频段传播损耗较大
频率(MHz)\距离(m) 2010 2400 10 175.4 177.3 50 199.1 201.6 100 209.6 212.1 200 220.0 222.6 500 234.0 236.4
上述计算依据Cost231HATA密集市区模型
2ms
3ms ≈157.292us
3
4(仅FS2)
9.375us
Preamble配置及支持的小区半径
23
TD-LTE
GP配置对覆盖的影响
远端基站干扰的解决
支持较大的GP配置 同步信号与PRACH不在相 同的频域资源上配置
24
TD-LTE
RB配置对覆盖的影响
RB配置对下行覆盖影响
EIRP的变化与RB数量成正比:RB 配置增多,EIRP增大,增加覆盖半径 下行信道底噪声与RB数量成正比: RB配置增多,下行信道底噪声抬升 功率与底噪的等比变化,不会影响 下行覆盖半径
TD-LTE
LTE无线网络组网技术
1
TD-LTE
主要内容
TD-LTE无线网络组网技术 TD-LTE系统设计指标 TD-LTE系统组网性能介绍 TD-LTE系统组网策略 上海世博园示范网组网案例
2
TD-LTE
网络规划基本流程
规划目标
无线网络 规模估算
静态 仿真
站址 勘测
动态 仿真
调整
无线网络规划流程 业务预期 基站数量 大致性能 /站址
信息带宽(MHz) 传输带宽(RB数) 1.4 6 3 15 5 25 10 50 15 75 20 100
• 设备规范指标
系统带宽 系统支持子载波间隔 5M / 10M / 15M / 20MHz 15kHz
7
TD-LTE
TD-LTE系统设计指标
• 系统频谱效率
频谱效率
下行 上行
• 系统峰值速率(20MHz)
a( Hm) = (1.1log( f ) 0.7) Hm (1.56 log( f ) 0.8), Cm = 0dB
当取频段2350MHz,基站高度35m,终端高度1.5m,对于市区室外, 路损公式计算得:
Pathloss(dB) = 139.2 + 34.8 lg(km)
16
TD-LTE
5
抗干扰技术
功率控制
天线传输
频率规划 邻区干扰消除
TD-LTE
TD-LTE系统设计指标
• 帧结构设计
设备规范指标 配置选项1 配置选项2
【DL:S:UL】 2: 1: 2 3: 1: 1
DwPTS:GP:UpPTS 10: 2: 2
3: 9: 2
6
TD-LTE
TD-LTE系统设计指标
• 系统带宽
覆盖
容量
同频组网
多系统共存
14
TD-LTE
TD-LTE系统支持广覆盖组网
特殊时隙比例 3:10:1 10:2:2
理论覆盖半径(Km) 107.1 21.4
3:9:2
96.4
TD-LTE系统设计上可支持100KM以上的覆盖半径 设备规范配置支持多种小区半径选项
15
TD-LTE
传播模型分析
以Cost 231 Hata路损模型对LTE系统进行分析,其计算公式为:
带宽 20MHz 室内总功率需求 20W 室外总功率需求 40W
10MHz
5MHz
10W
5W
20W
10W
如果不考虑多小区间干扰的影响,那么发射功率越大,越能够补偿 路径损耗和信号衰落等的影响,则其覆盖越远,覆盖性能越好 实际组网必须考虑小区间干扰的影响,发射功率不建议随意设置
21
TD-LTE
GP配置对覆盖的影响
考虑与WLAN系统互干扰的影响,优先使用2360MHz以下 频段
11
TD-LTE
主要内容
TD-LTE组网思路 TD-LTE系统设计指标 TD-LTE系统组网性能介绍 TD-LTE系统组网策略
上海世博园示范网组网案例
12
TD-LTE
TD-LTE系统组网性能研究
TD-LTE TD-LTE系统组网特性研究 系统组网特性研究
相比B频段,TD-LTE系统所处C频段穿透损耗较大
隔断损耗 2010 混凝土墙 13 混凝土楼板 10 天花板 1~8 金属楼梯 5
2400
14
11.5
1.4~9
7
17
TD-LTE
TD-LTE系统覆盖目标定义的多样性
边缘用户 速率目标
区域边缘 用户频谱 效率
区域边缘 用户调制 编码方式
调制编码方式及 编码速率也可以 作为覆盖规划设 计的目标。因为 调整调制编码方 式与编码速率与 用户频谱效率直 接对应,体现了覆 盖区域的用户速 率等级
8
TD-LTE
• 工作频段
TD-LTE系统设计指标
TD-LTE设备国内工作频段预计采用2300-2400MHz
9
TD-LTE
TD-LTE频率规划-室外
同频组网 异频组网
高
强 差 困难
频率利用率 小区间干扰
低
弱 良 容易
边缘性能
干扰抑制
10
TD-LTE
TD-LTE频率规划-室内
同频组网 or 异频组网?
20
对于下行业务信道,不同的传输模式其覆盖方面的性能有差异
模式1 单天线端口 模式2 传输分集 模式3 开环空间复用 模式4 闭环空间复用 模式5 MU-MIMO
模式6 rank=1的闭环预编码
模式7 单天线端口(端口5)
TD-LTE
设备发射功率对覆盖的影响
下行按照20MHz带宽最大46dBm发射功率,且按照每RB均分 上行按照终端最大23dBm发射功率来考察覆盖性能 TD-LTE上行功率受限 上下行平衡下行总功率需求
频域
空域 最小资源单位 编码等级
固定
4
TD-LTE
TD-LTE与TD-SCDMA干扰解决措施差异
干扰措施 干扰随机化 TD-SCDMA(R4) 扰码规划 码资源少 扩频 编码 上下行使用 开环,闭环 上下行波束赋形 多载波同频 联合检测,同频优化 TD-LTE 小区ID规划 ID资源充足 自适应调制方式 自适应编码率 上行功率控制, 下行功率分配,开环 上行IRC 下行波束赋形,发送分集 同频,异频 小区间干扰协调 ICIC