人教版九年级数学讲义垂径定理(含解析)(2020年最新)

合集下载

人教版初三数学:垂径定理—知识讲解(基础)

人教版初三数学:垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA. 【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例4-例5】【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)

中考数学专题复习:圆的垂径定理的应用(含解析)班级:姓名:一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是( )A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤108.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是( )A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C. D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【考点】垂径定理的应用,圆周角定理【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【考点】勾股定理,垂径定理的应用【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt △ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。

人教版九年级数学上册课件:24.1.2垂径定理(共15张PPT)

人教版九年级数学上册课件:24.1.2垂径定理(共15张PPT)

船能过拱桥吗
AB 7.2,CD 2.4, HN 1 MN 1.5.
AD 1 AB 1 7.2 3.6,
2
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 ,
即R2 3.62 (R 2.4)2.
A
D
E C
O
B
自学指导(二)
认真阅读课本8 2页赵州桥问题,并思考:
1、解决赵州桥求半径问题做了什么辅助过线圆?心作弦的垂线 2、由图24.1-8知主桥拱是__A_B____, 跨度是__弦_A_B__,拱 高是__C_D__,弦心距是__O_D___,半径是__O_A_,_O_B___ , AD= _B_D___.
任意知道两个量,可根据垂径定理求出第三个量:
必做题:课本P83练习1、2题。 选做题:课本P89第2题。 思考题:课本P89第8题。
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥弦的垂直平分线一定经过圆心
2、如图,直径为10cm的圆中,圆心到弦 AB的距离OM为4cm,求弦AB的长。
O
A
M
B
相信自己,我能行
破镜重圆
自学指导(一)
认真阅读课本81页—82页“赵州桥问 题” 上面的内容: 1、圆是______图形, __________都是它 的对称轴,对称轴有____条.
2、垂径定理的内容是_________________.
3、对照24.1-6用符号语言表示垂径定理 ? 4、垂径定理的推论是什么?

《垂径定理》人教版九年级数学(下册)

《垂径定理》人教版九年级数学(下册)

(1)连接AO,BO,则AO=BO,
C
又AE=BE,∴△AOE≌△BOE(SSS),
∴∠AEO=∠BEO=90°,
∴CD⊥AB.
(2)由垂径定理可得AC =BC⌒, AD⌒=BD. ⌒

A
·O
E B
D
归纳总结
垂径定理的推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例. C
涉及垂径定理时辅助线的添加方法
在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距
·O
离),弓形高h的计算题,常常通过连半径或作弦心
距构造直角三角形,利用垂径定理和勾股定理求解. A
C
C
弓形中重要数量关系 弦a,弦心距d,弓形高h,半径r之间有以
h
A
aD
r 2d
下关系:
d+h=r
r2
d2
a 2
2
O
M
C
D
A
B
.O
N
学习目标
1.进一步认识圆,了解圆是轴对称图形. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单 的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点)
导入新课
情境引入
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长) 为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的 半径吗?
2
2
根据勾股定理,得
OC 2 CF 2 OF 2 ,
R2 3002 R 902 .
解得R=545. ∴这段弯路的半径约为545m.
针对训练

人教版初三数学上册 垂径定理 讲义

人教版初三数学上册 垂径定理 讲义

垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧例1、如图,AB是⊙O的直径,弦CD⊥AB于E,则下面结论错误的是()A、CE=DEB、弧BC=弧BDC、∠BAC=∠BADD、OE=BE例2、如图,DC是⊙O的直径,弦AB⊥CD于F,连接BC、DB,则下列结论错误的是()A、OF=CFB、AF=BFC、AD=BDD、∠DBC=90°例3、如图,在⊙O中,AB为弦,OC⊥AB于C,若AO=5,OC=3,那么弦AB的长为()A、10B、8C、6D、4例4、如图,公园的一座石拱桥是圆弧形的,拱的半径为13m ,拱高CD 为8m ,则拱桥的跨度AB 的长为( )A 、20B 、28C 、24D 、324例5、如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且22=CD ,3=BD ,则AB 的长为( )A 、2B 、3C 、4D 、5垂径定理推论:一条直线,只要具备下列5条中的2条,就可以推出其他3条(简称:知二推三)①平分弦所对的优弧②平分弦所对的劣弧③平分弦(不是直径)④垂直于弦⑤过圆心例4、下列说法正确的有_____________①平分弦的直径垂直于弦 ②垂直于弦的直径平分弦所对的两条弧③平分弦的直径必平分弦所对的两条弧 ④相等的圆心角所对的弧相等4、如图,在⊙O中,直径CD垂直于弦AB,∠C=25°,则∠ABO的度数是()A、25°B、30°C、40°D、50°5、如图,半径为10的⊙O中,弦AB的长为16,则AB的弦心距为()A、6B、8C、10D、126、如图,AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则线段BE的长为()A、4B、6C、8D、107、在直径为200cm的圆柱形油槽内装入一些油后,截面如图。

若油面的宽AB=160cm,则油的最大深度为()A、40cmB、60cmC、80cmD、100cm8、如图所示,将半径为6cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A、6cm3cmB、36cmC、36cmD、59、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A、2B、3C、4D、510、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC。

专题24.3 垂径定理-重难点题型2022年九年级数学上册(人教版)

专题24.3 垂径定理-重难点题型2022年九年级数学上册(人教版)

垂径定理【知识点1 垂径定理及其推论】(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1 垂径定理(连半径)】【例1】如图,以c为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.4B.6C.8D.10【变式】如图,⊙O的直径AB与弦CD相交于E,已知AE=1cm,BE=5cm,∠DEB=30°,求:(1)CD的弦心距OF的长;(2)弦CD的长.【题型2 垂径定理(作垂线)】【例2】如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=8,∠APC=45°,则CD的长为()A.√34B.6√2C.2√34D.12【变式2-1】如图,在圆⊙O内有折线OABC,其中OA=4,BC=10,∠A=∠B=60°,则AB的长为()A.4B.5C.6D.7【题型3 垂径定理(分类讨论)】【例3】已知圆中两条平行的弦之间距离为1,其中一弦长为8,若半径为5,则另一弦长为()A.6B.2√21C.6或2√21D.以上说法都不对【变式】已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm【题型4 垂径定理(动点问题)】【例4】如图,已知⊙O的半径为4,M是⊙O内一点,且OM=2,则过点M的所有弦中,弦长是整数的共有()A.1条B.2条C.3条D.4条【变式】如图,⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,不在OP取值范围内的是()A.4B.5C.12D.13【题型5 垂径定理(翻折问题)】【例5】如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4√3cm B.2√3cm C.√3cm D.√2cm【变式】(丹东模拟)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【知识点2 垂径定理的应用】(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【题型6 垂径定理的实际应用】【例6】如图所示,某地欲搭建一座圆弧型拱桥,跨度AB=32米,拱高CD=8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距离桥的一端4米处欲立一桥墩EF支撑,求桥墩的高度.【变式】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.。

人教版九年级上册数学课件:24.垂径垂径定理

人教版九年级上册数学课件:24.垂径垂径定理

O B
O ●C
垂径定理的应用:
1.在⊙O中,若CD ⊥AB于M,AB为直径,则
下列结论不正确的是( C )
A、A⌒C=A⌒D B、⌒BC=⌒BD
C、AM=OM D、CM=DM
2.已知⊙O的直径AB=10,弦CD
A
C M└
D
●O
⊥AB,垂足为M,OM=3,则
CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径,若CD=10, AM=1,则⊙O的半径是 13 .
B
。圆的任意一条直径的两个端
O
点把圆分成两条弧,每一条
A
弧叫做半圆.
大于半圆的弧(用三个点表示,如:ACB 或 BCA ), 叫做优弧;
小于半圆的弧叫做劣弧. 如: AB BC
3、等圆:能够重合的两个圆叫做等圆A, 半径相等的两个圆也是等圆;反过来, 同圆或等圆的半径相等。
B
M
●O
C
4、等弧:在同圆或等圆中,能够互相重合的弧。
解这个方程,得R 545.
这段弯路的半径约为545m .
小结: 垂径定理
解决有关弦的问题,经常是
过圆心作弦的垂线,
A
或作垂直于弦的直径,
连结半径等辅助线,
B
.
O
构成直角三角形,为应用垂径定理创 造条件。
挑 战自我
1、要把实际问题转变成一个数学问题来解决.
2、熟练地运用垂径定理及其推论、勾股定理,并用 方程的思想来解决问题.
37.4m
7.2m
C
A
E
B
O
赵州石拱桥
解:如图,用 A表B 示桥拱,A所B在圆的圆心为O,半径为Rm,
过圆心O作弦AB的垂线OD,与 A相B 交于点C. CD就是拱高. 根据垂径定理得:AD=BD。

九年级数学上册垂经定理课件人教新课标版

九年级数学上册垂经定理课件人教新课标版

活动二
(1)是轴对称图形.直径 CD所在的 直线是它的对称轴 (2) 相等的线段:
相等的弧:
A
C
·O
E B
D
C
垂径定理: 垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
·O
E
A
B
推判论断:对错:
D
平分弦(不是直径)的直径垂直于弦,并且平分弦
所对的两条弧.
解决求赵州桥拱半径的问题
如图:用 弧AB表示主桥拱,设弧AB 所在圆的圆心为O,半径为 R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与AB 相交 于点D,根据前面的结论,D 是AB 的中点,C是弧AB的中点, CD 就是拱高.
在图 AAD B? =13A7B.4?,1 C? 3D7 =. 4 7? .128 ,. 7 ,

2
2
OD=OC-CD=R-
在Rt△OAD7中.2,由勾股定理,得
C
OA2=AD2+OD2
A
D
B

R2=18.7 2+(R-7.2 )2
R
R≈27.9(m)
O
∴ 赵州桥的主桥拱半径约为 27.9m.
ቤተ መጻሕፍቲ ባይዱ
:你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形, 它的跨度( 弧所对的弦的长) 为37.4m, 拱高( 弧的中点到 弦的距离) 为7.2m,你能求出赵洲桥主桥拱的半径吗?
可以发现实:践探究
圆是轴对称图形,任何一条直径所在直线 都是它的对称轴.

初三数学垂径定理

初三数学垂径定理

OA OB


AD

BC

∴Rt△ADO≌Rt△BCO, ∴OD=OC,
∵四边形 ABCD 是正方形,
∴AD=DC, 设 AD=acm,则 OD=OC= 1 DC= 1 AD= 1 acm,
222 在△AOD 中,由勾股定理得:OA=OB=OE= 5 acm,
2 ∵小正方形 EFCG 的面积为 16cm2,
1.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为 16cm2,则该半圆的半径
为( )
A. 4 5 cm
B.9 cm
C. 4 5 cm
【例题解析】
解:
D. 6 2 cm
连接 OA、OB、OE, ∵四边形 ABCD 是正方形, ∴AD=BC,∠ADO=∠BCO=90°, ∵在 Rt△ADO 和 Rt△BCO 中
∴EF=FC=4cm,
在△OFE 中,由勾股定理得:
5 2
a
2
=42+

1 2
a

8, 5 a=4 5 (cm), 2
故选:C.
2.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D,若⊙O 的半径为 5,AB=8,则 CD 的长是
另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 (证明时的理论依据就是上面的五条定理) 但是在做不需要写证明过程的题目中,可以用下面的方法进行判断: 在 5 个条件中(知二推三):
1.平分弦所对的一条弧 2.平分弦所对的另一条弧 3.平分弦 4.垂直于弦 5.经过圆心(或者说直径) 只要具备任意两个条件,就可以推出其他的三个结论 【例题】
4.已知在以点 O 为圆心的两个同心圆中,大圆的弦 AB 交小圆于点 C,D(如图). (1)求证:AC=BD; (2)若大圆的半径 R=10,小圆的半径 r=8,且圆 O 到直线 AB 的距离为 6,求 AC 的长.

人教版九年级数学上册24.垂径定理课件

人教版九年级数学上册24.垂径定理课件

OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得 A E
D
OA2 AD2 OD 2 ,
N B
F
即R2 3.62 (R 2.4)2.
O
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON2 HN2 , 即OH 3.92 1.52 3.6.
DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
C
A
M
N
.1 如图,一条公路的转弯处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E 为弧CD上的一点,且OE⊥CD垂足为F,EF=90m. 求这段弯路的半径.
C E
F

D
O
例3、赵州桥的主桥是圆弧形,它的跨度(弧所对 的弦的长)为37m, 拱高(弧的中点到弦的距离) 为7.23m,求赵州桥主桥拱的半径(精确到小数 点后一位)。
圆是轴对称图形,任何一条直径所在直线都是圆 的对称轴。
C
·O
E
A
B
D
C 垂径定理及其推论的内容是
什么?

O E
垂径定理:垂直于弦的直径 B 平分弦,并且平分弦所对的

两条弧. ∴AE=BE,
∵ CD是直径(过圆心)
A⌒C=⌒BC,
CD⊥AB
A⌒D=B⌒D.
垂径定理的推论:平分弦(不是直径)的
直径垂直于弦,并且平分弦所对的两条
• 学习目标: 1.理解圆的轴对称性,会运用垂径定理 解决有关的证明、计算和作图问题; 2.感受类比、转化、数形结合、方程等 数学思想和方法,在实验、视察、猜想、 抽象、概括、推理的过程中发展逻辑思维 能力和识图能力.

九年级数学垂径定理

九年级数学垂径定理
AEB
o
设圆的半径是r,圆心到弦的
距离d,弦长a
三者关系
如何?
a 2
r2
=d2+(a2)2
a 2
rd a
在半径为50mm的⊙O中,
有长50 mm的弦。计算 1点O与AB的距离 2AOB的度数。
O
A EB
例2已知:在以O为圆心的两 个同心圆中,大圆的弦AB交 小圆于C,D两点。求证AB=CD
O
AB是弦,垂足为E.
求证:AE=BE
C
AC=BC,AD=BD
AE B D
C O
A
BA E B
D
连结OA,OB, OA=OB
C和D⊙所O在的直对线称是轴等腰三角形C
1 两个半圆重合
2 A,B两点重合
O
3 AE,BE重合 4 AC,BC重合
A
E
B
5 AD,BD重合
D
例1 已知在⊙O 中,弦AB 长为8cm, 圆心O到AB的 距离为3cm,AC,AB为
互相垂直的两条相等的弦,
O求D证A:BA,ODEOEACC
为正方形
EO
A DB

我们学过的轴对称 图形
等 腰 三 角 形
等 边 三 角 形
等腰梯形
矩形
正 方 形
菱形
圆是 轴对称 图形,
它的对称轴是 经过圆心的每一条直线
C 思考
1直径对弦
有何影响?
A
B 2直径对弦
D
所对弧有何
影响?
垂径定理
垂直于弦的直径平分 这条弦,并且平分弦 所对的两条弧。
已知:在⊙O中,CD是 直径,

数学人教版九年级上册垂经定理

数学人教版九年级上册垂经定理

O
·
课堂检测:
• 1.如图1,⊙O的直径AB=12,CD是⊙O的弦, CD⊥AB,垂足为P,且BP=2,则CD的长为( D ) • A.4 B.8 C.2 D.4 • 2.如图2,已知⊙O的半径为4,OC垂直弦AB于点C, ∠AOB=120°,则弦AB的长为4.
• 3.如图3,在⊙O中,AB、AC是互相垂直的两条弦, OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC= 6cm,那么⊙O的半径OA长为5cm.
A 图1 O A E A E O D B
C B
E
O D D
图2
C 图4 B
图3
A E C
O
B
练一练
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
E A B 解: O 1 1 A E A B 8 4 2 2
在Rt △ AOE 中
2 2 2 A O O E A E
C
A
E
B
O
计算如下
在图中 AB=37.4,CD=7.2, 1 1 AD AB 3 . 4 7 1 . 7 8 , 2 2
C
OD=OC-CD=R-7.2
A
R
D
B
在Rt△OAD中,由勾股定理,得 OA2=AD2+OD2 即 R2=18.72+(R-7.2)2 解得:R≈27.9(m)
O
∴赵州桥的主桥拱半径约为27.9m.
O A B
收获新知


1.两条辅助线: 半径 弦心距
2. 构造Rt△,应用勾股定理:半
径 半弦 弦心距
a2 r d ( ) 2
2 2

人教版数学九年级上册24.垂径定理课件

人教版数学九年级上册24.垂径定理课件
• 2.掌握垂径定理,并能运用垂径定 理进行计算和证明。
自学指点
认真学习课本p81—83练习上方完。 1.完成“探究”中的问题。 2.垂径定理的内容是什么?如何证明?
如何用几何语言表示?
3.垂径定理的推论是什么?如何证明? 如何用几何语言表示?
4.注意例2的格式和步骤。 6分钟后,比一比谁能正确的做出检测题
1.如图,在⊙O中,弦AB的长为8cm,圆心
O
到A解 B的距 : 离O为 E3AcmB,求⊙O的半径.
A E21A B2184 在 Rt△ AO 中
A
E

B
O2AEO2E A2E
O AO2 E A2 E3 2 4 2 5c m
答:⊙O的半径为5 cm。
2.如图,在⊙O中,AB、AC为互相垂直且相等
垂径定理推论
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。
C
符号语言
∵ CD是直径, AE=BE
·O
∴ CD⊥ABA,⌒C ⌒ A⌒D ⌒
AE
B
=BC, =BD.
D
3.辨析定理的应用条件:
下列哪些图形能直接满足垂径定理的题设条件?
O
O
O
(1)
(2)
(3)
O
O
(4)
(5)
(6)
检测二
C
(2)线段:AE=BE
弧: AC=BC
·O
把圆沿A着D直=径BCDD折叠时,CD两侧的两个半圆
E
重合,点A与点B重合,AE与BE重合,AC、AD A
B
分别与 B、C B重合。
D
D
2.垂径定理的内容是什么?画出合适题意的图形, 用符号语言表示出来. 垂直于弦的直径平分弦,且平分弦所对的两条弧.

部编数学九年级上册24.3垂直于弦的直径垂径定理(知识讲解)(人教版)含答案

部编数学九年级上册24.3垂直于弦的直径垂径定理(知识讲解)(人教版)含答案

专题24.3 垂直于弦的直径-垂径定理(知识讲解)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.特别说明: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的推论根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.特别说明:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、利用垂径定理求圆的半径、弦心距、角度、弦1.如图,AB 是O e 的直径,弦CD AB ^于点E ,点M 在O e 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O e 的直径;(2)若M D Ð=Ð,求D Ð的度数.【答案】(1)20;(2)30°【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数.解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴222(4)8r r =-+,解得:10r =,∴⊙O 的直径是20.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M DÐ=Ð,∴∠B=∠D,∴2∠D+∠D=90°,∴∠D=30°;【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.举一反三:e中,弦AB长50mm.求:【变式1】如图,在半径为50mm的OÐ的度数;(1)AOB(2)点O到AB的距离.【答案】(1)60°;(2)【分析】V是等边三角形,从而可得结论;(1)证明AOBAC BC再利用勾股定理可(2)过点O作OC⊥AB,垂足为点C,利用垂径定理求解,,得答案.解:(1)∵OA,OB是⊙O的半径,∴OA=OB=50mm,又∵AB=50mm,∴OA=OB=AB,∴△AOB是等边三角形,∴∠AOB=60°. (2)过点O作OC⊥AB,垂足为点C,如图所示,由垂径定理得AC =CB =12AB =25mm ,在Rt △OAC 中OC 2=OA 2-AC 2=502-252=252×3,∴OC mm ),即点O 到AB 的距离是.【点拨】本题考查的是等边三角形的判定与性质,圆的性质,垂径定理的应用,勾股定理的应用,熟练垂径定理的运用是解题的关键.【变式2】如图,AB 是O e 的直径,E 为O e 上一点,EF AB ^于点F ,连接OE ,//AC OE ,OD AC ^于点D .若2,4BF EF ==,求线段AC 长.【答案】6【分析】设OE =x ,根据勾股定理求出x ,根据全等三角形的判定定理和性质定理得到AD =OF =3,根据垂径定理得到答案.解:设OE =x ,则OF =x -2,由勾股定理得,OE 2=OF 2+EF 2,即x 2=(x -2)2+42,解得,x =5,∴OF =3,∵AC ∥OE ,OD ⊥AC ,∴OD ⊥OE ,∠A =∠EOF ,∵OA =OE ,EF ⊥AB ,∴△ADO ≌△OFE ,∴AD =OF =3,∵OD ⊥AC ,∴AC=2AD=6.【点拨】本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.类型二、利用垂径定理求进行证明2.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见分析【分析】(1)根据AC^AB,OD^AB,OE^AC,可得四边形ADOE是矩形,由垂径定理可得AD=AE,根据邻边相等的矩形是正方形可证;(2)连接OA,由勾股定理可得.(1)证明:∵AC^AB,OD^AB,OE^AC,∴四边形ADOE是矩形,12AD AB=,12AE AC=,又∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.(2)解:如图,连接OA,∵四边形ADOE是正方形,∴112OE AE AC===cm,在Rt△OAE中,由勾股定理可得:OA==,即⊙O cm.【点拨】本题考查圆与正方形,熟练掌握正方形的判定方法、圆有关的性质,是解题的关键.举一反三:【变式1】如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF【分析】根据垂径定理进行解答即可.解:∵E为AB中点,MN过圆心O,∴MN⊥AB,∴∠MEB=90°,∵AB∥CD,∴∠MFD=∠MEB=90°,即MN⊥CD,∴CF=DF.【点拨】本题考查了垂径定理的运用,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.【变式2】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【分析】过圆心O 作OE ⊥AB 于点E ,根据垂径定理得到AE=BE ,同理得到CE=DE ,又因为AE-CE=BE-DE ,进而求证出AC=BD .解:过O 作OE ⊥AB 于点E ,则CE=DE ,AE=BE ,∴BE-DE=AE-CE.即AC=BD.【点拨】本题考查垂径定理的实际应用.类型三、利用垂径定理推论求圆的半径、弦心距、角度、弦3.如图,∠AOB 按以下步骤作图:①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作圆弧PQ ,交射线OB 于点D ;②连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交圆弧PQ 于点M 、N ;③连接OM ,MN .根据以上作图过程及所作图形完成下列作答.(1)求证:OA 垂直平分MD .(2)若30AOB Ð=°,求∠MON 的度数.(3)若20AOB Ð=°,6OC =,求MN 的长度.【答案】(1)证明见分析;(2)90MON Ð=°;(3)6MN =.【分析】(1)由垂径定理直接证明即可得;(2)根据相等的弧所对的圆心角也相等求解即可得;(3)由(2)可得:20COM COD DON Ð=Ð=Ð=°,得出60MON Ð=°,根据等边三角形得判定可得OMN n 为等边三角形,即可得出结果.(1)证明:如图所示,连接MD ,由作图可知,CM CD =,∴»ºCM C D =,∵OA 是经过圆心的直线,∴OA 垂直平分MD ;(2)解:如图所示,连接ON ,∵CM CD DN ==,∴»º»CM C D D N ==,∴30COM COD DON Ð=Ð=Ð=°,∴90MON COM COD DON Ð=Ð+Ð+Ð=°,即90MON Ð=°;(3)解:由(2)可得:20COM COD DON Ð=Ð=Ð=°,∴60MON Ð=°,∵OM ON =,∴OMN n 为等边三角形,∴6MN OM OC ===.【点拨】题目主要考查垂径定理,等弧所对的圆心角相等,等边三角形的判定和性质等,理解题意,综合运用这些基础知识点是解题关键.举一反三:【变式1】 如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,OAE COD AEO ODC OA OC Ð=ÐìïÐ=Ðíï=î,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD=3.【点拨】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键.【变式2】如图所示,直线=y x 轴、y 轴分别交于A 、B 两点,直线BC 交x 轴于D ,交△ABO 的外接圆⊙M 于C ,已知∠COD =∠OBC .(1)求证:MC ⊥OA ;(2)求直线BC 的解析式.【答案】(1)见分析;(2)y=【分析】(1)利用弧弦角转化得¼¼OC AC=,由垂径定理即可得MC⊥OA;(2)由直线=y x与x轴、y轴分别交于A、B两点,求出A、B两点坐标,从而得到A、B中点M点坐标,再由勾股定理求出OM,进而求出点C坐标.由B、C两点坐标用待定系数法求直线BC解析式即可.解:(1)证明:∵∠COD=∠OBC,∴¼¼OC AC=,∵点M是圆心,∴由垂径定理的推论,得MC⊥OA;(2)解:∵MC⊥OA,∴OG=GA=12OA,∵点M是圆心,∴BM=AM,∴GM是△AOB的中位线,∴GM,∵=y x轴、y轴分别交于A、B两点,∴当x=0时,y y=0时,x=3,∴B(0,A(3,0)∴OB OA=3,∴MG OG=32,连接OM,在Rt△OGM中,由勾股定理,得OM=∴GC=∵点C 在第三象限,∴C (32,).设直线BC 的解析式为:y =kx +b ,∴32k b =+解得:k b ìïíïî,直线BC的解析式为:y =【点拨】本题主要考查了弧弦角的性质,垂径定理,数形结合求出关键点坐标是解决本题的关键.类型四、利用垂径定理推论求进行证明4.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且»»CFCB =,BF 交CG 于点E ,求证:CE =BE .【分析】证法一:连接CB ,可证»»CFGB =,从而可证明CE =BE ;证法二:作ON ⊥BF ,垂足为N ,连接OE ,证明△ONE ≌△ODE ,可得NE =DE,再结合垂径定理可得BN=CD,再根据线段的差即可证明结论;证法三:连接OC交BF于点N,只需要证明△CNE≌△BDE即可证明结论.解:证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴»»CB GB=,∵»»CF BC=,∴»»CF GB=,∴∠C=∠CBE,∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴»»CB BG=,∵»»CB CF=,∴»»»CF BC BG==,∴BF=CG,ON=OD,∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE(HL),∴NE=DE.∵12BN BF=,12CD CG=,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵»»=,CF BC∴OC⊥BF,∵AB是⊙O的直径,CG⊥AB,∴»»=,BG BC∴»»»==,CF BG BC=,∴»»BF CG=,ON OD∵OC=OB,∴OC-ON=OB-OD,即CN=BD,又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【点拨】本题考查垂径定理、圆周角定理、全等三角形的性质和判定等.熟练掌握垂径定理及其推理是解题关键.举一反三:【变式1】如图,已知AB,CD是⊙O内非直径的两弦,求证:AB与CD不能互相平分.【分析】根据反证法的步骤进行证明:先假设AB与CD能互相平分,结合垂径定理的推论,进行推理,得到矛盾,从而肯定命题的结论正确.解:设AB,CD交于点P,连接OP,假设AB与CD能互相平分,则CP=DP,AP=BP,∵AB,CD是圆O内非直径的两弦,∴OP⊥AB,OP⊥C D,这与“过一点有且只有一条直线与已知直线垂直相矛盾”,所以假设不成立,所以AB与CD不能互相平分【点拨】本题考查了反证法,解题的关键是:掌握反证法的步骤.【变式2】如图,已知在⊙O中,»»»==,OC与AD相交于点E.求证:AB BC CD(1)AD∥BC(2)四边形BCDE为菱形.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;(2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据»»=得到BC=CD,从而证明菱形.BC CD解:(1)连接BD,∵»»»==,AB BC CD∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD ,∵AD ∥BC ,∴∠EDF =∠CBF ,∵»»BCCD =,∴BC =CD ,∴BF =DF ,又∠DFE =∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE =BC ,∴四边形BCDE 是平行四边形,又BC =CD ,∴四边形BCDE 是菱形.【点拨】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF =DF .类型五、垂径定理及推论解决其他问题5.如图,AB 为O e 的一条弦,连接OA 、OB ,请在O e 上作点C 使得ABC V 为以AB 为底边的等腰三角形.(尺规作图,保留作图痕迹,不写作法)【分析】分别以点A 、B 为圆心,大于AB 长的一半为半径画弧,交于两点,连接这两点,交O e 于点C ,则问题可求解.解:如图所示:【点拨】本题主要考查垂径定理及等腰三角形的性质,熟练掌握垂径定理是解题的关键.举一反三:【变式1】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为 .【答案】(1)见分析;(2)90°【分析】(1)根据原点所在的位置,建立平面直角坐标系即可;根据圆心D必在线段AB和线段BC的垂直平分线上进行求解即可;(2)由(1)得到D点坐标,即可得到OA,OD的长,利用勾股定理求解即可得到AD 的长;利用两点距离公式求出点(6,-2)到圆心D的距离与AD的长比较即可得到点(6,-2)与圆D的位置关系;利用勾股定理的逆定理判断△ADC是直角三角形即可得到答案.解:(1)如图所示,即为所求;(2)由(1)可知D 点坐标为(2,0),A 点坐标为(0,4)∴OD =2,OA =4,AD ==∴圆D 的半径为∵点(6,﹣2)到圆心D =∴点(6,﹣2)到圆心D 的距离等于半径的长,∴点(6,﹣2)在⊙D 上.∵D (2,0),C (6,2),A (0,4),∴CD ==,AC ==,∴222CD AD AC +=,∴∠ADC =90°,故答案为:90°.【点拨】本题主要考查了坐标与图形,两点距离公式,确定圆心位置,点与圆的位置关系,勾股定理的逆定理,解题的关键在于能够熟知相关知识.【变式2】如图,O e 中,P 是»AB 的中点,C 、D 是PA 、PB 的中点,过C 、D 的直线交O e 于E 、F .求证:EC FD =.【分析】连结OC,OD,OP交EF于G,由P是»AB的中点,可得¼¼AP BP=,根据弧等相等可得AP=BP,由C、D是PA、PB的中点,根据垂径定理可得OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,可求∠PCO=∠PDO=90°,CP=DP,由勾股定理OC==OD,根据线段垂直平分线判定可得OP是CD的垂直平分线,可得CG=DG,根据垂径定理可得EG=FG即可.解:连结OC,OD,OP交EF于G,∵P是»AB的中点,∴¼¼AP BP=,∴AP=BP,∵C、D是PA、PB的中点,∴OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,∴∠PCO=∠PDO=90°,CP=DP,∴OC=OD,∴OP是CD的垂直平分线,∴CG=DG,∵CD在EF上,EF是弦,OP为半径,OP⊥EF,∴EG=FG,∴EC=EG-CG=GF-GD=DF.∴EC= DF.【点拨】本题考查弧了垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差,掌握垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差是解题关键.类型六、利用垂径定理及推论的实际应用6.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O e 的半径.【答案】【分析】过点O 作OE ⊥AB 于点E ,连接OA ,根据垂径定理,可得132AE AB ==,由折叠得: 12OE OA =,然后在Rt AEO V 中,利用勾股定理即可求得结果.解:如图,过点O 作OE ⊥AB 于点E ,连接OA ,∴132AE AB ==,由折叠得:12OE OA =,设=2OE x OA x =,则,∴在Rt AEO V 中,由勾股定理得:222=OE AE OA +,即:2223=4x x +解得: x 1x 2=∴2x答:O e 的半径为【点拨】本题主要考查了折叠的性质、垂径定理和勾股定理,熟练运用相关性质和定理是解题的关键.举一反三:【变式1】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求用尺规作图,保留作图痕迹,不写作法);AB=,水面最深地方的高度(即»AB的中点(2)若这个输水管道有水部分的水面宽16cm到弦AB的距离)为4cm,求这个圆形截面所在圆的半径.【答案】(1)见分析(2)10cm【分析】(1)根据尺规作图的步骤和方法做出图即可,(2)先过圆心O作半径CO⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.(1)如图所示,⊙O为所求作的圆形截面.(2)如图,作半径OC⊥AB于D,连接OA,AB=8 cm,点C为AB n的中点,则AD=12进而,CD=4 cm.设这个圆形截面所在圆的半径为r cm,则OD=(r-4)cm.在Rt△ADO中,有82+(r-4)2=r2,解得r=10.即这个圆形截面所在圆的半径为10 cm.【点拨】此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.【变式2】如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.【答案】(1)拱桥所在的圆的半径为17m;(2)不需要采取紧急措施,理由见分析.【分析】(1)由垂径定理可知AM=BM、A′N=B′N,再在Rt△AOM中,由勾股定理得出方程,即可求出半径;(2)求出ON=OP﹣PN=15(m),再由勾股定理可得A′N=8(m),则A′B′=2A'N=16米>15m,即可得出结论.解:(1)设圆弧所在圆的圆心为O,连接OA、OA′,设半径为xm,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=30m,AB=15(m),∴AM=12在Rt△AOM中,OM=OP﹣PM=(x﹣9)m,由勾股定理可得:AO2=OM2+AM2,即x2=(x﹣9)2+152,解得:x=17,即拱桥所在的圆的半径为17m;(2)∵OP=17m,∴ON=OP﹣PN=17﹣2=15(m),在Rt△A′ON中,由勾股定理可得A′N=8(m),∴A′B′=2A'N=16米>15m,∴不需要采取紧急措施.【点拨】本题主要考查了垂径定理的应用,勾股定理,准确计算是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲垂径定理知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。

本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。

希望同学们认真学习,为后面圆的其他内容理解奠定良好基础。

知识梳理讲解用时:15分钟垂径定理及其推论(1)垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

(2)相关推论①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧;①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦;①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧;①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心,并且平分这条弦。

总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立。

课堂精讲精练【例题1】下列判断中,正确的是()。

A.平分一条弦所对的弧的直线必垂直于这条弦B.不与直径垂直的弦不能被该直径平分C.互相平分的两条弦必定是圆的两条直径D.同圆中,相等的弦所对的弧也相等【答案】C【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误;任意两条直径互相平分,故B错误;同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。

讲解用时:3分钟解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。

教学建议:基本概念题,逐项排除。

难度:3 适应场景:当堂例题例题来源:无年份:2018【练习1】下列说法正确的个数是()。

①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对的优弧和劣弧分别相等。

A.1个B.2个C.3个D.4个【答案】B【解析】本题主要考查了垂径定理以及圆的基本性质,①垂直于弦的直径平分弦;故错误;①平分弦(不是直径)的直径垂直于弦;故错误;①圆的对称轴是直径所在的直线;故错误;①圆的对称轴有无数条;故正确;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对的优弧和劣弧分别相等,故正确,故选:B.讲解用时:7分钟解题思路:根据垂径定理,轴对称图形的性质以及圆的性质分别判断得出答案即可。

教学建议:基本概念题,逐项排除。

难度:3 适应场景:当堂练习例题来源:香坊区校级月考年份:2016秋【例题2】如图,AB是①O的一条弦,直径CD①AB于点E,若AB=24,CD=26,则DE 的长度是()。

A.5B.6 C.7 D.8【答案】D【解析】本题考查了垂径定理和勾股定理,设DE为x,连接OA,①CD是①O的直径,弦AB①CD于点E,AB=24,①①AEO=90°,AE=EB=12,由勾股定理得:OA2=AE2+OE2,132=122+(13﹣x)2,解得:x=8,则DE的长度是8,故选:D.讲解用时:3分钟解题思路:连接OA,根据垂径定理求出AE,根据勾股定理得出方程,求出方程的解即可。

教学建议:求出AE=EB是解此题的关键。

难度:3 适应场景:当堂例题例题来源:涪城区模拟年份:2018 【练习2】如图,①O过点B 、C ,圆心O 在等腰Rt ①ABC 的内部,①BAC=90°,OA=2,BC=8.则①O的半径为()A .5B .5C .52D .6【答案】C【解析】此题考查了垂径定理,勾股定理,以及等腰三角形的性质,延长AO 交BC 于点D ,连接OB ,由对称性及等腰Rt ①ABC ,得到AD ①BC ,①D为BC 的中点,即BD=CD=21BC=4,AD=21BC=4,①OA=2,①OD=AD ﹣OA=4﹣2=2,在Rt ①BOD 中,根据勾股定理得:OB=52,则圆的半径为52,故选:C .讲解用时:5分钟解题思路:延长AO 于BC 交于点D ,连接OB ,由对称性及三角形ABC 为等腰直角三角形,得到AD 与BC 垂直,根据三线合一得到D 为BC 的中点,利用直角三角形斜边的中线等于斜边的一半得到AD 为BC 的一半,求出AD 的长,由AD ﹣OA 求出OD 的长,再利用垂径定理得到D 为BC 的中点,求出BD 的长,在直角三角形BOD 中,利用勾股定理求出OB 的长,即为圆的半径教学建议:根据题意作出辅助线,构造出直角三角形是解答此题的关键。

难度:3适应场景:当堂练习例题来源:相山区四模年份:2018【例题3】如图,①O的直径为10,弦AB=8,P 是弦AB 上一动点,那么OP 长的取值范围是。

【答案】3≤OP ≤5【解析】本题考查了垂径定理和勾股定理的综合应用,如图:连接OA ,作OM ①AB 与M ,①①O的直径为10,①半径为5,①OP的最大值为5,①OM①AB与M,①AM=BM,①AB=8,①AM=4,在Rt①AOM中,OM=3,OM的长即为OP的最小值,.①3≤OP≤5讲解用时:5分钟解题思路:因为①O的直径为10,所以半径为5,则OP的最大值为5,OP的最小值就是弦AB的弦心距的长,所以,过点O作弦AB的弦心距OM,利用勾股定理,求出OM=3,即OP的最小值为3,所以3≤OP≤5。

教学建议:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形。

难度:3 适应场景:当堂例题例题来源:襄城区模拟年份:2018 【练习3】弦AB,CD是①O的两条平行弦,①O的半径为5,AB=8,CD=6,则AB,CD 之间的距离为()。

A.7B.1C.4或3D.7或1【答案】D【解析】本题考查了勾股定理和垂径定理,①当弦AB和CD在圆心同侧时,如图①,过点O作OF①CD,垂足为F,交AB于点E,连接OA,OC,①AB①CD,①OE①AB,①AB=8cm,CD=6cm,①AE=4cm,CF=3cm,①OA=OC=5cm,①EO=3cm,OF=4cm,①EF=OF﹣OE=1cm;①当弦AB和CD在圆心异侧时,如图①,过点O作OE①AB于点E,反向延长OE交AD于点F,连接OA,OC,①AB①CD,①OF①CD,①AB=8cm,CD=6cm,①AE=4cm,CF=3cm,①OA=OC=5cm,①EO=3cm,OF=4cm,①EF=OF+OE=7cm,故选:D.讲解用时:8分钟解题思路:分两种情况进行讨论:①弦A和CD在圆心同侧;①弦A和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可。

教学建议:注意进行分类讨论。

难度:4 适应场景:当堂练习例题来源:枣阳市期末年份:2017秋【例题4】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()。

A.2 cm B.2.5 cm C.3 cm D.4 cm【答案】B【解析】本题主考查垂径定理及勾股定理的知识,EF的中点M,作MN①AD于点M,取MN上的球心O,连接OF,①四边形ABCD是矩形,①①C=①D=90°,①四边形CDMN是矩形,①MN=CD=4,设OF=x,则ON=OF,①OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2,解得:x=2.5,故选:B.讲解用时:8分钟解题思路:取EF的中点M,作MN①AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt①MOF中利用勾股定理求得OF的长即可。

教学建议:正确作出辅助线构造直角三角形是解题的关键。

难度:4 适应场景:当堂例题例题来源:建邺区一模年份:2018【练习4】如图,在半径为10cm 的圆形铁片上切下一块高为4cm 的弓形铁片,则弓形弦AB 的长为()。

A .8cmB .12cmC .16cmD .20cm【答案】C【解析】此题主要考查了垂径定理以及勾股定理,如图,过O 作OD ①AB 于C ,交①O于D ,①CD=4,OD=10,①OC=6,又①OB=10,①Rt ①BCO 中,BC=822OCOB,①AB=2BC=16,故选:C .讲解用时:4分钟解题思路:首先构造直角三角形,再利用勾股定理得出BC 的长,进而根据垂径定理得出答案。

教学建议:得出AC 的长是解题关键。

难度:3适应场景:当堂练习例题来源:中江县模拟年份:2018【例题5】如图所示,点A 是半圆上一个三等分点,点B 是的中点,点P 是直径MN 上一动点,若①O的直径为2,则AP+BP 的最小值是。

【答案】2【解析】本题考查了轴对称中最短路线问题、三角形的三边关系以及勾股定理,作点B 关于MN 的对称点B ′,连接AB ′交MN 于点P ,连接BP ,此时AP+BP=AB ′最小,连接OB ′,如图所示,①点B 和点B ′关于MN 对称,①PB=PB ′,①点A 是半圆上一个三等分点,点B 是的中点,①①AON=180°÷3=60°,①B ′ON=①AON ÷2=30°,①①AOB′=①AON+①B′ON=90°,①OA=OB′=1,①AB′=2.讲解用时:8分钟解题思路:作点B关于MN的对称点B′,连接AB′交MN于点P,连接BP,由三角形两边之和大于第三边即可得出此时AP+BP=AB′最小,连接OB′,根据点,再利用勾A是半圆上一个三等分点、点B是的中点,即可得出①AOB′=90°股定理即可求出AB′的值,此题得解。

教学建议:根据三角形的三边关系确定AP+BP取最小值时点P的位置是解题的关键。

难度:4 适应场景:当堂例题例题来源:南通一模年份:2017 【练习5】如图,①O的半径是8,AB是①O的直径,M为AB上一动点,==,则CM+DM的最小值为。

【答案】16【解析】本题考查了轴对称确定最短路线问题、垂径定理,如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,①=,①==,AB为直径,①C′D为直径,①CM+DM的最小值是16.讲解用时:5分钟解题思路:作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解。

相关文档
最新文档