仪器分析期末总结

合集下载

仪器分析知识点总结期末

仪器分析知识点总结期末

仪器分析知识点总结期末引言仪器分析是一门应用化学和物理学原理的科学,涉及仪器、仪表、光学和电子学等多个学科,用于测定和分析物质样品的成分和性质。

仪器分析在各个领域都有广泛的应用,包括环境监测、制药、食品安全、医学诊断和天文学等。

本篇文章将对仪器分析的基本概念、常见的分析仪器和技术、质量控制以及未来发展方向等进行总结和分析。

一、仪器分析基础知识1. 仪器分析的基本原理仪器分析是利用物理、化学或生物学原理构建各种仪器和设备,用于检测和测定样品中的成分、结构和性质。

基本原理包括光谱学、电化学、分子光度法、色谱法、质谱法、X射线衍射法等。

在实际应用中,可以根据需要选择不同的分析原理和仪器进行样品分析。

2. 仪器分析的步骤仪器分析一般包括取样、制备、分析和数据处理等步骤。

取样是从样品中获取代表性的部分;制备是指针对样品的物理或化学处理,以适应分析仪器的要求;分析是使用仪器进行测定,获取样品的性质和组分信息;数据处理是指对分析结果进行统计分析、质量控制和报告撰写等。

3. 仪器分析的应用领域仪器分析在环境监测、医学诊断、食品安全、农业生产、材料检测、制药和化工等领域都有重要应用。

例如,质谱法在药物研发和医学诊断中有重要应用;光谱学在化学分析和环境监测中起到关键作用;色谱法在食品安全和环境保护中发挥作用。

二、常见的分析仪器和技术1. 分光光度计分光光度计是一种用于测定物质浓度的仪器,利用物质吸收或发射光的特性进行分析。

分光光度计包括紫外可见分光光度计、红外分光光度计和荧光光度计等,广泛应用于化学分析、生物医药和环境监测等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,用于测定物质的分子结构和质量。

质谱仪主要有气相质谱仪和液相质谱仪两大类,可用于药物分析、环境监测和食品安全等领域。

3. 色谱仪色谱仪是一种用于分离和测定混合物中组分的仪器。

常见的色谱仪包括气相色谱仪和液相色谱仪,广泛应用于环境检测、食品安全和医学诊断等领域。

仪器分析色谱期末总结

仪器分析色谱期末总结

仪器分析色谱期末总结一、引言仪器分析色谱是一种应用广泛、高效、精确的分离和定量分析方法。

它主要通过物质在固定相和流动相之间的分配系数差异来实现分离和检测。

色谱技术已经被广泛应用于环境监测、食品安全、药物研发、生化分析等领域。

在本学期的仪器分析色谱课程中,我们学习了气相色谱和液相色谱的基本原理、仪器设备和常见应用,以及色谱方法的优化和验证等内容。

通过课程的学习与实验的探究,我对仪器分析色谱有了更深入的了解与认识。

在本文中,我将对本学期所学内容进行总结和回顾,并对今后的学习和研究进行展望。

二、气相色谱气相色谱是一种基于样品在固定相和气相之间的分配系数差异进行分离的方法。

它具有分离能力强、分析速度快、灵敏度高的优点。

在气相色谱实验中,我学习了色谱仪的基本构造和工作原理,如气源、进样口、柱温控制等。

同时,我还学会了如何选择适当的固定相和流动相,优化分离条件,以及合理地选择检测器和数据采集方法。

通过实验,我对气相色谱的操作流程和方法有了更详细的了解,并成功地用气相色谱方法进行了一些常见有机化合物的分离和检测。

三、液相色谱液相色谱是一种基于样品在固定相和液相之间的分配系数差异进行分离的方法。

它具有选择性好、适用范围广的特点,广泛应用于药物分析、环境监测等领域。

液相色谱实验中,我学习了常见的液相色谱法,如反相色谱、离子交换色谱、凝胶色谱等。

我了解了各种固定相和流动相的特点和选择条件,学会了峰的形状和保留时间的控制方法,以及如何进行定性和定量分析。

通过实验,我获得了丰富的操作经验,提高了实验技能和数据处理能力。

四、优化与验证在使用色谱方法进行分析时,为了获得准确和可靠的结果,我们需要对色谱条件进行优化和验证。

优化是指通过改变柱温、流速、反应时间等参数,使得分离和检测效果达到最佳。

验证是指对分析方法进行验证,包括准确度、精密度、线性范围、检出限等性能指标。

在本学期的实验中,我学习了通过设计实验和统计分析来优化色谱条件和验证分析方法的方法与技巧。

生物仪器分析期末重点总结

生物仪器分析期末重点总结

生物仪器分析期末重点总结一、显微镜显微镜是最基本和常用的生物仪器之一。

它可以放大和观察微小的生物样本,以便研究其结构和功能。

目前,常见的显微镜包括光学显微镜、电子显微镜和荧光显微镜等。

光学显微镜使用可见光进行观察。

它可以放大样本的细节,并通过不同的镜头和滤波器来增强图像的对比度和分辨率。

电子显微镜利用电子束而不是光线照射样本。

它可以提供更高的放大倍数和更高的分辨率,从而能够观察到更小的细胞和分子结构。

荧光显微镜结合了光学显微镜和荧光染料技术,可以用来检测样本中特定蛋白质或细胞器的位置和分布。

二、基因测序仪基因测序仪是用于确定DNA序列的生物仪器。

它可以将DNA样本分解成不同的碱基,并通过检测不同碱基释放出的光信号来确定DNA序列。

目前常用的基因测序技术有Sanger测序和高通量测序等。

Sanger测序是一种经典的基因测序方法,它利用DNA链终止剂阻止DNA链延伸,并通过不同碱基释放的荧光信号来确定序列。

高通量测序则是指一系列自动化的测序技术,能够同时测序数百万个DNA片段。

这些技术可以大大加快基因测序速度,并降低成本,从而推动了基因组学研究的发展。

三、质谱仪质谱仪是一种用于分析样品中不同化学物质的仪器。

它可以通过测量样品中分子的质量和电荷,并根据其质荷比来确定其成分和结构。

质谱仪广泛应用于蛋白质组学、代谢组学和药物分析等领域。

质谱仪通常由电离源、质谱仪和检测器组成。

电离源用于将样品中的分子转化为带电粒子,质谱仪则用于分离不同质荷比的粒子,并将其聚焦到检测器上进行检测。

根据样品的特性和需要,常见的质谱技术包括质子化电喷雾质谱(ESI-MS)、飞行时间质谱(TOF-MS)和气相色谱质谱(GC-MS)等。

四、流式细胞仪流式细胞仪是一种用于分析和计数单个细胞的仪器。

它可以通过流体动力学原理将细胞分散在液体中,然后通过激光束逐个检测并测量细胞的大小、形状和荧光标记。

这项技术在细胞生物学、免疫学和肿瘤学等领域得到广泛应用。

现代仪器分析期末总结

现代仪器分析期末总结

现代仪器分析期末总结一、概述现代仪器分析是化学专业的一门重要课程,主要研究化学分析中所采用的现代仪器的原理、操作和应用等方面的知识。

通过该课程的学习,我对现代仪器分析技术有了更深入的了解和认识。

二、仪器分析的基本原理仪器分析是应用现代仪器技术和计算机技术来对样品进行分析和检测的方法。

其核心原理是利用仪器的某一特定性质来对样品进行定性和定量分析。

常用的仪器分析技术有光谱分析、色谱分析、电化学分析、质谱分析等。

光谱分析是利用物质与辐射相互作用时的一系列现象来进行分析的方法。

其中,紫外可见吸收光谱、红外光谱、拉曼光谱等是常用的光谱分析方法。

色谱分析是利用物质在载气或液相流动中的迁移速度差异来分离和测定成分的方法。

其中,气相色谱、液相色谱是常用的色谱分析技术。

电化学分析是利用电化学电流和电势的变化来测量物质浓度的一种方法。

常见的电化学分析技术有电位滴定法、电流计时法、伏安法等。

质谱分析是利用粒子质量分选特性来对样品进行检测的方法。

常见的质谱分析技术有质子质谱、电喷雾质谱、飞行时间质谱等。

三、常用的仪器分析技术1. 紫外可见吸收光谱紫外可见吸收光谱是利用物质对紫外可见光的吸收特性进行分析的方法。

它有很多应用领域,如药物分析、环境监测、食品检测等。

通过紫外光谱的测定,可以得出物质的吸收峰位、吸光度、摩尔吸光系数等重要信息。

2. 气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱和质谱两种分析技术结合起来,既可以进行物质的分离,又可以进行物质的鉴定。

该技术在环境、食品、生物、药物等领域有广泛的应用。

3. 电化学分析技术电化学分析技术是利用物质在电化学条件下的电流和电势的变化来分析物质的浓度、速度等性质的方法。

电化学分析技术广泛应用于电解质分析、电化学传感器、电池和电解等领域。

四、现代仪器分析的应用现代仪器分析技术在科学研究、工业生产和环境监测等方面有着广泛的应用。

在科学研究方面,现代仪器分析成为了研究领域的重要工具。

期末不挂科仪器分析总结

期末不挂科仪器分析总结

期末不挂科仪器分析总结一、引言仪器分析是化学和相关学科中的一门重要课程,它旨在培养学生分析实验的能力和科学研究的素养。

通过本学期的学习和实验,我对仪器分析的原理和应用有了更深入的了解。

本文将对本学期的仪器分析课程进行总结,包括仪器分析的基本原理、常用分析仪器的工作原理和应用等。

二、仪器分析的基本原理仪器分析是利用仪器和设备来进行物质定性和定量分析的一种方法。

它包括了许多常用的仪器和设备,如色谱仪、质谱仪、光谱仪等。

仪器分析的基本原理是利用物质的特性或与物质相互作用的原理来进行分析。

比如光谱仪利用物质对光的吸收、散射、发射等特性来进行定性和定量分析;质谱仪利用物质在电场中的特性来分析物质的组成和结构;色谱仪利用物质在气相或液相中的分配行为来分析物质的成分等。

三、常用分析仪器的工作原理和应用1. 色谱仪的工作原理和应用:色谱仪是一种利用物质在固定相和流动相之间分配行为进行分析的仪器。

在色谱仪中,样品通过固定相,根据不同成分的分配系数在固定相和流动相之间进行分离,然后通过检测器进行检测。

色谱仪广泛应用于食品分析、环境监测、药物分析等领域。

2. 质谱仪的工作原理和应用:质谱仪是一种通过将样品中的物质分子转化为离子,并进行质量分析的仪器。

在质谱仪中,样品经过电离器产生离子,然后通过质量分析器进行质量分析。

质谱仪广泛应用于有机化合物的结构分析、生物分子的定性和定量分析等领域。

3. 光谱仪的工作原理和应用:光谱仪是一种利用物质对光的吸收、散射、发射等特性进行分析的仪器。

在光谱仪中,样品通过光束,根据样品对光的吸收、散射、发射等特性进行分析。

光谱仪广泛应用于药物分析、环境监测、食品分析等领域。

四、实验中的仪器分析本学期我还参与了几个仪器分析实验,通过这些实验我对仪器分析有了更深入的了解。

比如我们在一次实验中使用色谱仪对某种食品中的添加剂进行分析。

通过色谱仪的分析,我们确定了食品中的添加剂种类和含量。

在另一次实验中,我们使用质谱仪对一种药物进行质量分析。

仪器分析总结期末评语

仪器分析总结期末评语

仪器分析总结期末评语本学期的仪器分析课程主要围绕光谱分析、色谱分析、质谱分析、电化学分析等内容展开。

这些仪器都具有各自的特点和应用范围,学习了解了它们的原理和操作方法,能够正确选择和使用合适的仪器进行分析实验。

在光谱分析方面,我们学习了紫外-可见吸收光谱、红外光谱和拉曼光谱等。

同学们通过实验和数据处理,熟悉了光谱仪的基本操作和信号处理方法,掌握了测定样品中特定物质含量的技术。

色谱分析是一种通过将混合物中的组分分离并准确定量的方法。

本学期我们学习了气相色谱、液相色谱、高效液相色谱等色谱技术,通过实验操作和数据分析,掌握了色谱仪的使用方法和分离性能的评估。

质谱分析是将化合物精细分子结构的方法,本学期我们学习了质谱仪的基本原理和仪器操作,通过实验,同学们熟练掌握了样品的质谱图解析方法和结构鉴定技巧。

电化学分析是通过测量电流和电势来确定样品中的成分浓度和重要物理化学性质的方法。

我们学习了电化学分析的基本原理和仪器操作,通过测定电流和电势的变化,可以准确分析样品中的离子浓度、氧化还原电位等信息。

除了以上的主要内容,课程中还涉及了热分析、质量分析、核磁共振等其他常用的仪器分析技术。

同学们通过实验操作,掌握了多种仪器设备的基本原理和使用方法,提高了实验技能和数据分析能力。

在整个学期的学习过程中,同学们充分理解了仪器分析的重要性和应用价值,培养了良好的实验操作能力和科学研究意识。

同时,同学们在实验中也遇到了一些困难和问题,例如如何选择合适的仪器设备、如何准确测定样品中的成分、如何进行仪器的维护和故障排除等。

为了进一步提高仪器分析课程的教学质量,需要注意以下几个方面的问题:首先,要加强对仪器分析原理和操作方法的理论教学。

在仪器实验前,应进行充分的理论讲解,使同学们能够充分理解仪器的原理和操作,提高实验操作的准确性。

其次,要加强实验操作的指导和技巧培训。

仪器分析实验操作繁琐、技巧要求较高,需要对同学们进行详细的操作步骤讲解和技巧培训,使同学们能够熟练操作并提高实验效率。

仪器分析期末总结

仪器分析期末总结

仪器分析期末总结一、引言仪器分析是现代化学分析的重要组成部分,具有灵敏度高、选择性好、准确度高等优点。

本学期我们学习了仪器分析的基本原理、常用的仪器设备以及仪器操作技术和数据处理方法。

通过理论学习和实验操作,我对仪器分析的工作原理及其在实际应用中的重要性有了更深入的理解。

以下是我对本学期学习内容的总结和体会。

二、仪器分析的原理及分类仪器分析是利用物理或化学性质测试和分析样品中所含组分的一种方法。

仪器分析通常包括光谱分析、电化学分析和分离技术等。

光谱分析主要通过测量样品对光的吸收、发射或散射来获得样品的信息。

电化学分析则利用电化学现象测量样品中的电流、电压和电导等参数。

分离技术则是通过对样品进行分离和纯化来获得所需信息。

三、常用的仪器设备及其原理1. 紫外可见分光光度计:紫外可见分光光度计利用样品对紫外或可见光的吸收来测定样品中某种物质的含量。

其原理是根据比尔-朗伯定律,将吸收光强与浓度之间的关系建立起来。

2. 离子色谱仪:离子色谱仪主要用于离子物质的分离和测定。

通过控制离子交换树脂中的离子交换反应,将样品中的离子分离出来,并通过检测器进行测定。

3. 气相色谱仪:气相色谱仪是一种常用的分析仪器,主要用于描写样品中有机物的组成和浓度。

其原理是样品在高温下通过色谱柱和载气的相互作用进行分离,然后通过检测器对分离出的物质进行检测。

四、仪器分析的操作技术和数据处理方法1. 标定和校准:在进行仪器分析前,需进行标定和校准,以确保测量结果的准确性和可靠性。

标定是通过测量标准样品来校准仪器,确定仪器的响应和测量范围。

校准是通过测量校准样品,检查仪器的准确度并进行修正。

2. 仪器操作:仪器分析的操作过程需要严格遵守仪器设备的操作规程和操作步骤。

特别是在涉及到有毒有害物质的操作时要加强安全防护和措施,确保实验操作的安全性。

3. 数据处理:仪器分析的结果通常需要进行数据处理和分析。

数据处理包括数据整理、统计分析和结果呈现等。

工程仪器分析期末总结

工程仪器分析期末总结

工程仪器分析期末总结一、引言在工程领域中,仪器分析技术是一门十分重要的课程。

通过学习工程仪器分析,我掌握了许多实验技术和仪器运用的知识。

本文将对这个学期所学内容进行总结,总结包括仪器常用的分类、各类仪器的原理和应用、实验技术和实验过程的注意事项等。

通过总结,我加深了对工程仪器分析的理解,也提高了实际应用的能力。

二、仪器常用分类根据仪器的用途和原理,仪器可以分为光学仪器、电子仪器、电化学仪器、气体分析仪器、热学仪器、力学仪器等几类。

其中,光学仪器如分光光度计、激光振动仪等主要利用光学原理进行分析。

电子仪器如电子天平、电子计时器等则利用电子技术进行精确的实验测量。

电化学仪器如PH计、电位滴定仪等则用于电化学反应的定量分析。

气体分析仪器如气体色谱仪、质谱仪等广泛应用于环境分析和工业过程监控。

热学仪器如热电偶、热稳定仪等主要用于测量热量和温度。

力学仪器如测力计、力传感器等主要用于测量物体受力情况等。

三、各类仪器的原理和应用1. 分光光度计分光光度计利用光的吸收、散射或发射的原理进行分析。

它可以测定溶液中的物质浓度、光反应速率等。

在实验中,我们使用分光光度计测定了某种荧光染料的吸光度,通过与标准曲线对比,计算得到荧光染料的浓度。

2. 气体色谱仪气体色谱仪利用气体分子在固定相或液定相中的分配和分离原理进行分析。

它可以分离和检测不同气体成分,广泛应用于空气污染监测、石油化工等领域。

在实验中,我们使用气体色谱仪对环境空气中的有机物进行了检测,并对峰面积进行积分,计算出各有机物的浓度。

3. PH计PH计利用玻璃电极原理测定溶液的PH值。

PH计广泛应用于水质、土壤、生物体等的酸碱度测定。

在实验中,我们使用PH计测定了酸性和碱性溶液的PH值,并利用PH值进行了酸碱滴定。

4. 热电偶热电偶利用两个不同金属的热电势差变化与温度之间的关系进行测温,广泛应用于工业生产和温度控制。

在实验中,我们使用热电偶测定了不同温度下水的蒸发热,并绘制了温度与蒸发热之间的关系曲线。

仪器测试分析期末总结

仪器测试分析期末总结

仪器测试分析期末总结一、绪论仪器测试分析是现代科学研究中不可或缺的重要环节。

通过仪器测试分析,科研人员能够对物质的性质进行准确测量和分析,为科学研究提供可靠的数据支持。

本文将对本学期所学的仪器测试分析课程进行总结和回顾,分析所学知识的应用情况,并对仪器测试分析的前景和挑战进行探讨。

二、仪器测试原理与方法1. 仪器测试原理:在本学期学习的过程中,我们深入了解了仪器测试的基本原理,包括电子学、光学、声学等方面的基础知识。

仪器测试的原理和方法是科学研究中的基础工具,只有通过清楚了解它们,才能正确选择和使用仪器设备。

2. 仪器测试方法:本学期我们学习了多种仪器测试方法,包括电子式仪器测试方法、光学式仪器测试方法、声学式仪器测试方法等。

通过掌握这些方法,能够更好地进行物质性质的测量和分析。

三、仪器测试设备与应用1. 仪器测试设备:本学期,我们对仪器测试设备进行了详细的学习和了解。

了解常用的仪器测试设备的结构、性能和特点,能够更好地选择和使用仪器设备。

2. 仪器测试应用:在学习仪器测试分析的过程中,我们学习了仪器测试在实际应用中的重要性。

无论是化学分析、材料检测,还是环境监测等领域,仪器测试都发挥着重要作用。

通过仪器测试,能够提高工作效率,准确测量和分析物质的性质。

四、仪器测试数据处理与分析1. 数据处理方法:在仪器测试分析中,数据处理是非常重要的环节。

通过对数据进行合理处理,能够准确分析物质的性质。

本学期,我们学习了统计学和计算机处理方法等数据处理方法,这些方法能够有效地处理和分析仪器测试数据。

2. 数据分析:通过仪器测试数据的处理和分析,能够得到更加准确可靠的结论。

本学期,我们学习了多种数据分析方法,包括统计学方法、多元分析方法等。

这些方法能够帮助我们从大量测试数据中提取有用信息,为科学研究提供有力的支持。

五、仪器测试分析的前景和挑战1. 前景:随着科学技术的不断发展,仪器测试分析在科学研究中的应用前景非常广阔。

现代仪器分析重点总结(期末考试版)

现代仪器分析重点总结(期末考试版)

现代仪器分析重点总结(期末考试版)现代仪器分析重点总结(期末考试版)现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。

灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。

灵敏度也就是标准曲线的斜率。

斜率越大,灵敏度就越高光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。

光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。

原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。

主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。

分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。

多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。

洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。

助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。

分析仪器的主要性能指标是准确度、检出限、精密度。

根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。

原子发射光谱仪由激发源、分光系统、检测系统三部分组成。

使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。

光谱及光谱法是如何分类的?⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。

原子光谱与发射光谱,吸收光谱与发射光谱有什么不同原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。

仪器分析笔记期末总结

仪器分析笔记期末总结

仪器分析笔记期末总结首先,仪器分析是化学学科的一项重要领域。

在化学研究、生产和实验中,仪器分析扮演着重要的角色。

通过仪器分析,我们可以得到更加准确、敏感和快速的实验结果。

例如,在药物研究中,仪器分析可以帮助我们确定药物的纯度和结构,从而评估其疗效和安全性。

在环境监测中,仪器分析可以帮助我们检测大气中的污染物、水中的有害物质以及土壤中的重金属等,从而保护环境和人类健康。

因此,仪器分析是化学学科不可或缺的一部分。

其次,仪器操作和实验技能是仪器分析课程的核心。

在课程中,我们学习了多种仪器的原理和操作,并进行了实验操作。

例如,我们学习了光谱仪的原理和应用,通过测量样品的吸收光谱来确定其组成和浓度。

我们还学习了质谱仪的原理和操作,通过测量样品中离子的质荷比来确定其结构和分子量。

通过这些实验操作,我们不仅学到了各种仪器的操作技巧,还培养了实验设计、数据处理和结果分析的能力。

另外,仪器分析还涉及到数据处理和结果分析。

在实验过程中,我们需要采集大量的数据,然后通过统计分析和图表绘制来处理这些数据。

在课程中,老师给我们讲解了如何进行数据处理和结果分析,并通过实例演示了具体操作步骤。

通过这些实践,我们学会了如何提取和计算出有关物质的信息,例如,测量样品中物质的浓度、离子的质荷比和元素的相对含量等。

这些结果不仅是实验的重要依据,还可以为后续的研究工作提供参考。

除了以上的知识和技能,仪器分析课程还加强了我们的实验安全和质量控制意识。

在实验操作中,我们必须严格遵守实验室的操作规程,正确佩戴防护设备,正确使用仪器和试剂,以防止事故和产生误差。

同时,我们还学会了质量控制的方法,例如,实验中要进行空白对照、加标回收和重复测定等,以确保实验结果的准确性和可靠性。

通过这门课程的学习,我不仅对仪器分析的重要性有了更深入的理解,也掌握了基本的实验技能和数据处理方法。

这些知识和技能不仅可以应用于实验室研究和生产,还可以在日常生活中为我解决化学问题和提高化学素养提供帮助。

测试仪器分析期末总结

测试仪器分析期末总结

测试仪器分析期末总结一、引言测试仪器分析是现代科学技术发展的重要组成部分,具有广泛的应用领域。

本学期学习了测试仪器分析的基本原理、操作技巧以及数据处理方法,通过实验和课堂学习,我收获颇多。

在本次期末总结中,我将回顾所学内容,并总结出一些经验和教训,以供今后参考和提升。

二、理论知识回顾在测试仪器分析的学习过程中,我主要学习了电子式天平、分光光度计、气相色谱仪等常用仪器的原理和操作方法。

通过对这些仪器的认识,我了解到每种仪器都有其特点和适用范围,我们在选择仪器时需要根据实际需求来做出决策。

除此之外,我还学习了数据处理的方法,包括如何进行误差分析、如何计算标准差和相对标准偏差等。

这些方法可以帮助我们更准确地评估实验结果的可靠性,并优化实验方法和操作流程。

三、实验操作经验总结1. 仪器操作要准确在实验中,仪器的操作非常重要。

精准的操作可以确保实验数据的可靠性。

在操作仪器时,我注意保持仪器干净、无污染,并根据仪器的使用说明书来正确操作。

保持仪器的正常使用状态,定期进行维护和校准。

2. 实验环境要良好实验环境对实验结果的准确性有重要影响。

在进行实验时,要选择一个安静、无干扰的实验室,并控制好实验室的温度和湿度等环境因素。

另外,要保持实验室的通风,确保实验室中空气质量的良好。

3. 数据处理要细致在进行实验时,要随时记录实验数据,并进行及时的整理和处理。

在进行数据处理时,要仔细审查数据的准确性,并根据实验目的来选择合适的统计方法。

在计算误差和标准偏差时,要注意使用正确的公式,并通过多次实验的数据进行验证。

四、课程中的收获通过本学期的学习,我受益良多。

首先,我学到了许多科学仪器的基本原理和操作方法,在实验中我能够更加熟练地操作这些仪器,也提高了实验数据的准确性。

其次,我学会了如何进行数据处理和误差分析,这些分析方法可以帮助我更好地评估实验结果的可靠性,并优化实验设计和操作流程。

最后,我也明白了实验室环境对实验结果的影响,在今后的实验中,我会更加重视环境因素的控制。

仪器分析总结期末评语简短

仪器分析总结期末评语简短

仪器分析总结期末评语简短仪器分析是化学分析领域的重要分支之一,通过仪器设备对样品进行定量或定性分析,具有快速、准确、灵敏的特点。

经过一个学期的学习,同学们在仪器分析实验课中取得了一定的进步与成绩。

下面我将对同学们的表现进行总结与评价。

首先,同学们在实验操作技能方面有了明显的提高。

仪器分析实验对于操作的熟练程度要求较高,需要掌握的仪器设备较多,操作步骤繁琐。

在实验课中,同学们通过实际操作增加了对仪器设备的熟悉程度,掌握了一定的实验技巧,也提高了对实验过程中各种仪器操作步骤的理解。

同学们在实验中认真细致,勤于动手操作,基本能够按照要求完成实验操作,并能够熟练地运用仪器设备进行定量或定性分析。

但是有些同学在实验中仍然存在一些操作失误的情况,需要不断加强对实验步骤和操作要点的掌握,提高操作的准确性和稳定性。

其次,同学们在实验数据处理和结果分析方面也取得了一定的进展。

仪器分析实验的核心就是对实验数据的处理和结果的分析,只有准确地收集数据并正确地处理分析,才能得出可靠、科学的结果。

同学们在实验中能够正确使用仪器设备,准确地测量各项数据。

并能够运用统计学方法对实验数据进行处理和分析,得出相应的结果。

但是有些同学在数据处理过程中存在一些错误,对于异常数据处理能力相对较弱。

需要进一步加强对实验数据的处理和分析方法的学习,提高实验数据处理的准确性和科学性。

另外,同学们在实验报告撰写方面也有了明显的改进。

实验报告是对实验过程和结果的总结和归纳,对于实验报告的撰写规范要求较高。

同学们在实验报告的撰写过程中,能够按照要求对实验步骤、操作过程和结果进行准确、完整、清晰的描述。

并能够通过合适的图表、图形等形式展示实验数据和结果。

但是有些同学在实验报告撰写的时候存在一些问题,报告结构不够清晰,实验结果分析和总结不够扎实,对于已有的研究结果和文献缺乏合理的引用和参考。

需要加强对实验报告撰写规范的学习和实践,提高实验报告的质量和水平。

仪器分析总结(2篇)

仪器分析总结(2篇)

仪器分析总结____-____学年第二学期仪器分析化学实验总结仪器分析法是测定物质化学组成、状态、结构的重要方法,也是监测物理、化学等过程的重要手段之一。

由于物理学、电子学的发展促进了分析仪器的发展,从而分析化学已经由以化学分析为主的经典分析向以仪器分析为主的现代分析过渡,仪器分析的应用也逐渐扩展到许多相关学科中,因此《仪器分析》已被列为化学专业(本科)必修的基础课程之一,一些非化学专业也逐渐将仪器分析列为必修课或选修课。

仪器分析是一门实验技术性很强的课程,需要严格的实验相关知识与实验技能训练,在《仪器分析实验》课程的教学过程中是理论可以指导实践,通过实验可以验证和发展理论。

仪器分析实验中一些大型仪器的操作较复杂、影响因素较多、信息量大、技术要求高,还需要通过对大量实验数据细致的分析与图谱解析来获取有用的信息。

通过本门实验课的学习,可以培养学生如何使用分析仪器正确地获取精密实验数据,进而对实验数据进行科学地处理得出有价值信息的能力。

掌握所用仪器的结构和各主要部件的基本功能,理解和掌握相关仪器的实验技术、方法,增强学生独立操作该类仪器进行科学研究的能力。

本学期按照本科教学大纲的要求并结合授课班级____级化学本科的实际基础,我们共开设了八个实验:火焰原子吸收法测定钙、镁的含量;气相色谱法进行混合物的定性、定量分析;____分光光度法测定微量铁;分子荧光法测定奎宁含量;紫外分光光度法测定苯甲酸含量;单扫描极谱法测定自来水中的铅和铬;液相色谱法测定樟脑球中萘含量,综合热分析法对热分析过程的测定。

实验覆盖面广,仪器设备先进。

学生在实验过程中____地理解了各种分析方法所依据的原理、该方法的技术特点及操作要领。

学会了一些常规分析仪器的使用方法,并能够掌握运用仪器对实际物质进行分析分离的基本思路。

仪器分析是让学生以分析仪器为工具亲自动手去获得需要的信息,是在老师指导下所进行的一种特殊形式的科学实践活动,是学生未来走向社会独立进行科学实践的预演。

仪器分析期末概念总结

仪器分析期末概念总结

仪器分析期末概念总结一、仪器分析的基本概念和原理仪器分析是指利用各种仪器设备进行物质或样品的定性、定量、结构、含量、纯度等方面的分析的一种方法。

仪器分析是现代分析化学的重要组成部分,具有灵敏、准确、可靠等特点。

仪器分析的原理主要涉及到仪器的结构、检测信号的产生、传感器的作用,以及物理化学过程的基础原理等。

在仪器分析中,有许多基本概念需要了解。

首先是仪器的精密度和准确度。

精密度是指在相同条件下,测量结果的一致性和重复性;准确度是指测量结果与真实值之间的接近程度。

仪器的精密度越高,能够提供更加一致和可靠的结果;而准确度则取决于仪器的校准和标定过程。

其次是仪器的探测极限。

探测极限是指仪器对于某一分析物质最低浓度的检测能力。

常用的探测极限包括检测极限和浓度极限,检测极限是指能够被仪器可靠检测到的最低浓度;浓度极限则是指仪器能够给出准确结果的最低浓度。

最后是仪器的线性范围和选择性。

线性范围是指在该范围内,仪器输出信号与输入浓度呈线性关系;而选择性是指仪器对于被测物质的专属性,即在样品中,仪器只检测感兴趣的物质,不受其他物质的干扰。

仪器的线性范围和选择性直接影响到结果的准确性和可靠性。

二、常用仪器的分类及应用常用的仪器可以根据测量原理和用途分为不同的类别。

首先是传统的光谱仪器,如紫外可见分光光度计、红外光谱仪、核磁共振仪等。

这些仪器能够通过测量样品的光吸收、发射或核磁共振信号来确定样品的组成和结构。

光谱仪器广泛应用于化学、生物、医学、环境等领域,如荧光光谱分析有机物、红外光谱分析有机小分子、核磁共振分析有机化合物结构等。

另一类仪器是质谱仪器,如气相色谱质谱联用仪、液相色谱质谱联用仪等。

质谱仪器通过测量样品中质子、电子、离子的能谱分布来确定样品的组成和结构。

质谱仪常用于分析有机物质、环境监测、药物检测等领域。

此外,电化学仪器也是常用的一类仪器,如电导仪、电位计、电解槽等。

电化学仪器可以通过测量电流、电压、电导等参数来确定样品的成分、浓度和电化学性质等。

仪器分析下期末总结

仪器分析下期末总结

仪器分析下期末总结一、引言仪器分析是化学专业的一门重要课程,旨在培养学生熟练掌握各种仪器的原理、结构和使用方法,以及数据的处理与分析能力。

通过这门课程的学习,我对仪器分析的理论和实际操作得到了很大的提升,并且深刻理解了仪器分析在化学研究和工业生产中的重要作用。

在本次期末总结中,我将针对仪器分析的基本原理、常用方法和实际应用进行回顾和总结,同时分享一些课堂实验和实践中的经验和收获。

二、仪器分析的基本原理仪器分析是化学分析领域的一种重要手段,主要通过测量和记录被测样品的某种性质来实现分析目的。

仪器分析的基本原理包括光谱分析、电化学分析、色谱分析和质谱分析等,每种分析方法都有其独特的原理和应用。

1. 光谱分析光谱分析是利用物质在特定光波长下的吸收、发射或散射现象来确定其组成和浓度的分析方法。

常见的光谱分析方法包括紫外-可见光谱分析、红外光谱分析和核磁共振光谱分析等。

这些分析方法广泛应用于物质结构的解析、有机物的定性定量分析以及环境污染物的检测等领域。

2. 电化学分析电化学分析是通过测量物质在电化学系统中的电荷转移过程来实现定量分析的方法。

常见的电化学分析方法包括电位滴定法、安培计法和极谱法等。

这些方法在药物分析、环境检测和生物分析等方面具有重要应用,尤其是电化学传感器在医学诊断和生物传感领域显示出巨大的潜力。

3. 色谱分析色谱分析是利用不同物质在固定相和流动相之间的分配系数差异来实现分离和分析的方法。

常见的色谱分析方法包括气相色谱法、液相色谱法和离子色谱法等。

这些方法广泛应用于有机物的分离、纯化和定性定量分析,可以有效提高样品分析的灵敏度和准确性。

4. 质谱分析质谱分析是利用静态或动态的质量谱仪对物质分子的质量和结构进行测定的方法。

常见的质谱分析方法包括质谱仪、气相色谱质谱联用分析和液相色谱质谱联用分析等。

这些方法在药物研究、有机合成和环境监测等领域得到广泛应用,可以准确快速地对物质进行鉴定和定性定量分析。

仪器分析实验总结(精选5篇)

仪器分析实验总结(精选5篇)

仪器分析实验总结(精选5篇)第一篇:仪器分析实验总结仪器分析实验总结1014061525 虞梦娜一、红外光谱仪实验报告 1.仪器结构仪器设备:SHIMADZU IRPresting-21型傅立叶变换红外光谱仪SHIMADZU IRPresting-21 仪器结构:傅傅立叶变换红外光谱仪的工作原理图固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部件-迈克尔干涉仪。

由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。

可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。

IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40000∶1(4cm-1,1分钟,2100cm-1附近,P—P),具有自诊断功能和状态监控器。

可收集中红外、近红外、远红外范围光谱。

常用红外光谱-红外光谱仪①棱镜和光栅光谱仪光栅光谱仪属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。

转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。

随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息。

②傅里叶变换红外光谱仪它是非色散型的,核心部分是一台双光束干涉仪,常用的是迈克耳孙干涉仪。

当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。

傅里叶变换红外光谱仪傅里叶变换光谱仪的主要优点是:①多通道测量使信噪比提高;②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1;④增加动镜移动距离就可使分辨本领提高;⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

仪器分析期末考试重点总结

仪器分析期末考试重点总结

气相色谱基本原理:借在两相间分配原理而使混合物中各组分分离。

气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。

组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。

载气系统、进样系统、色谱柱与柱箱、检测系统、记录与数据处理系统。

气相色谱仪具有一个让载气连续运行,管路密闭的气路系统.进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.固定液:是一些高沸点的有机化合物,例如,角鲨烷,作为固定相被均匀地涂抹在担体上。

担体:多孔,比表面积大,表面无吸附性,是用来承担固定液的物质。

例如:硅藻土。

气相色谱法的特点:高选择性(复杂混合物,有机同系物、异构体。

手性异构体)高灵敏度(可以检测出μg.g-1(10-6)级至(10-9)级的物质量)高效能、快速、应用范围广(气:沸点低于400℃的各种有机或无机试样的分析)(液:高沸点、热不稳定、生物试样的分离分析)缺:被分离组分的定性较为困难。

分配过程:组分在固定相和流动相间发生的吸附、脱附,或溶解、挥发的过程 分配系数:在一定温度下,组分在两相间分配达到平衡时的浓度(单位:g / mL )比,K 分配比:在一定温度下,组分在两相间分配达到平衡时的质量比(容量因子\容量比) k k 容量因子越大,保留时间越长。

β为相比。

β= VM/VS V M 为流动相体积,即柱内固定相颗粒间的空隙体积;V S 为固定相体积,气-液色谱柱(为固定液体积);气-固色谱柱:为吸附剂表面容量r 21 = t ´R2 / t ´R1= V ´R2 / V ´R1= α 滞留因子=质量分数ω: u s :组分在色谱柱内的线速度; u :流动相在色谱柱内的线速度 塔板理论的假设:在每一个平衡过程间隔内,平衡可以迅速达到;将载气看作成脉动(间歇)过程;试样沿色谱柱方向的扩散可忽略;每次分配的分配系数相同。

青岛科技大学仪器分析实验期末总结

青岛科技大学仪器分析实验期末总结

青岛科技⼤学仪器分析实验期末总结⼀、原⼦吸收光谱法测定钢铁中微量铜1、原⼦吸收法测试的定量关系式为朗伯—⽐尔定律,通过测定已知浓度系列溶液的吸光度来实现。

2、本次试验原⼦吸收所⽤的⽕焰是空⽓—⼄炔。

3、原⼦吸收光谱仪中的原⼦化器由燃烧⽫和雾化器组成,作⽤是将溶液中的分⼦解离成离⼦再还原成原⼦,能产⽣被测元素的原⼦蒸⽓。

4、原⼦吸收测试标准加⼊法溶液⾄少配4个点。

5、原⼦吸收雾化器吸取溶液是利⽤动压和静压关系原理。

6、空⼼阴极灯的作⽤是能发射出待测元素特征谱线,其内部充的⽓体是氖⽓。

7、分光器由狭缝、反光镜、光栅组成,其中分光核⼼部件是光栅。

8、标准加⼊法中溶液的配制,⾸次加⼊标准溶液浓度与试样溶液浓度相当。

9、原⼦吸收分光光度计通常⽤于测量微量⾦属元素,它的光路流程是:空⼼阴极灯→原⼦化器→分光器→检测器。

10、原⼦吸收测定溶液中微量元素的浓度单位是ppm、µg/ml、mg/l。

11、标准加⼊法要求⼯作曲线是直线,⼀般⽤于组成未知、基体复杂、和标准溶液成分相差太⼤的样品,不能消除的⼲扰是背景⼲扰、电离⼲扰、与浓度有关的化学⼲扰。

12、⽤朗伯⽐尔定律公式表达差值分光光度法和⽰差分光光度法。

(1)差值分光光度法:ΔA=Δε*C*L;(2)⽰差分光光度法:ΔA=ε*ΔC*L。

13、⽐较标准加⼊法和标准曲线法定量的优缺点。

(1)标准加⼊法:优点:能克服⼀些⼲扰,如:物理⼲扰、与溶液引起的化学⼲扰,准确度⽐标准曲线法⾼,误差⼩。

缺点:相对于⼯作曲线法,操作复杂⼀些,不能消除背景吸收的影响,对于斜率太⼩的曲线,灵敏度差,易引⼊较⼤的误差。

(2)标准曲线法:优点:简便、快速,适于组成简单的样品。

缺点:容易受到⼀些⼲扰:如光谱⼲扰、物理⼲扰、化学⼲扰等,每次测量前应⽤标准溶液对吸光度进⾏校正和检查。

⼆、透射电镜仪器及成像原理和简单样品的制备技术1、电⼦显微镜是以电⼦束为光源的显微镜,是研究物质(样品)的显微结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器分析期末重点知识总结第一章1.化学分析是以物质化学反应为基础的分析方法。

仪器分析是以物质的物理性质和物理化学性质为基础的分析方法。

2.仪器分析法的数量级。

3.仪器分析方法分为光学分析法、电化学分析法、色谱法、和其它仪器分析法。

4.定量分析普遍使用的方法:标准曲线法。

标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。

5.许多方法的灵敏度随实验条件而变化,所以现在一般不用灵敏度作为方法的评价指标。

6.精密度公式:7.准确度常用相对误差量度。

方法有较好的精密度并且消除了系统误差后,才有较好的准确度。

8.检出限:信噪比取3。

方法的灵敏度越高,精密度越好,检出限就越低。

精密度、准确度和检出限三个指标作为分析方法的主要评价指标。

第二章1.光学分析法:根据物质发射的电磁辐射或电磁辐射与物质相互作用建立起来的分析方法。

2.电磁辐射具有波粒二象性:波动性和微粒性。

3.4.普朗克方程将电磁辐射的波动性和微粒性联系在一起。

5.电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。

6.并不是原子中任何两个能级之间都能够发生跃迁。

不符合光谱选择定则的跃迁叫禁戒跃迁。

7.原子光谱又称线状光谱。

物质的原子光谱依其获得的方式不同分为发射光谱、吸收光谱和荧光光谱。

8.根据光谱产生的机理不同,分子光谱又可分为分子吸收光谱和分子发光光谱。

分子对辐射能的选择性吸收由基态或较低能级跃迁到较高能级产生的分子光谱叫做分子吸收光谱。

目前学过的分子吸收光谱:紫外可见吸收光谱和红外吸收光谱。

第三章1.紫外-可见吸收光谱是根据溶液中物质的分子或离子对紫外可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收光度法。

2.电子跃迁类型:3.把4.烯化合物随着共轭体系的增大其吸收峰红移,摩尔吸收系数也会随共轭体系增大而发生显著100%r s s x =变化。

5.能使声色团吸收峰红移、吸收强度增大的集团成为助色团。

6.溶剂对物质吸收光谱的影响:对最大吸收波长的影响(两种情况:随着溶剂极性增大,);对光谱精细结构和吸收强度的影响。

跃迁吸收峰向长波长方向移动,即发生红移;跃迁吸收峰向短波方向移动,即发生蓝移。

因此可利用溶剂效应来区分这两种跃迁产生的吸收光谱)。

7.紫外可见分光光度计组成:光源、单色器、吸收池、检测器、和信号显示器。

8.光源的作用是提供辐射,可见光区常用钨灯,紫外区常用氢灯和氘灯单色器是从连续光谱中获得所需单色光的装置。

吸收池是用于盛放溶液并提供一定吸收光厚度的器皿。

检测器作用是检测光信号。

9.分光光度计种类:单光束分光光度计、双光束分光光度计、双波长分光光度计。

现代紫外可见分光光度计大多具有双光束、双波长、微机数据处理、自动记录及扫描功能,使方法的灵敏度和选择性大大提高。

10.紫外吸收光谱法的应用:化合物的鉴定、结构分析和纯度检查。

11.第四章(谱图分析一道)1.红外吸收光谱法是依据物质对红外辐射的特征吸收建立起来的一种光谱分析法。

它与紫外吸收光谱法、核磁共振光谱法及质谱法合称四大谱学方法。

2.中红外区(基本振动区)波数:4000—2003. =1304μk/ μ表示1摩尔的谐振子的质量(折合的分子质量)。

4.非线性分子的振动自由度:3n-6,直线型分子的振动自由度3n-5. CO 2四种基本振动形式。

5.分子吸收红外辐射的条件:辐射应具有刚好满足振动跃迁所需的能量;只有能使偶极矩发生变化的振动形式才能吸收红外辐射。

6.分子振动时偶极矩是否变化决定了该分子能否产生红外吸收,而偶极矩变化大小决定了吸收吸收谱带的强弱。

根据量子理论,红外光谱的强度与分子振动时偶极矩变化的平方成正比。

7.各个基团的伸缩振动频率、判断单取代峰的个数。

8.影响基团频率位移的内部因素:诱导效应;共轭效应(共轭效应使共轭体系中的电子云密度平均化,结果使双肩电子云密度降低,力常数减小,吸收峰像低频方向移动,即红移。

);氢键。

9.红外光谱仪的组成:光源、单色器、吸收池、检测器、记录系统。

常用的光源主要有能斯振动波数 4110//cm mσλμ-=12k c σπμ=特灯和硅碳棒。

红外吸收池通常是由一些无机盐(KBr)的大结晶体作为透光材料制作而成。

检测器有真空热电偶、热电量热计和光电导管三种。

10.固态试样常采用压片法制样。

11.课后题第七题。

第五章1.分子发光分为光致发光、热致发光、场致发光和化学发光。

本章主要讨论分子荧光、分子磷光和化学发光法。

2.分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

3.通常以荧光效率(或荧光量子产率)来描述辐射跃迁概率的大小。

荧光效率定义为发荧光的分子数目与基态分子总数的比值。

4.荧光分析仪器由光源、单色器、液槽、检测器和信号显示记录器组成。

特点:第一,荧光分析仪器采用垂直测量方式,即在与激发光相垂直的方向测量荧光,以消除透射光的影响;第二,荧光分析仪器有两个单色器,一个是激发单色器,置于液槽前,用于获得单色性较好的激发光,另一个是发射单色器,置于液槽和检测器之间,用于分出某一波长的荧光,消除其他杂散光干扰。

5.磷光是分子从亚稳态的三重态跃迁至基态时所产生的辐射。

磷光比荧光的寿命长。

6.磷光检测器组成:光源、激发单色器、液槽、发射单色器、检测器和放大显示装置。

特殊部件:试样室、磷光镜。

7.化学发光反应的条件:能快速的释放出足够的能量;反应途径有利于激发态产物的形成;激发态分子能够以辐射跃迁的方式返回基态,或能够将其能量转移给可以产生辐射跃迁的其它分子。

第六章1.原子发射光谱法是根据待测物质的气态原子或离子受激发后所发射的特征光谱的波长及其强度来测定其物质中元素组成和含量的分析方法。

2.原子光谱是有原子外层电子在不同能级间的跃迁而产生的。

不同的元素其原子结构不同,原子的能级状态不同,因此,原子发射谱线的波长也不同,每种元素都有其特征光谱,这是光谱定性分析的依据。

3.影响谱线强度的因素:谱线的性质(激发电位、跃迁概率、统计权重);原子总密度;激发温度。

4.激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号。

5.目前常用的激发光源有直流电弧、低压交流电弧、高压火花和电感耦合等离子体等激发光源。

6.直流电弧光源适用于矿物和难挥发试样的定性、半定量及痕量元素的分析。

低压交流电弧光源适用于金属、合金中低含量元素的定量分析。

高压火花光源适用于高含量组分定量分析,不适用于微量或痕量元素的测定。

7.乳剂特性曲线可分为四个部分:曲线AB 称为曝光不足部分;CD 部分称为曝光过量部分;DE 部分称为负感光部分;BC 部分称为正常曝光部分。

8.元素的灵敏线是指元素特征光谱中强度较大的谱线,通常是具有较低激发电位和较大跃迁概率的共振线。

随着元素含量减少而最后消失的谱线成为该元素的最后线。

最后线往往就是元素的最灵敏线,即元素的主共振线。

9.目前确认谱线波长最常用的方法有标准光谱图比较法和标准试样光谱比较法。

标准光谱图比较法又叫铁光谱比较法。

第七章1.原子吸收光谱法也称原子吸收分光光度法。

它是根据物质的基态原子蒸气对特征辐射的吸收作用来进行元素定量分析的方法。

澳大利亚物理学家沃尔什奠定了原子吸收光谱法的测量基础,应用于金属元素分析。

2.原子发射线和原子吸收线都具有一定的形状,即谱线有一定的轮廓。

3.吸收线的轮廓:自然宽度(谱线有固定宽度称为自然宽度。

与谱线的其它变宽宽度相比,自然宽度可以忽略不计。

);多普勒变宽(它是由原子在空间作相对热运动引起的谱线变宽,又称热变宽。

);碰撞变宽(是由同种辐射原子间或辐射原子与其它粒子间相互碰撞而产生的。

前者引起的变宽叫赫尔兹马克变宽,后者引起的变宽叫洛伦兹变宽。

)。

此外,在原子吸收光谱法的工作条件下,吸收线的变宽主要受 的影响。

4.在原子吸收光谱分析中,把测量气态基态原子吸收共振线的总能量成为积分吸收测量法。

5.沃尔什提出采用锐线光源测量吸收线的峰值吸收。

6.以峰值吸收测量代替积分吸收测量的必要条件是:锐线光源辐射的发射线与原子吸收线的中心频率完全一致;锐线光源发射线的半宽度比吸收线的半宽度更窄,一般为吸收线半宽度的1/5~1/10,这样,峰值吸收与积分吸收非常接近。

7.原子吸收光谱仪器组成:锐线光源、原子化器、分光系统、检测系统和电源同步调制系统。

8.锐线光源的作用是发射谱线宽度很窄的元素共振线。

最常用空心阴极灯。

原子化器的作用是将试样蒸发并使待测定元素转化为基态原子蒸气,主要有火焰原子化法和非火焰原子化法。

非火焰原子器应用最广泛的是石墨炉原子化器。

斜坡程序升温是将试样干燥、灰化、原子化和除残四个过程分步进行。

( , )D D v λ∆∆9.原子吸收光谱的干扰:物理干扰、化学干扰、电离干扰、光谱干扰。

10.化学干扰是由于待测元素与共存组分发生了化学反应,生成了难挥发或难解离的化合物,使基态原子数目减少所产生的干扰。

消除或抑制化学干扰的方法:提高火焰温度;加入释放剂;加入保护剂;加入机体改进剂;化学分离法。

11.在原子吸收光谱分析中,校正背景的方法有仪器调零吸收法、临近线校正背景法、氘灯校正背景法和塞曼效应校正背景法。

12.标准曲线法所配制的试样浓度应该在A-c 标准曲线的直线范围内,吸光度在0.15-0.6之间测量的准确度较高。

13.元素的特征浓度:火焰原子吸收法中,把能产生1%吸收度或产生0.0044吸光度时对应的被测定元素的质量浓度mg ·mL-1, mg ·mL-1/1% 。

14.特征质量:石墨炉原子吸收法中,把能产生1%吸收度或产生0.0044吸光度时对应的被测定元素的质量g, g/1% 。

15.检出限:原子吸收法中,检出限 D 表示测定元素信号为空白信号标准偏差的 3 倍时元素的质量浓度或质量。

信噪比为3.16. 原子荧光:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s 后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的荧光。

17.荧光猝灭:与其它粒子的碰撞而导致荧光减弱;主要的影响因素:火焰成分(CO, CO2, OH, N2, H2O 等)和试样基体; 通过最佳条件优化,提高原子化效率,减少未原子化分子或其它微粒的密度。

(与分子荧光里的荧光猝灭比较)第八章(计算题一道)1.电分析化学是依据物质在溶液中的电化学性质及变化来测定物质组成及含量的分析方法。

2.化学电池相关知识。

3.标准氢电极的电位为零。

4.极化是指通过电极与溶液的界面时,电极电位偏离平衡电位的现象,电极电位与平衡点位之差称为过电位。

按照产生极化的原因,可以把极化分为浓差极化和电化学极化。

浓差极化是由于电解过程中电极表面附近溶液的浓度与主体溶液的浓度差别引起的。

相关文档
最新文档