北京市2018年人大附中九年级上学期月考数学试卷

合集下载

人大附中学年度第一学期初三数学12月月考试题

人大附中学年度第一学期初三数学12月月考试题

人大附中学年度第一学期初三数学月月考试题 一、选择题(本题共分,每小题分).如图,已知ADE 与ABC 的相似比为1:2,则ADE 与ABC 的周长比为( ). . . ..下列各点在函数6y x=-图象上的是( ) .()2,3-- .()3,2 .()1,6- .()6,1-- .一元二次方程2350x x ++=的根的情况是( ). 有二个不相等的实根 .有二个相等的实数根 .没有实数根 .为法判断 .如图四边形ABCD 内接于⊙O ,110A ∠=,则BOD ∠的度数是( ) .° .° .° .°.为了估计河的宽度,我们可以在河对岸的岸边选定一个目标记为点A ,再在河的这一边选点B 和点C ,使得AB BC ⊥,设BC 与AE 交于点D ,如图所示测得120,40,30BD m DC m EC m ===,那么这条河的大致宽度是( ). . . ..反比例函数3y x=-图像上有三个点()()()112233,,,,,x y x y x y ,其中1230x x x <<<,则123,,y y y 的大小关系是( ).123y y y << .231y y y << .132y y y <<.321y y y <<.一个盒子中装有四张完全相同的卡片,分别写着,,和,盒子外有两张卡片,分别写着和,现随机从盒子中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是( ).41 .31 .21 .43.如图,点A 在双曲线ky x=的图像上,AB x ⊥轴于B ,且AOB 的面积为,则k 的值为( ). .4- . .2- .已知二次函数的图像如图所示,下列结论()0c <;()02ba->;()420a b c ++>;()0a b c -+>;()240b ac ->其中正确的有( ).个 .个 .个 .个.如图,D 为腰长为的等腰直角形AOB 的腰AC 延长线上的动点,E 为底边BC 延长线上的动点,135AED ∠=,若,C E xC D y ==,则y 关于x 的图像大致是( )二、填空题(本题共分,每小题分).方程2210x x -+=的解是 ..将二次函数243y x x =-+化为()2y x h k =-+的形式,则h k +..在平面直角坐标系xOy 中,()()1,2,4,2A B 连接AB ,写出一个函数,使它的图象与线段AB 有公共点,那么这个函数的表达式为 ..已知抛物线254y x x =-+交x 轴于A B ,两点,交y 轴于C ,则ABC 的面积为. .如图,OA 是⊙O 的直径,6OA =,CD 是圆B 的切线,D 为切点30DOC ∠=,则点C 的坐标为..如图,已知Rt ABC 中,90ACB ∠=,B A ∠>∠,在ABC 内找一点E ,使得EBC 和ABC 相似,小聪的做法是:取AB 边上的中线CD ,作BE CD ⊥,垂足为E ,则EBC 和ABC 相似。

北京市人大附中2018-2019学年度第二学期初三年级数学练习(二)

北京市人大附中2018-2019学年度第二学期初三年级数学练习(二)

2018-2019学年人大附中初三月考回顾 2018-2019学年度第一学期初三年级数学练习2一、选择题:本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,以点P 为圆心作园,所得的圆与直线l 相切的是( )A .以PA 为半径的圆B .以PB 为半径的圆C .以PC 为半径的圆D .以PD 为半径的圆2.二次函数()221y x =-+的对称轴表达式是( ) A .2x =B .2x =-C .1x =D .1x =-3.下列k 的值中,使方程240x x k -+=有两个不相等实数根的是( ) A .3B .4C 5.D .64.利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是铀对称图形的是( )A .B .C. D .5.用配方法解方程2420,x x --=配方正确的是( )A .()222x -=B .()222x += C.()226x -=D .()226x +=6.如图,A B C 、、在O e 上,40,ACB ∠=︒点D 在ACB 上,M 为半径OD 上一点,则ANB ∠的度数不可能为( )A .45oB .60oC .75oD .85o7.7.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题: 甲:相等的弦所对的圆心角相等; 乙: 平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( ) A .甲对乙错B .甲错乙对C .甲乙都对D .甲乙都错8.下表是二次函数2y ax bx c =++的,x y 的部分对应值:则对于该函数的性质的判断:①该二次函数有最大值,②不等式1y >-的解集是0x <或2x >; ③方程20ax bx c ++=的两个实数根分别位于102x -<<和522x <<之间; ④当0x >时,函数y 值随x 的增大而增大;其中正确的是:( )A .②③B .②④C .①③D .①④二、填空题(每题2分,满分16分,将答案填在答题纸上)9.一元二次方程2220x x +-=的一次项系数为_.10.如图,AB 为O e 的直径,弦CD AB ⊥于点,E 已知8,CO OE ==3,则O e 的半径为.11.请写出一口开口向上,且与y 轴交于()0,1-的二次函数的解析式__.12.若1x =是方程223ax bx ÷=的根,当2x =时,函数2y ax bx =÷的函数值为. 13.点()()12,,,32B A y y -在抛物线25y x x =-上,则1y _____2y (填“>”“<”或“=”)14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出3,AB cm =这张光盘的半径是cm .15.如图,网络格上正方形小格的边长为1,图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段''A B 和点,P '则在1区~4区中,点'P 所在的单位正方形区域是______(选填区域称).16.如图1所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 沿折线BE ED DO --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1/cn 秒.设,P Q同时出发t 秒时,BPQ V 的面积为ycm ,已知y 与t 的函数关系图象如图2所示.请回答:.()1线段BC 的长为_;()2当运动时间 2.5t =秒时,P Q 、之间的距离是______cm .三、解答题(共68分.解答应写出文字说明、证明过程或演算步骤.)17. 解方程:()2142x x x +=+18.如图,等边三角形ABC 的边长为6,点D 是线段BC 上的一点, 4,CD =以AD 为边作等边三角形,ADE 连接,CE 求CE 的长.19.已知关于x 的方程224490x mx m -+-=()1求证:此方程有两个不等的实数根;()2若方程的两个根分别为12,x x ,其中12,x x >若123,x x =求m 的值.20. 如图,AB 是O e 的直径,点C 在O e 上,D 是BC 中点,若70,BAC ∠=︒求C ∠.下面是小雯的解法,请帮他补充完整: 解:在O e 中,D Q 是BC 的中点BD CD ∴=12∴∠=∠ (__________)(填推理的依据) .70BAC ∠=︒Q , 235.∴∠=︒AB Q 是O e 的直径,90ADB ∴∠=︒(__________)(填推理的依据) . 90255B ∠=︒-∠=∴︒.A B C D ∴、、、四个点都在O e 上,180C B ∴∠+∠=︒(__________)(填推理的依据), 180C B ∠=︒-∠∴=(填计算结果) .21.如图,园林小组的同学用一段长10米的篱笆围成一个一边靠墙的矩形菜园,ABCD 墙的长为9米,设AB 的长为x 米,BC 的长为y 米.()1①写出y 与x 的函数关系是:②自变量x 的取值范围是___()2园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB 的长.22.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图,这种旋转喷水装置的旋转角度为240,o喷灌起终点A B ,两点的距离为12米,求这种装置能够喷灌的草坪面积.23.如图,在平面直角坐标系中,抛物线2y x mx n =++与x 轴正半轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C .()1利用直尺和圆规,作出抛物线2y x mx n =++的对称轴(尺规作图,保留作图痕迹,不写作法) ; ()2若OBC V 是等腹直角三角形,且其腰长为3,求抛物线的解析式;()3在()2的条件下,点P 为抛物线对称轴上的一点,则PA PC +的最小值为.24.如图,AB 是O e 的直径,点C 在O e 上,过点C 作O e 的切线,CH AD CH ⊥于点,D 交O e 于点E .()1求证:AC 平分BAD ∠; ()2若2,AE AO ==求线段CD 的长.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索.例如下面这样一个问题: 已知y 是x 的函数,下表是y 与x 的几组对应值.小孙同学根据学习函数的经验,利用上述表格反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整:()1如图,在平面之间坐标系xOy 中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象;()2根据画出的函数图象回答:1x =-①时,对应的函数值y 约为________;②若函数值0,y >则x 的取值范围_________; ③写出该函数的一条性质(不能与前面已有的重复):.26.已知关于x 的二次函数()222(0)y ax a x b a =-++≠在0x =和6x =时函数值相等.()1求a 的值;()2若该二次函数的图象与直线2y x =-的一个交点为()2,,m 求它的解析式;()3在()2的条件下,直线24y x =--与x 轴,y 轴分别交于,,A B 将线段AB 向右平移()0n n >个单位,同时将该二次函数在27x ≤≤的部分向左平移n 个单位后得到的图象记为,G 请结合图象直接回答,当图象G 与平移后的线段有公共点时,n 的取值范围.27.如图,在ABC V 中,,90,AC BC ACB D =∠=︒为延长线C 上一点,连接,BD AE BD ⊥于点E .()1记ABC V 得外接圆为O e ,①请用文字描述圆心O 的位置; ②求证:点E 一定在O e 上()2将射线AE 绕点A 顺时针旋转45︒后,所得到的射线BD 与延长线,F 交于点连接,CF CE .①依题意补全图形;②用等式表示线段,,AF CE BE 的数量关系,并证明.。

最新-北京市2018学年度九年级数学第一学期月考试题 新

最新-北京市2018学年度九年级数学第一学期月考试题 新

北京市2018—2018学年度第一学期九年级数学月考试卷1.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ).A. 0.5 B . 1 C. -1 D. 1或-1 2. 下列各式中,y 是x 的二次函数的是 ( )A .21xy x += B .220x y +-= C .22y ax -=- D .2210x y -+=3.将抛物线22y x =向左平移1个单位,再向上平移3个单位得到的抛物线表达式是( ). A. 22(1)3y x =-- B . 22(1)3y x =++C. 22(1)3y x =-+D. 22(1)3y x =+-4. 抛物线1C :21y x =+与抛物线2C 关于x 轴对称,则抛物线2C 的解析式为( )A .2y x =-B .21y x =-+C .21y x =-D .21y x =--5. 如图所示,抛物线顶点坐标是P (1,3),则函数y 随 自变量x 的增大而减小的x 的取值范围是( ) A .x ≥3 B .x ≤3 C .x ≥1 D .x ≤16. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 7. 抛物线217()24y x =++上三点(-2,a )、(-1,b)、(3,c ),则a 、b 、c 的大小关系是( )A .a >b >cB . b >a >cC . c >a >bD .无法比较大小 8.已知二次函数c bx ax y ++=2的图象如图,下列结论:班级 姓名 学号密封 线 内 不得答 题①0<++c b a ;② 0>+-c b a ; ③0<abc ; ④a b 2=;⑤△0< 正确的个数是 ( )A . 4 个B . 3个C . 2 个D . 1个二、填空题(本题共16分,每小题4分)9.抛物线m x x y +--=22,若其顶点在x 轴上,则=m .10.关于x 的一元二次方程2=--n x x 第_____象限.11.抛物线)0(2≠++=a c bx ax y 值为12.如图所示,A 、B 、C 是抛物线y =ax 2根据图中所绘位置可得a_____0,(用“>”或“<”连接)三、解答题(本题共50分,15题813. 解方程:2280x x +-=14. 已知:如图,四边形ABCD 中,∠D =60°,∠B =30°,AD =CD .求证:BD 2=AB 2+BC 2.15. 已知二次函数y= x 2+4x+3.(1)用配方法将y= x 2+4x+3化成y =a (x -h ) 2 +k 的形式;(2)在平面直角坐标系中,画出这个二次函数的图象; 列表(3)直接写出当x 为何值时,y >0.答:_________________ (4)当30x -<<时,y 的取值范围是___________________16.已知:如图,Rt △ABC 中,∠ACB =90°,D 为AB 中点,DE 、DF 分别交AC 于E ,交BC于F ,且DE ⊥DF .(1)如果CA =CB ,求证:AE 2+BF 2=EF 2;(2)如果CA <CB ,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.17. 若二次函数32++=bx ax y 的图象经过(1,0)、(-1,8)两点,求此二次函数的解析式.18. 已知二次函数c bx ax y ++=2,自变量x 的部分取值及对应的函数值y 如下表所示:(1(2)求出这个二次函数图象的顶点坐标.19. 某水果批发市场经销一种水果,如果每千克盈利10元, 每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每 涨价1元,日销售量将减少20千克.(1)如果市场每天销售这种水果盈利了 6 000元,同时顾客又得到了实惠..........,那么 每千克这种水果涨了多少元?(2)设每千克这种水果涨价x 元时(0<x ≤25),市场每天销售这种水果所获利 润为y 元.若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多 少元时,市场每天销售这种水果盈利最多?最多盈利多少元?四、解答题(本题共22分,20题7分,21题8分,22题7分) 20. 已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.21. 已知抛物线y=x 2+(2n-1)x+n 2-1 (n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)设A 是(1)所确定的抛物线上位于x 轴下方、且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C. ①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.22. 已知在平面直角坐标系中,点C (0,2),D (3,4),在x 轴正半轴上有一点A ,且它到原点的距离为1.(1)求过点C、A、D的抛物线的解析式;(2)设(1)中抛物线与x轴的另一个交点为B,求四边形CABD的面积;(3)把(1)中的抛物线先向左平移一个单位,再向上或向下平移多少个单位能使抛物线与直线AD只有一个交点?。

2018--2019学年度第一学期京改版九年级第一次月考数学试卷

2018--2019学年度第一学期京改版九年级第一次月考数学试卷

A.
3 11
B.
7 11
C.
11 3
D.
11 7
,给出如下信息: ; ; ;
5. (本题 3 分)如图,对于已知抛物线 .其中错误的有( )
A. 2 个
B. 3 个
C. 4 个
D. 1 个 ) D. (﹣2,﹣1)
6. (本题 3 分)抛物线 y= A. (2,1)
1 (x+2)2+1 的顶点坐标是( 2
故本选项错误; (3)由图示知
对称轴 x=- >-1; 又函数图象的开口方向向下, ∴a<0, ∴-b<-2a,即 2a-b<0, 故本选项正确; (4)根据图示可知,当 x=1,即 y=a+b+c<0, ∴a+b+c<0; 故本选项正确; 综上所述,其中错误的是(2) ,共有 1 个; 故选:D. 【点睛】 此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求 2a 与 b 的关系,以及二次函数与方 程之间的转换,根的判别式的熟练运用. 6.B
9 米. 4
(本题 8 分)如图,抛物线 y=ax2+bx+c 与 x 轴相交于两点 A(1,0) ,B(3,0) ,与 y 轴相交于点 C(0,3) . 23.
(1)求抛物线的函数关系式. (2)将 y=ax2+bx+c 化成 y=a(x﹣m)2+k 的形式(请直接写出答案). (3)若点 D(3.5,m)是抛物线 y=ax2+bx+c 上的一点,请求出 m 的值,并求出此时△ABD 的面积.
(本题 9 分)如图, 24.
经过
的顶点 ,



于 .
求证: 连结 ,如果

2018年人大附中初三十月月考定稿(Word无答案)-文档资料

2018年人大附中初三十月月考定稿(Word无答案)-文档资料

2018.10 2018-2019学年度第一学期初三年级数学练习2命题人:王宇审题人:孙芳、王同荣考生须知1.本试卷共8 页,共三道大题,28 道小题,满分100 分。

考试时间100 分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只.有.一个.1.如图,以点P为圆心作圆,所得的圆与直线l 相切的是(A)以PA为半径的圆(B)以PB为半径的圆(C)以PC为半径的圆(D)以PD为半径的圆2.二次函数y =(x- 2)2 +1的对称轴表达式是(A) x=2 (B)x=-2 (C)x=1 (D)x=-13.下列k的值中,使方程x2 -4x+k = 0 有两个不相等实数根的是(A) 3 (B) 4 (C)5 (D)64.利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是(A)(B) (C)(D)5.用配方法解方程x2 -4x- 2 =0,配方正确的是(A)(x- 2)2 = 2(B)(x+ 2)2 = 2(C)(x- 2)2 = 6(D)(x+ 2)2 = 66.如图,A、B、C在⊙O上,∠ACB=40°,点D在 A C B 上,M为半径OD上一点,则∠AMB的度数不.可.能.为(A)45°(B) 60°(C)75 °(D)85°7.在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是(A)甲对乙错(B) 甲错乙对(C)甲乙都对(D)甲乙都错8.下表时二次函数y =ax2 +bx +c 的x,y的部分对应值:则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>-1的解集是x<0或x>2;③方程ax2 +bx +c = 0 的两个实数根分别位于-12<x<0 和2<x<52之间;④当x>0时,函数值y随x的增大而增大;其中正确的是:(A)②③(B) ②④(C)①③(D)①④二、填空题(本题共16分,每小题2分)9.一元二次方程2x2 +x - 2 = 0 的一次项系数为.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.11.请写出一口开口向上,且与y轴交于(0,-1)的二次函数的解析式.12.若x=1是方程2ax2 +bx =3的根,当x=2时,函数y =ax2 +bx 的函数值为.13.点A(- 3, y1 ),B(2, y2 )在抛物线y = x2-5x 上,则y1 y2 .(填“>”,“<”或14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是cm15.如图,网络格上正方形小格的边长为 1,图中线段 AB和点 P 绕着同一个点做相同的旋转,分别得到线段 A 'B ' 和点 P ' ,则在 1 区~4 区中,点 P ' 所在的单位正方形区域是(选填区域名称).15.如图 1 所示,E 为矩形 ABCD 的边 AD 上一点,动点 P 、Q 同时从点 B 出发,点 P 沿折线 BE-ED-DC 运动到点 C 时停止,点 Q 沿 BC 运动到点 C 时停止,它们运动的速度都是 1cm/秒.设 P 、Q 同时出发 t 秒时,△BPQ 的面积为 ycm ². 已知 y 与 t 的函数关系图象如图 2 所示.请 回答:图 2(1)线段 BC 的长为 cm ;(2)当运动时间 t=2.5 秒时,P 、Q 之间的距离是 cm .三、解答题(本题共 68 分,第 17-19 题,每小题 5 分,第 20 题 4 分,第 21-22 题,每小 题 5 分,第 23-25 题,每小题 6 分,第 26-28 题,每小题 7 分)17.解方程: x (2 x + 1) = 4 x + 218.如图,等边三角形 ABC 的边长为 6,点 D 是线段 CD=4,以 AD 为边作等边三角形 ADE ,连接 CE .求 CE 的长.19.已知关于 x 的方程 x 2 - 4mx + 4m 2 - 9 = 0(1)求证:此方程有两个不等的实数根;(2)若方程的两个根分别为 x 1 , x 2 ,其中 x 1 > x 2 ,若 x 1 =3 x 2 ,求m 的值. 第 3 页 共 8 页20.如图,AB是⊙O的直径,点C在⊙O上,D是B C 中点,若∠BAC=70°,求∠C下面是小雯的解法,请帮他补充完整:解:在⊙O中,∵D是B C 的中点∴B D C D .∴∠1=∠2()(填推理的依据).∵∠BAC=70°,∴∠2=35°.∵AB是⊙O的直径,∴∠ADB=90°()(填推理的依据).∴∠B=90°-∠2=55°.∵A、B、C、D四个点都在⊙O上,∴∠C+∠B=180°()(填推理的依据).∴∠C=180°-∠B=(填计算结果).21.如图,园林小组的同学用一段长16米的篱笆围成一个一边靠墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是:;②自变量x的取值范围是;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.22.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A, B两点的距离为12米,求这种装置能够喷灌的草坪面积.第 4 页共8 页23.如图,在平面直角坐标系中,抛物线y =x2 + m x +n 与x轴正半轴交于A, B两点(点A 在点B左侧),与y轴交于点C.(1)利用直尺和圆规,作出抛物线y =x2 + m x +n 的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为.24.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM,AD⊥CM于点D,交⊙O于点E.(1)求证:AC平分∠BAD;(2)若AE=AO=2,求线段CD的长.第 5 页25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索.例如下面这样一个问题:小孙同学根据学习函数的经验,利用上述表格反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整:(1)如右图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象;(2)根据画出的函数图象回答:①x=﹣1时,对应的函数值y约为;②若函数值y>0,则x的取值范围是;③写出该函数的一条性质(不能与前面已有的重复):.26.已知关于x的二次函数y =ax2 - (2a +2)x+b(a ≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2, m),求它的解析式;(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在 2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.27.如图,在△ABC 中,AC=BC,∠ACB=90°,D 为AC延长线上一点,连接BD,AE⊥BD于点E.(1)记△ABC得外接圆为⊙O,①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.第 6 页第 7 页28.在平面直角坐标系 xO 中,对于图形 G ,若存在一个正方形γ,这个正方形的某条边与 x 轴垂直,且图形 G 上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形 G 的一个正覆盖.很显然,如果图形 G 存在一个正覆盖,则它的正覆盖有无数个,我们将图形 G 的所有正覆盖中边长最小的一个,称为它的紧覆盖.如图所示,图形 G 为三条线段和一个 圆弧组成的封闭图形,图中的三个正方形均为图形 G 的正覆盖,其中正方形 ABCD 就是图形 G 的紧覆盖.(1)对于半径为 2 的⊙O ,它的紧覆盖的边长为 .(2)如图 1,点 P 为直线 y=﹣2x+3 上一动点,若线段 OP 的紧覆盖的边长为 2,求点 P 的坐 标,(3)如图 2,直线 y=3x+3 与 x 轴,y 轴分别交于 A, B ,①以 O 为圆心,r 为半径的⊙O 与线段 AB 有公共点,且由⊙O 与线段 AB 组成的图形 G 的紧覆盖的边长小于 4,直接写出 r 的取值范围;②若在抛物线 y = ax 2+ 2ax - 2 (a ≠ 0)上存在点 C ,使得△ABC 的紧覆盖的边长为 3, 直接写出 a 的取值范围. 图 1 图 2。

精品解析:北京市人民大学附属中学2019届九年级第一学期月考数学试题(解析版)

精品解析:北京市人民大学附属中学2019届九年级第一学期月考数学试题(解析版)

2018-2019学年北京市人民大学附属中学九年级第一学期月考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图,以点P为圆心作圆,所得的圆与直线l相切的是()A. 以PA为半径的圆B. 以PB为半径的圆C. 以PC为半径的圆D. 以PD为半径的圆【答案】C【解析】【分析】切线的性质定理:圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线,即可求.【详解】由切线的性质定理可知:答案为C.【点睛】本题考查的知识点是切线的性质,解题关键是熟记切线的定义及性质.2.二次函数y=(x-2)2+1的对称轴表达式是A. x=2B. x=-2C. x=1D. x=-1【答案】A【解析】【分析】根据二次函数的对称轴是直线x=b,顶点坐标分别为(b, c) 判断即可.【详解】解:二次函数y=(x-2)2+1的对称轴为直线x=2,故选:A.【点睛】本题主要考查二次函数的性质.3.下列k的值中,使方程x2-4x+k=0有两个不相等实数根的是A. 3B. 4C. 5D. 6【答案】A【解析】【分析】根据判别式的意义得到Δ= >0, 然后解不等式即可.【详解】解:关于x的一元二次方程x2-4x+k=0有两个不相等的实数根,Δ=>0,解得k<4.k的值可以是3,故选A.【点睛】本题主要考查一元二次方程根的判别式.4.利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是A. AB. BC. CD. D【答案】B【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断即可.【详解】解:A.此图形不是中心对称图形, 是轴对称图形, 故此选项错误;B.此图形是中心对称图形, 不是轴对称图形, 故此选项正确;C.,此图形不是中心对称图形, 但是轴对称图形, 故此选项错误;D.图形是中心对称图形, 也是轴对称图形, 故此选项错误.故选:B.【点睛】本题主要考查轴对称图形与中心对称图形的定义,中心对称图形的定义是旋转后能够与原图形完全重合即是中心对称图形,轴对称图形的定义把此图形沿着某一条直线折叠,两边能完全重合的图形.5.用配方法解方程x2-4x-2=0,配方正确的是A. (x-2)2=2B. (x+2)2=2C. (x-2)2=6D. (x+2)2=6【答案】B【解析】x2-2x-2=0,x2-2x+1-1-2=0,x2-2x+1=3,(x-1)2=3;故选B。

人大附中2018届九年级上学期数学10月月考试卷

人大附中2018届九年级上学期数学10月月考试卷

人大附中2018届九年级上学期数学10月月考试卷一、单选题1.一元二次方程的解集是().A. B. C. , D.2.若二次函数的图像是开口向上的抛物线,则的取值范围是().A. B. C. D.3.已知关于的函数是二次函数,则此解析式的一次项系数是().A. B. C. D.4.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A. 4个B. 3个C. 2个D. 1个5.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A. B. C. D.6.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么弧AC所对的圆心角的大小是()A. B. C. D.7.如图,在中,,,以直角顶点为旋转中心,将旋转到的位置,其中、分别是、的对应点,且点在斜边上,直角边交于,则旋转角等于().A. B. C. D.8.如图,是⊙的弦,半径,,则弦的长是().A. B. C. D.二、填空题9.点关于原点对称的点的坐标为________.10.已知抛物线经过两点和,则________ (用“ ”或“ ”填空).11.已知直角三角形的两条直角边长分别为和,那么这个三角形的外接圆半径等于________.12.函数的最小值是________.13.如图,的顶点坐标分别为、、,如果将绕点按逆时针方向旋转,得到,那么点的对应点的坐标是________.14.如图,在平面直角坐标系中,抛物线可通过平移变换向________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是________.15.如图,以为圆心,半径为的圆与轴交于、两点,与轴交于、两点,点为⊙上一动点,于,则弦的长度为________,当点在⊙上运动的过程中,线段的长度的最小值为________.三、解答题16.已知二次函数.(1)请你将函数解析式化成的形式,并在直角坐标系中画出的图像.(2)利用()中的图像结合图像变换表示出方程的根,要求保留画图痕迹,指出方程根的图形意义.17.用配方法解一元二次方程:.18.已知:如图,在⊙中,弦、交于点,.(1)利用尺规作图确定圆心的位置,保留作图痕迹.(2)求证:.19.在一块长,宽为的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.(1)小芳说,‘我的设计方案如图所示,平行于荒地的四边建造矩形的花园,花园四周小路的宽度均相同’,你能帮小芳算出小路的宽度吗?请利用方程的方法计算出小路的宽度.(2)小华说,‘我的设计方案是建造一个中心对称的四边形的花园,并且这个四边形的四个顶点分别在矩形荒地的四条边上’,请你按小华的思路,分别设计符合条件的一个菱形和一个矩形,在图和图中画出相应的草图,说明所画图形的特征,并简述所画图形符合要求的理由.20.如图(1)如图,中,,是上任意一点,以点为中心,取旋转角等于,把逆时针旋转,画出旋转后的图形.(2)如图,等边中,为边上一点,在的延长线上,且.求证:.(3)已知:如图,在中,,,为边上一点,为延长线上一点,且,已知,.写出求线段长的具体思路(即添加辅助线的方法,推导的具体步骤详写,其它的写出关键步骤或结果即可),并给出最后结果.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】B8.【答案】B二、填空题9.【答案】10.【答案】>11.【答案】512.【答案】-213.【答案】14.【答案】先向右平移2个单位再向下平移2个单位;415.【答案】;三、解答题16.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,函数图象如图所示(2)解:y=﹣2时,x2﹣2x﹣3=﹣2,x2﹣2x﹣1=0,方程x2﹣2x﹣1=0的根如图所示.17.【答案】解:x2+3x﹣=0x2+3x=x2+3x+()2= +()2(x+ )2=x+ =±x1= ,x2= .18.【答案】(1)解:如图所示:(2)解:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∵,∴△ADE≌△CBE,∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.19.【答案】(1)解:设宽度为米,则,∴,解得:,又∵,∴,答:路宽为米.(2)解:如图①,作矩形的中点四边形,得菱形,则菱形面积矩形面积,如图②,以矩形两宽的中点连线为直径,作圆,交两长于、,得矩形,则.20.【答案】(1)解:如图,即为所求,(2)解:延长至点,使,连结.∵为等边三角形,∴,∴,∴为等边三角形.∴.∵,∴,又∵,∴≌,∴,得证.(3)解:过点作,并取,连结、、,则,由()()可得,∴,由,可证得≌≌,所以和为等腰直角三角形,∴,∴,∴,过作于点,∴,∴,∴,∴.。

2018-2019年北京市人大附中九年级(上)月考数学试卷(10月份)(无答案)

2018-2019年北京市人大附中九年级(上)月考数学试卷(10月份)(无答案)

2018-2019学年北京市人大附中九年级(上)月考数学试卷(10月份)一、选择题(8×3'=24')1.如图,以点P 为圆心作圆,所得的圆与直线l 相切的是( )A .以PA 为半径的圆B .以PB 为半径的圆C .以PC 为半径的圆D .以PD 为半径的圆2.抛物线y=(x-2)2+1的对称轴是( )A .x=2B .x=-2C .x=1D .x= -13.下列k 的值中,使方程x2-4x+k=0有两个不相等实数根的是( )A .3B .4C .5D .64.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.将关于x 的方程x 2-4x-2=0进行配方,正确的是( )A .(x-2)2=2B .(x+2)2=2C .(x+2)2=6D .(x-2)2=66.如图,A 、B 、C 在⊙O 上,∠ACB=40°,点D 在∠ACB上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85° 6题7.在学习了《圆》这一童节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等; 乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是( )A .甲对乙错B .甲错乙对C .甲乙都对D .甲乙都错8.下表时二次函数y=ax 2+bx+c 的x ,y 的部分对应值:x … -1212 1 32 2 52 … y … 14 -1 -74 m -74 -1 n … 则对于该函数的性质的判断:①该二次函数有最大值;②不等式y >-1的解集是x <0或x >2;③方程ax2+bx+c=0的两个实数根分别位于-12<x <0和2<x <52之间;④当x >0时,函数值y 随x 的增大而增大;其中正确的是( )A .②③B .②④C .①③D .③④二、填空题(8×3'=24')9.一元二次方程2x2+x-2=0的一次项系数为10.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD=8,OE=3,则⊙O 的半径为11.请写出一个开口向上,且与y 轴交于(0,-1)的二次函数的解析式12.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx 的函数值为13.点A (-3,y1),B (2,y2)在抛物线y=x2-5x 上,则y 1 y 2.(填“>”,“<”或“=”)14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm ,这张光盘的半径是 cm 10题14题15题16题16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.三、解答题(12×6'=72')17.解方程:x(2x+1)=4x+218.如图,等边ΔABC的边长为6,点D是线段BC上的一点,CD=4,以AD为边作等边ΔADE,连接CE.求CE的长.19.已知关于x的方程x2-4mx+4m2-9=0.(1)求证:此方程有两个不等的实数根;(2)若方程的两个根分别为x1,x2,其中x1>x2,若x1=3x2,求m的值.⌒中点,若∠BAC=70°,求∠C.20.如图,AB是⊙O的直径,点C在⊙O上,D是BC21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是:;②自变量x的取值范围是;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.22.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为24.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM,AD⊥CM于点D,交⊙O于点E.(1)求证:AC平分∠BAD;(2)若AE=AO=2,求线段CD的长.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:x …-5 -4 -3 -2 0 1 2 3 4 5 …y … 1.969 1.938 1.875 1.75 1 0 -2 -1.5 0 2.5 …进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=-1时,对应的函数值y的为(答案不唯一);②若函数值y>0,则x的取值范围是;③写出该函数的一条性质(不能与前面已有的重复):(答案不唯一).26.已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆益有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为(2)如图1,点P为直线y=-2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax-2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.。

2018-2019学年北京市人大附中九年级(上)月考数学试卷

2018-2019学年北京市人大附中九年级(上)月考数学试卷

2018-2019学年北京市人大附中九年级(上)月考数学试卷(10月份)一、选择题(8×3'=24')1.如图,以点P 为圆心作圆,所得的圆与直线l 相切的是( ) A .以PA 为半径的圆 B .以PB 为半径的圆 C .以PC 为半径的圆 D .以PD 为半径的圆 2.抛物线y=(x-2)2+1的对称轴是( )A .x=2B .x=-2C .x=1D .x= -13.下列k 的值中,使方程x2-4x+k=0有两个不相等实数根的是( )A .3B .4C .5D .64.利用圆内接正多边形,可以设计出非常有趣的图案,下列图案中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.将关于x 的方程x 2-4x-2=0进行配方,正确的是( ) A .(x-2)2=2 B .(x+2)2=2 C .(x+2)2=6 D .(x-2)2=66.如图,A 、B 、C 在⊙O 上,∠ACB=40°,点D 在∠ACB 上,M 为半径OD 上一点,则∠AMB 的度数不可能为( )A .45°B .60°C .75°D .85° 6题 7.在学习了《圆》这一童节之后,甲、乙两位同学分别整理了一个命题: 甲:相等的弦所对的圆心角相等; 乙:平分弦的直径垂直于这条弦. 下面对这两个命题的判断,正确的是( )A .甲对乙错B .甲错乙对C .甲乙都对D .甲乙都错 8.下表时二次函数2则对于该函数的性质的判断:①该二次函数有最大值;②不等式y >-1的解集是x <0或x >2;③方程ax2+bx+c=0的两个实数根分别位于-12<x <0和2<x <52之间;④当x >0时,函数值y 随x 的增大而增大;其中正确的是( )A .②③B .②④C .①③D .③④ 二、填空题(8×3'=24')9.一元二次方程2x2+x-2=0的一次项系数为10.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD=8,OE=3,则⊙O 的半径为 11.请写出一个开口向上,且与y 轴交于(0,-1)的二次函数的解析式 12.若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx 的函数值为 13.点A (-3,y1),B (2,y2)在抛物线y=x2-5x 上,则y 1 y 2.(填“>”,“<”或“=”)14.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是cm10题14题15题16题15.如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是(选填区域名称)16.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.三、解答题(12×6'=72')17.解方程:x(2x+1)=4x+218.如图,等边ΔABC的边长为6,点D是线段BC上的一点,CD=4,以AD为边作等边ΔADE,连接CE.求CE的长.19.已知关于x的方程x2-4mx+4m2-9=0.(1)求证:此方程有两个不等的实数根;(2)若方程的两个根分别为x1,x2,其中x1>x2,若x1=3x2,求m的值.⌒中点,若∠BAC=70°,求∠C.20.如图,AB是⊙O的直径,点C在⊙O上,D是BC21.如图,园林小组的同学用一段长16米的篱笆围成一个一边基墙的矩形菜园ABCD,墙的长度为9米,设AB的长为x米,BC的长为y米.(1)①写出y与x的函数关系是:;②自变量x的取值范围是;(2)园林小组的同学计划使矩形菜园的面积为30平方米,试求此时边AB的长.22.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A,B两点的距离为12米,求这种装置能够喷的草坪面积.23.如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为24.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM,AD⊥CM于点D,交⊙O于点E.(1)求证:AC平分∠BAD;(2)若AE=AO=2,求线段CD的长.25.在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:数的图象与性质进行了探究.下面是小孙同学的探究过程,请补充完整;(1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:(2)根据画出的函数图象回答:①x=-1时,对应的函数值y的为(答案不唯一);②若函数值y>0,则x的取值范围是;③写出该函数的一条性质(不能与前面已有的重复):(答案不唯一).26.已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n (n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.27.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.28.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆益有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为(2)如图1,点P为直线y=-2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax-2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a的取值范围.。

北京市人大附中九年级(上)月考数学试卷(12月份)

北京市人大附中九年级(上)月考数学试卷(12月份)

23.
;24.1:1:2;DH=BF+CG;BF=DH+CG;1<y≤2;25.5;7; ﹣
;﹣ ;
第9页(共9页)
22.(5 分)如图 1,给定锐角三角形 ABC,小明希望画正方形 DEFG,使 D,E 位 于边 BC 上,F,G 分别位于边 AC,AB 上,他发现直接画图比较困难,于是他 先画了一个正方形 HIJK,使得点 H,I 位于射线 BC 上,K 位于射线 BA 上,而 不需要求 J 必须位于 AC 上.这时他发现可以将正方形 HIJK 通过放大或缩小得 到满足要求的正方形 DEFG.
第7页(共9页)
特别地,权重为 1、1 的直角距离,又称为等权重距离,则记为 d(M,N),例
如:d((1,0),(4,7))=|1﹣4|+|0﹣7|=10.
根据以上定义,回答以下问题:
(1)d((0,0),(﹣3,﹣2))=
,d3,2((0,0),(﹣1,2))=

(2)P 为直线 y=2x+4 上一动点,求 OP 的等权重距离的最小值及此时 P 点的坐
第6页(共9页)
五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分)
23.(7 分)已知关于 x 的二次函数 y1=x2﹣(m+3)x+m+2,y2=﹣x2+bx+c. (1)求证:方程 x2﹣(m+3)x+m+2=0 必有实根;
(2)若 m 为整数,y1 的图象与 x 轴有一个交点的横坐标 a 满足 5<a<7,求 m 的值;
(3)在第(2)问的条件下,小明利用函数图象解关于 x 的不等式 y1<y2,正确 解得该不等式的解集为 3<x<4,求 y2 的解析式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年人大附中九年级(上)月考数学试卷(12月份)一、选择题(本题共16分,每小题2分)第1-8题有四个选项,符合题意的选项只有一个1.(2分)在Rt△ABC中,∠C=90°,BC=4,AB=5,则sin A的值为()A.B.C.D.2.(2分)二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.53.(2分)如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3 B.4 C.6 D.104.(2分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°5.(2分)如图,点A在双曲线y=上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为()A.6 B.﹣6 C.12 D.﹣126.(2分)教育资源丰富,高校林立,下面四个高校校徵主题图案中,既不是中心对称图形,也不是轴对称图形的是()A.林业大学B.体育大学C.大学D.中国人民大学7.(2分)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.188.(2分)根据研究,人体血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A.运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B.运动员高强度运动后,最高血乳酸浓度大约为250mg/LC.采用慢跑活动方式放松时,运动员必须慢跑70min后才能基本消除疲芳D.运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用跑活动方式来放松二、填空题(本题共16分,每小题2分)9.(2分)sin A=,则锐角A=度.10.(2分)如图,AB∥CD,AB=CD,线段AD与BC交于点M,△AMB的周长为2,则△CMD 的周长为.11.(2分)已知点P(﹣4,y1)和Q(﹣1,y2)在反比例函数y=的图象上,则y1与y2的大小关系为y1y2(填“>”,“<”或“=”)12.(2分)将抛物线y=x2,沿x轴向左平移1个单位后,得到的物线的解析式是.13.(2分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.14.(2分)如图,边长为3的正方形OABC的顶点A,C分别在x轴y轴的正半轴上,若反比例数y=的图象与正方形OABC的边有公共点,则k的取值围是.15.(2分)如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果,那么称线段AB被点C黄金分割.黄金分割经常被应用在建筑雪等艺术领域.如图2,在“附中学子故宫行”活动中,同学们沿着紫禁城的中轴线,从金水桥走到了太和殿,领略了古代建筑的美轮美奂,太和门位于太和殿于金水桥之间靠近金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到金水桥的距离约为100丈,设太和门到太和殿之间的距离为x丈,要求x,则可列方程为.16.(2分)如图,点E在△DBC边DB上,点A在△DBC部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论,其中正确的是(填序号)①BD⊥CE②∠DCB﹣∠ABD=45°③CE﹣BE=AD④BE2+CD2=2(AD2+AB2)三、解答题(本题共6分,第17-22题,每小题5分,第236题,每小题5分,第27-题,每小题5分)17.(5分)计算: tan60°﹣4sin30°cos45°18.(5分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A'B'C',请画出△A'B'C';(2)B'C'的长度为单位长度,△A′B′C′的面积为平方单位.19.(5分)如图,△ABC中,点D在AB上,∠ACD=∠ABC.(1)求证:△ACD∽△ABC;(2)若AD=2,AB=6,求AC的长.20.(5分)关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0有两个不相等的实数根(1)求m的取值围;(2)若m是满足条件的最大整数,求方程的根.21.(5分)在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=2,且其顶点在直线y=﹣2x+2上.(1)直接写出抛物线的顶点坐标;(2)求抛物线的解析式.22.(5分)工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度围方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.(1)写出该材料温度上升和下降阶段,y与x的函数关系式:①上升阶段:当0≤x≤5时,y=;②下降阶段:当x>5时,y.(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?23.(6分)如图,AB是⊙O的直径,过点B做⊙O的切线BC,点D为⊙O上一点,且CD=CB,连结DO并延长交CB的延长线于点E.(1)求证:CD是⊙O的切线;(2)连接AC,若BE=4,DE=8,求线段AC的长.24.(6分)在平面直角坐标系xOy中,反比例数y=的图象过点A(6,1).(1)求反比例数的表达式;(2)过点A的直线与反比例数y=图象的另一个交点为B,与y轴交点交于点P.①若点P为原点,直接写出点B的坐标;②若PA=2PB,求点P的坐标.25.(6分)如图1,Rt△ABC中,∠ACB=90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E,已知∠A=30°,AB=4cm,在点D由点A 到点B运动的过程中,设AD=xcm,AE=ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm… 1 2 3 …y/cm…0.4 0.8 1.0 1.0 0 4.0 …(说明:补全表格时相关数值保留一位小数)(2)在如图2的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为cm.26.(6分)在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值围.27.(7分)如图,∠MON=α(0<α<90°),A为OM上一点(不与O重合),点A关于直线ON的对称点为B,AB与ON交于点C,P为直线ON上一点(不与O,C重合)将射线PB绕点P顺时针旋转β角,其中2α+β=180°,所得到的射线与直线OM交于点Q 这个问题中,点的位置和角的大小都不确定,在这里我们仅研究两种特殊情况,一般的情况留给同学们深入探索(1)如图1,当α=45°时,此时β=90°,若点P在线段OC的延长线上①依题意补全图形;②求∠PQA﹣∠PBA的值;(2)如图2,当α=60°,点P在线段CO的延长线上时,用等式表示线段OC,OP,AQ 之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的⊙C和点P,给出如下定义若在⊙C上存在一点Q,使得△PCQ是以CQ为底边的等腰三角形且底角∠PCQ≤60°,则称点P为⊙C的“邻零点”,(1)当⊙O的半径为2时,①在点P1(﹣2,0),P2(1,﹣1),P3(0,3)中,⊙O的“邻零点”是;②点P在直线y=﹣x上,若P为⊙O的“邻零点”,求点P的横坐标x P的取值围.(2)⊙C的圆心在x轴上,半径为4,直线y=2x+2与x轴,y轴分别交于点A,B,若线段AB上的点都是⊙C的“邻零点”,直接写出圆心C的横坐标t的取值围.2018-2019学年人大附中九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题有四个选项,符合题意的选项只有一个1.(2分)在Rt△ABC中,∠C=90°,BC=4,AB=5,则sin A的值为()A.B.C.D.【分析】直接利用已知画出图形,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,BC=4,AB=5,∴sin A==,故选:C.【点评】此题主要考查了锐角三角函数关系,正确记忆边角关系是解题关键.2.(2分)二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.5【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣5)2+7∴当x=5时,y有最小值7.故选:B.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.3.(2分)如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3 B.4 C.6 D.10【分析】利用平行线分线段成比例定理得到=,然后利用比例的性质可计算出AE 的长.【解答】解:∵DE∥BC,∴=,即=,∴AE=4.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁角互补;两直线平行,错角相等.也考查了平行线分线段成比例定理.4.(2分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选:D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5.(2分)如图,点A在双曲线y=上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为()A.6 B.﹣6 C.12 D.﹣12【分析】过点A作AD⊥y轴于点D,结合等腰三角形的性质得到△ADO的面积为3,所以根据反比例函数系数k的几何意义求得k的值.【解答】解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为6,∴S△ADO=|k|=3,又反比例函数的图象位于第一、三象限,k>0,则k=6.故选:A.【点评】本题考查反比例函数系数k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了等腰三角形的性质以及反比例函数图象上点的坐标特征.6.(2分)教育资源丰富,高校林立,下面四个高校校徵主题图案中,既不是中心对称图形,也不是轴对称图形的是()A.林业大学B.体育大学C.大学D.中国人民大学【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既不是中心对称图形,也不是轴对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2分)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB ∽△DCE,然后利用相似比计算出DE的长.【解答】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴,即,∴DE=9.即旗杆的高度为9m.故选:A.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.8.(2分)根据研究,人体血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A.运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B.运动员高强度运动后,最高血乳酸浓度大约为250mg/LC.采用慢跑活动方式放松时,运动员必须慢跑70min后才能基本消除疲芳D.运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用跑活动方式来放松【分析】根据函数图象横纵坐标表示的意义判断即可.【解答】解:A、运动后40min时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度不同,错误;B、运动员高强度运动后最高血乳酸浓度大约为200mg/L,错误;C、采用慢跑活动方式放松时,运动员必须慢跑40min后才能基本消除疲劳,错误;D、运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松,正确;故选:D.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共16分,每小题2分)9.(2分)sin A=,则锐角A=45 度.【分析】根据sin45°=解答即可.【解答】解:∵sin45°=,∴锐角A=45°.【点评】此题比较简单,只要熟记特殊角的三角函数值即可.10.(2分)如图,AB∥CD,AB=CD,线段AD与BC交于点M,△AMB的周长为2,则△CMD 的周长为 6 .【分析】根据相似三角形的判定和性质解答即可.【解答】解:∵AB∥CD,∴△ABM∽△DCM,∵AB=CD,△AMB的周长为2∴,∴△CMD的周长为6,故答案为:6【点评】此题考查相似三角形的判定和性质,关键是根据相似三角形的周长之比等于相似比解答.11.(2分)已知点P(﹣4,y1)和Q(﹣1,y2)在反比例函数y=的图象上,则y1与y2的大小关系为y1>y2(填“>”,“<”或“=”)【分析】直接把点P(﹣4,y1)和Q(﹣1,y2)代入反比例函数y=,求出y1,y2的值,并比较大小即可.【解答】解:∵P(﹣4,y1)和Q(﹣1,y2)在反比例函数y=的图象上,∴y1==﹣,y2==﹣2.∵﹣>﹣2,∴y1>y2.故答案为>.【点评】本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(2分)将抛物线y=x2,沿x轴向左平移1个单位后,得到的物线的解析式是y=(x+1)2.【分析】直接利用平移规律“左加右减,上加下减”解题即可.【解答】解:∵将抛物线y=x2,沿x轴向左平移1个单位,∴y=(x+1)2.故得到的抛物线的函数关系式为:y=(x+1)2.故答案为:y=(x+1)2.【点评】主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.(2分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=25°.【分析】连接OB,根据切线的性质定理以及四边形的角和定理得到∠AOB=180°﹣∠P=130°,再根据等边对等角以及三角形的角和定理求得∠BAC的度数.【解答】解:连接OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠P﹣∠PAO﹣∠PBO=130°,∵OA=OB,∴∠BAC=25°.【点评】此题综合运用了切线的性质定理、四边形的角和定理、等边对等角以及三角形的角和定理的应用,主要考查学生的推理和计算能力,注意:圆的切线垂直于过切点的半径.14.(2分)如图,边长为3的正方形OABC的顶点A,C分别在x轴y轴的正半轴上,若反比例数y=的图象与正方形OABC的边有公共点,则k的取值围是0<k≤9 .【分析】由图象可知,当反比例数y=的图象经过B点时,k取最大值,又图象位于第一象限才可能与正方形OABC的边有公共点,进而求出k的取值围.【解答】解:由题意,可得B(3,3),当反比例数y=的图象经过B点时,k取最大值,此时k=3×3=9,又k>0,所以k的取值围是0<k≤9.故答案为0<k≤9.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象与性质,正方形的性质.理解反比例数y=的图象经过B点时,k取最大值是解题的关键.15.(2分)如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果,那么称线段AB被点C黄金分割.黄金分割经常被应用在建筑雪等艺术领域.如图2,在“附中学子故宫行”活动中,同学们沿着紫禁城的中轴线,从金水桥走到了太和殿,领略了古代建筑的美轮美奂,太和门位于太和殿于金水桥之间靠近金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到金水桥的距离约为100丈,设太和门到太和殿之间的距离为x丈,要求x,则可列方程为x2=100(100﹣x).【分析】根据黄金分割的概念列出比例式,计算即可.【解答】解:设太和门到太和殿的距离为x丈,由题意可得,x2=100(100﹣x),故答案为:x2=100(100﹣x).【点评】本题考查了黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.16.(2分)如图,点E在△DBC边DB上,点A在△DBC部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论,其中正确的是①③④(填序号)①BD⊥CE②∠DCB﹣∠ABD=45°③CE﹣BE=AD④BE2+CD2=2(AD2+AB2)【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC(SAS),∴BD=CE,∠ABD=∠ECA,∵∠DCB﹣∠DCA=∠ACB=45°,显然∠ABD≠∠ACD,故②错误,∵CE﹣BE=BD=BE=DE=AD,故③正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故①正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.∴BE2+CD2=2(AD2+AB2),故④正确,故答案为①③④【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.三、解答题(本题共6分,第17-22题,每小题5分,第236题,每小题5分,第27-题,每小题5分)17.(5分)计算: tan60°﹣4sin30°cos45°【分析】直接利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=×﹣4××=3﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A'B'C',请画出△A'B'C';(2)B'C'的长度为 3 单位长度,△A′B′C′的面积为9 平方单位.【分析】(1)利用位似图形的性质得出对应点坐标进而得出答案;(2)根据勾股定理和三角形的面积公式即可得到结论.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)如图所示:B'C'的长度==3;∵A′C′=3,∴△A′B′C′的面积为=×3×6=9平方单位,故答案为:3,9.【点评】此题主要考查了位似变换与轴对称变换,得出对应点位置是解题关键.19.(5分)如图,△ABC中,点D在AB上,∠ACD=∠ABC.(1)求证:△ACD∽△ABC;(2)若AD=2,AB=6,求AC的长.【分析】(1)根据两角对应相等的两个三角形相似证明;(2)根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵∠ACD=∠ABC,∠A=∠A,∴ACD∽△ABC;(2)解:∵ACD∽△ABC,∴=,∴AC2=AD•AB=12,解得,AAC=2.【点评】本题考查的是相似三角形的判定和性质,掌握两角对应相等的两个三角形相似是解题的关键.20.(5分)关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0有两个不相等的实数根(1)求m的取值围;(2)若m是满足条件的最大整数,求方程的根.【分析】(1)根据判别式的意义得到(2m﹣1)2﹣4(m2﹣1)>0,然后解不等式得到m 的围;(2)取满足条件的最大整数代入方程,再解方程即可.【解答】解:(1)根据题意知,△=(2m﹣1)2﹣4(m2﹣1)>0,解得m<;(2)当m=1时,方程为x2+x=0,解得x1=﹣1,x2=0.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5分)在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=2,且其顶点在直线y=﹣2x+2上.(1)直接写出抛物线的顶点坐标;(2)求抛物线的解析式.【分析】(1)把x=2代入y=﹣2x+2即可得到结论;(2)把抛物线的顶点坐标为(2,﹣2)代入抛物线的解析式即可得到结论.【解答】解:(1)把x=2代入y=﹣2x+2得,y=﹣2,∴抛物线的顶点坐标为(2,﹣2);(2)∵抛物线的顶点坐标为(2,﹣2);∴抛物线的解析式为:y=(x﹣2)2﹣2,即抛物线的解析式为:y=x2﹣4x+2.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,正确的理解题意是解题的关键.22.(5分)工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度围方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.(1)写出该材料温度上升和下降阶段,y与x的函数关系式:①上升阶段:当0≤x≤5时,y=9x+15 ;②下降阶段:当x>5时,y=.(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?【分析】(1)直接利用待定系数法求出一次函数以及反比例函数的解析式;(2)利用y=30代入结合函数增减性得出答案.【解答】解:(1)①上升阶段:当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以,解得:,所以y=9x+15,②下降阶段:当x≥5时,为反比例函数,设函数关系式为:y=,由于图象过点(5,60),所以m=300.则y=;故答案为:9x+15;=(2)当0≤x<5时,y=9x+15=30,得x=,因为y随x的增大而增大,所以x>,当x≥5时,y==30,得x=10,因为y随x的增大而减小,所以x<10,10﹣=,答:可加工min.【点评】此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.23.(6分)如图,AB是⊙O的直径,过点B做⊙O的切线BC,点D为⊙O上一点,且CD=CB,连结DO并延长交CB的延长线于点E.(1)求证:CD是⊙O的切线;(2)连接AC,若BE=4,DE=8,求线段AC的长.【分析】(1)证明△COB≌△COD,得到∠ODC=∠OBC=90°,根据切线的判定定理证明;(2)根据切割线定理求出DF,根据勾股定理求出CB,根据勾股定理计算即可.【解答】(1)证明:在△COB和△COD中,,∴△COB≌△COD(SSS),∴∠ODC=∠OBC=90°,∴CD是⊙O的切线;(2)由切割线定理得,BE2=EF•ED,即42=8EF,解得,EF=2,∴FD=DE﹣EF=6,∴AB=DF=6,在Rt△EDC中,DE2+DC2=EC2,即82+BC2=(4+BC)2,解得,BC=6,∴AC==6.【点评】本题考查的是切线的判定定理,切割线定理,全等三角形的判定和性质,掌握切线的判定定理是解题的关键.24.(6分)在平面直角坐标系xOy中,反比例数y=的图象过点A(6,1).(1)求反比例数的表达式;(2)过点A的直线与反比例数y=图象的另一个交点为B,与y轴交点交于点P.①若点P为原点,直接写出点B的坐标;②若PA=2PB,求点P的坐标.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出m值,从而得出反比例函数表达式;(2)①根据中心对称的性质即可求得;②作AC⊥y轴于C,BD⊥y轴于D,通过证得△APC∽△BPD,得出==2,求得B的横坐标坐标,代入解析式求得坐标,然后根据待定系数法求得直线AB的解析式,令x =0,即可求得P的坐标.【解答】解:(1)把(6,1)代入反比例函数解析式,得1=,∴m=6;(2)①由于直线过原点,该函数为正比例函数,∵正比例函数和反比例函数图象都是关于原点中心对称的,∴两图象的交点关于原点成中心对称.∴点B、点A关于原点成中心对称.∵A点的坐标为(6,1),∴B点的坐标为(﹣6,﹣1).②作AC⊥y轴于C,BD⊥y轴于D,∵AC∥BD,∴△APC∽△BPD,∴=,∵AP=2PB,∴AC=2BD,∵AC=6,∴BD=3,∴B的横坐标为﹣3,把x=﹣3代入y=得y=﹣2,∴B(﹣3,﹣2),设直线AB的解析式为y=kx+b,把A(6,1),B(﹣3,﹣2)代入得,解得,∴直线AB的解析式为y=x﹣1,令x=0,则y=﹣1,∴P的坐标为(0,﹣1).【点评】本题考查了反比例函数与一次函数的交点及待定系数法求函数解析式,待定系数法求函数解析式是本题的关键.25.(6分)如图1,Rt△ABC中,∠ACB=90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E,已知∠A=30°,AB=4cm,在点D由点A 到点B运动的过程中,设AD=xcm,AE=ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm… 1 2 3 …y/cm…0.4 0.8 1.0 1.2 1.0 0 4.0 …(说明:补全表格时相关数值保留一位小数)(2)在如图2的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为 2.4或3.3 cm.【分析】(1)(2)根据题意测量、作图即可;(3)满足AE=AD条件,实际上可以转化为正比例函数y=【解答】解:(1)根据题意,测量得1.2∴故答案为:1.2(2)根据已知数据,作图得:(3)当AE=AD时,y=,在(2)中图象作图,并测量两个函数图象交点得:AD=2.4或3.3故答案为:2.4或3.3【点评】本题以几何动点问题为背景,考查了函数思想和数形结合思想.在(3)中将线段的数量转化为函数问题,设计到了转化的数学思想.26.(6分)在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线x=1 ;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值围.【分析】(1)直接根据对称轴公式x=﹣求解可得;(2)将解析式配方成顶点式得其顶点A坐标(1,3﹣a)及对称轴与x轴交点B坐标(1,0),由△AOB为等腰直角三角形即OB=AB可得1=3﹣a,求得a=2,据此可得答案;(3)先根据抛物线对称性知x1+x2=2且y1=y2>1,由直线L与双曲线交于点R知y3>1,即>1,据此得x3<6;依据知点R一定位于对称轴x=1上或右侧,即x3≥1,从而得出答案.【解答】解:(1)抛物线的对称轴为直线x=﹣=1,故答案为:x=1;。

相关文档
最新文档