大学物理真空中的静电场
大学物理学 第五章 真空中的静电场
q
l 2
O
l 2
q
E
r
E
r
q
l 2
1
O
l 2
q
E
r
P
E
r
q E 2 4 0 ( r l / 2)
E E E
q E 2 4 0 ( r l / 2)
1
E E E
r l
q 2rl 4 0 ( r 2 l 2 / 4)2 1 2ql 1 2p E E 3 3 4 0 r 4 0 r
与 r2 成反比,r , E 0
思考: r 0
E ?
二、点电荷系的电场
E Ei
i i
1 qi e 2 ri 4 π 0 ri
dE
er q0
三、连续带电体的电场
E dE 1 dq e 2 r q 4 π 0 r
电荷密度
二.恒定电流与稳恒磁场的基本性质及规律
(第七章)
三.电磁感应现象及规律(第八章)
第五章
主要内容
§ 1 库仑定律 § 2 静电场 § 3 高斯定律 § 4 电势 电场强度
教学基本要求
一 了解电荷及性质;掌握库仑定律. 二 理解电场的概念;明确电场的矢量性和可 叠加性;会利用电场叠加原理求解简单带电体的电 场分布. 三 理解高斯定理的物理意义;能够利用高斯 定理求解特殊场分布.
q1q2 F12 k 2 e12 F21 r12
1 令 k ( 0 为真空电容率) 4 π0 1 0 8.8542 1012 C2 N 1 m 2 4πk 12 1 8.8542 10 F m
大学物理第六章《真空中的静电场》
第六章 真空中的静电场一、 基本要求1.掌握静电场的电场强度和电势的概念以及电场强度的叠加原理和电势的叠加原理。
掌握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
2.理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和方法。
3.了解电偶极矩的概念。
能计算电偶极子在均匀电场中所受的力和力矩。
二、 基本内容1.点电荷当带电体的形状和大小与它们之间的距离相比可以忽略时,可以把带电体看作点电荷。
对点电荷模型应注意:(1)点电荷概念和大小具有相对意义,即它本身不一定是很小的带电体。
只要两个带电体的线度与它们之间距离相比可忽略,就可把它们简化为点电荷,另外,当场点到带电体的距离比带电体的线度大得多时也可以把带电体简化为点电荷。
(2)点电荷是由具体带电体(其形状没有限制)抽象出来的理想化模型,所以不能把点电荷当作带电小球。
(3)点电荷不同于微小带电体。
因带电体再小也有一定的形状和电荷分布,还可以绕通过自身的任意轴转动,点电荷则不同。
(4)一个带电体在一些问题中可简化为点电荷,在另一些问题中则不可以。
如讨论带电体表面附近的电性质时就不能把带电体简化为点电荷。
2.库仑定律02qq kr 0F r 其中,0r 由施力电荷指向受力电荷的单位矢量。
适用条件:真空中点电荷之间(相对观察者静止的电荷)的相互作用。
当空间有两个以上的点电荷同时存在时,作用在某一点电荷上的总静电力等于其它各点电荷单独存在时对该电荷所施静电力的矢量和——电场力的叠加原理。
3.电场强度矢量0q =E F ,电场中某点的电场强度等于单位电荷在该点所受的电场力。
0q 为正时,E 和电场力F 同方向,0q 为负时,E 的方向和F 方向相反。
(1)E 反映电场的客观性质,E 与试验电荷0q 的大小,电荷正负无关,也与0q 的存在与否无关。
(2)E 是一个矢量,一般地说,电场空间不同点处的场强不同,即()r =E E 。
3-1电磁-真空中的静电场 大学物理作业习题解答
dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯
当
r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8
大学物理第6章真空中的静电场课后习题及答案
⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
大学物理讲稿(第5章真空中的静电场)第四节
§5.5 静电场的功 电势一、静电场力的功 静电场的环路定理将试探电荷0q 引入点电荷q 的电场中,现在来考察如图5.10所示, 把0q 由a 点沿任意路径 L 移至b 点,电场力所做的功.路径上任一点c 到q 的距离为r ,此处的电场强度为r r q E 304 如果将试探电荷0q 在点c 附近沿L 移动了位移元dl ,那么电场力所做的元功为cos Edl q l d E q dA 00dr rq q Edr q 20004 式中θ是电场强度E 与位移元dl 间的夹角,dr 是位移元dl 沿电场强度E 方向的分量.试探电荷由a 点沿L 移到b 点电场力所做的功为)(ba r r r r q q dr r q q dA Ab a 114400200 (5.22) 其中b a r r 和分别表示电荷q 到点a 和点b 的距离.上式表明在点电荷的电场中,移动试探电荷时,电场力所做的功除与试探电荷成正比外,还与试探电荷的始、末位置有关,而与路径无关.利用场的叠加原理可得在点电荷系的电场中,试探电荷0q 从点a 沿L 移到点b 电场力所做的总功为ii A A上式中的的每一项都表示试探电荷0q 在各个点电荷单独产生的电场中从点a 沿L 移到点b 电场力所做的功.由此可见点电荷系的电场力对试探电荷所做的功也只与试探电荷的电量以及它的始末位置有关,而与移动的路径无关.任何一个带电体都可以看成由许多很小的电荷元组成的集合体,每一个电荷元都可以认为是点电荷.整个带电体在空间产生的电场强度E 等于各个电荷元产生的电场强度的矢量和.于是我们得到这样的结论:在任何静电场中,电荷运动时电场力所做的功只与始末位置有关,而与电荷运动的路径无关.即静电场是保守力场.若使试探电荷在静电场中沿任一闭合回路L 绕行一周,则静电场力所做的功为零,电场强度的环量为零,即 00000Lq L l d E l d E q (5.23) 静电场的这一特性称为静电场的环路定理,它连同高斯定理是描述静电场的两个基本定理.二、电势能和电势1 电势能在力学中已经知道,对于保守力场,总可以引入一个与位置有关的势能函数,当物体从一个位置移到另一个位置时,保守力所做的功等于这个势能函数增量的负值.静电场是保守力场,所以在静电场中也可以引入势能的概念,称为电势能 .设b a W W 、分别表示试探电荷0q 在起点a 、终点b 的电势能,当0q 由a 点移至b 点时,据功能原理便可得电场力所做的功为)(a b b aab W W l d E q A 0 (5.25) 当电场力做正功时,电荷与静电场间的电势能减小;做负功时,电势能增加.可见,电场力的功是电势能改变的量度.电势能与其它势能一样,是空间坐标的函数,其量值具有相对性,但电荷在静电场中两点的电势能差却有确定的值.为确定电荷在静电场中某点的电势能,应事先选择某一点作为电势能的零点.电势能的零点选择是任意的,一般以方便合理为前提.若选c 点为电势能零点,即0 c W ,则场中任一点a 的电势能为c aa l d E q W 0 (5.26) 2 电势与电势差电势能(差)是电荷与电场间的相互作用能,是电荷与电场所组成的系统共有的,与试探电荷的电量有关.因此,电势能(差)不能用来描述电场的性质.但比值0q W a /却与0q 无关,仅由电场的性质及a 点的位置来确定,为此我们定义此比值为电场中a 点的电势,用a V 表示,即c a a a ld E q W V 0(5.27) 这表明,电场中任一点a 的电势 ,在数值上等于单位正电荷在该点所具有的电势能;或等于单位正电荷从该点沿任意路径移至电势能零点处的过程中,电场力所做的功.式(5.27)就是电势的定义式,它是电势与电场强度的积分关系式.静电场中任意两点a 、b 的电势之差,称为这两点间的电势差,也称为电压,用V 或U 表示,则有b ac b c a b a ld E l d E l d E V V U (5.28) 该式反映了电势差与场强的关系.它表明,静电场中任意两点的电势差,其数值等于将单位正电荷由一点移到另一点的过程中,静电场力所做的功.若将电量为0q 的试探电荷由a 点移至b 点,静电场力做的功用电势差可表示为)(b a b a ab V V q W W A 0 (5.29)由于电势能是相对的,电势也是相对的,其值与电势的零点选择有关,定义式(5.27)中是选c 点为电势零点的.但静电场中任意两点的电势差与电势的零点选择无关.在国际单位制中,电势和电势差的单位都是伏特(V ).等势面 在电场中电势相等的点所构成的面称为等势面.不同电场的等势面的形状不同.电场的强弱也可以通过等势面的疏密来形象的描述,等势面密集处的场强数值大,等势面稀疏处场强数值小.电力线与等势面处处正交并指向电势降低的方向.电荷沿着等势面运动,电场力不做功.等势面概念的用处在于实际遇到的很多问题中等势面的分布容易通过实验条件描绘出来,并由此可以分析电场的分布.三、电势的计算1 点电荷的电势在点电荷q 的电场中,若选无限远处为电势零点,由电势的定义式(5.27)可得在与点电荷q 相距为 r 的任一场点P 上的电势为rq l d E V r P 04 (5.30) 上式是点电荷电势的计算公式,它表示,在点电荷的电场中任意一点的电势,与点电荷的电量q 成正比,与该点到点电荷的距离成反比.2 多个点电荷的电势在真空中有N 个点电荷,由场强叠加原理及电势的定义式得场中任一点P 的电势为ii i r i r i i r P V l d E l d E l d E V (5.31) 上式表示,在多个点电荷产生的电场中,任意一点的电势等于各个点电荷在该点产生的电势的代数和.电势的这一性质,称为电势的叠加原理.设第i 个点电荷到点P 的距离为i r ,P 点的电势可表示为N i i i i i P r q V V 1041 (5.32) 3 任意带电体的电势对电荷连续分布的带电体,可看成为由许多电荷元组成,而每一个电荷元都可按点电荷对待.所以,整个带电体在空间某点产生的电势,等于各个电荷元在同一点产生电势的代数和.所以将式(5.32)中的求和用积分代替就得到带电体产生的电势,即线分布面分布体分布L S V P rdl rdS r dV r dq V 00004444 (5.33) 讨论:1)在上述所给的电势表式中,都选无限远作为电势参考零点;2)在计算电势时,如果已知电荷的分布而尚不知电场强度的分布时,总可以利用(5.33)直接计算电势.对于电荷分布具有一定对称性的问题,往往先利用高斯定理求出电场的分布,然后通过式(5.27)来计算电势.例题5.6 求电偶极子电场中的电势分布,已知电偶极子的电偶极矩P = q l . 解:如图5.11所示,P 点的电势为电偶极子正负电荷分别在该点产生电势的叠加(求代数和),即r q r q V P 004141 因而有因此由于,cos ,, l r r r r r l r 230204141r r p r ql V P cos由此可见,在轴线上的电势为2041r p V P ;在中垂面上一点的电势为0 P V 。
大学物理授课教案 第七章 真空中的静电场
第三篇 电磁学第七章 真空中的静电场本章只讨论真空中的电场,下一章再讨论介质中静电场。
静电场:相对于观察者静止的电荷产生的电场。
§7-1 电荷 库仑定律一、电荷1、电荷 种类 正电荷 负电荷作用 同性相斥异性相吸(一般地说:使物体带电就是使它获得多余的电子或从它取出一些电子) 2、电荷守恒定律电荷从物体的一部分转移到另一部分,这称为电荷守恒定律。
它是物理学的基本定律之一。
3、电荷量子化在自然界中所观察到的电荷均为基本电荷e 的整数倍。
这也是自然界中的一条基本规律,表明电荷是量子化的。
直到现在还没有足够的实验来否定这个规律。
二、库仑定律点电荷:带电体本身线度比它到其他带电体间的距离小得多时,带电体的大小和形状可忽略不计,这个带电体称为点电荷。
(如同质点一样,是假想模型)库仑定律:真空中两点电荷之间的相互作用力大小与他们电量乘积成正比,与他们之间距离成反比,方向在他们连线上,同性相斥、异性相吸。
这叫做库仑定律。
它构成全部⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧静电学的基础。
数学表达式:2q 受1q 的作用力:2122112r q q k F = 0> 斥力(同号)0< 吸引(异号) 采用国际单位制,其中的比例常数229/109c m N k ⋅⨯=。
写成矢量形式:123122112122122112r r q q k r r r q q k F =⎪⎪⎭⎫ ⎝⎛= 令041πε=k ,22120/1085.8m N c ⋅⨯=-ε⇒ 123122101241r r q q Fπε= (7-1) 说明:①12F 是1q 对2q 是作用力,12r是由1q 指到2q 的矢量。
②2q 对1q 的作用力为:()1212120212132121021441F r r q q r r q q F -=-==πεπε ③库仑定律的形式与万有引力定律形式相似。
但前者包含吸力和斥力,后者只是引力,这是区别。
7.真空中的静电场 大学物理习题答案
l
xd x
2
k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0
2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
大学物理第9章《真空中的静电场》习题解答
dE = k
dq λ ds λ = = dϕ 2 2 r 4πε 0 R 4πε 0 R
R1
R2
∞
=
B 点的电势为
ρ ( R22 − R12 ) . 2ε 0
∞
∞
U B = ∫ E ⋅ d l = ∫ Ed r
rB rB
R2
=
rB
∫
3 ρ ( R2 − R13 ) ρ R13 dr (r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2
∞
ρ R13 2 2 = (3 R2 − rB − 2 ) . 6ε 0 rB
4 3 V = π ( R2 − R13 ) 3
包含的电量为 q = ρV 根据高斯定理得可得球壳外的场强为
E=
A 点的电势为
3 q ρ ( R2 − R13 ) ,(R2≦r) = 4πε 0 r 2 3ε 0 r 2
∞
∞
U A = ∫ E ⋅ dl = ∫ Edr
rA rA
3 ρ ( R2 − R13 ) ρ R13 dr = ∫ 0dr + ∫ ( r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2 rA R1
b/2
∫
−σ = ln(b / 2 + a − x ) 2πε 0 =
b/2
−b / 2
σ b ln(1 + ) 2πε 0 a
大学物理12真空中的静电场
03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场
目
CONTENCT
录
• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。
大学物理精第五章真空中的静电场ppt课件
三、高斯定理
1.表述:在真空中的任何静电场中,通过任一闭 合曲面的电场强度通量等于该闭合曲面内所包 围电荷的代数和除以ε0。
ppt精选版
39
S
• Q
2.数学表达式:
Φ e E d S E c o sd S
n Q i
i 1 0
其中:E为高斯面内、外场源电荷的电场矢量和。
*高斯面为封闭曲面;
q1
Fi
1
4π 0
qiq0 ri3
ri
q2
q3
由力的叠加原理得 q 所0 受合力
F Fi
i
故 q 处0 E总F电 场强Fi度
q0
q i 0
i
Ei
ppt精选版
r1 r2
r3
q0
F3 F2 F1
17
1.电场强度的叠加原理:
点电荷系在某点产生的场强,等于各点电荷单 独存在时在该点分别产生的场强的矢量和。
过球面的电通量
Φe
Q 0
• Q
由图可知从曲面一侧穿入的
电场线必定从另一侧穿出,所
以通过曲面的电通量为0
ppt精选版
38
*如点电荷为负,则通过闭合曲面的电通量为负。
*点电荷发出的通过闭合球面的电通量与球面半径 无关,任意形状的闭合曲面也如此。
*如果闭合曲面没有包含点电荷则进入曲面和穿 出曲面的电场线相同,总电通量为零。
解:选择如图所示的高斯面(电场球对称)
E Φe E cosdS
r
EdSE4r2
R
由高斯定理
Φe
Q 0
E 4 r2 Q 0
1Q
pEpt精选版40 r2
43
例题10 两同心均匀带电球壳,内球球壳半径R1 、 带电量+Q,外球球壳半径R2 、带电量-Q ,不计 球壳厚度,试求电场强度的空间分布。
大学物理教案真空中的静电场
真空中的静电场一、教学目标1. 了解静电场的基本概念,掌握电场强度、电势和电势差等基本物理量。
2. 学习静电场的叠加原理,理解高斯定律及其应用。
3. 掌握静电场的能量和能量密度,了解静电场的几种常见分布。
4. 能够运用所学知识分析解决实际问题,提高学生的科学素养。
二、教学内容1. 静电场的基本概念电场强度电势电势差2. 静电场的叠加原理场强的叠加电势的叠加3. 高斯定律高斯定律的表述应用高斯定律求解电荷分布4. 静电场的能量和能量密度静电场的能量能量密度5. 静电场的几种常见分布均匀电场非均匀电场点电荷电场线性电场三、教学方法1. 采用讲授法,系统地介绍静电场的基本概念、叠加原理、高斯定律、能量和能量密度以及常见分布。
2. 利用多媒体动画和图片,直观地展示静电场的现象,增强学生的理解。
3. 结合实际例子,让学生学会分析解决实际问题。
4. 布置适量练习题,巩固所学知识。
四、教学环境1. 教室环境舒适,通风良好。
2. 教学设备:计算机、投影仪、黑板、粉笔。
3. 教材、教案、练习题等相关教学资源。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题:检查学生对静电场基本概念、叠加原理、高斯定律、能量和能量密度的掌握程度。
3. 课后反馈:收集学生对教学内容的意见和建议,不断改进教学方法。
4. 期中考试:评估学生在静电场部分的知识水平和应用能力。
六、教学内容6. 静电场中的电势能和势能曲线静电势能的概念势能曲线的绘制与分析静电力做功与势能变化的关系7. 静电场的能量与能量守恒静电场的能量表达式能量守恒在静电场中的应用静电场的能量与电场强度、电势的关系8. 电场线与等势面电场线的定义与性质等势面的概念与绘制电场线与等势面的关系及其在静电场中的应用9. 静电场的边界条件狄拉克原理边界条件的数学表达应用边界条件解静电场问题10. 静电场的数值计算方法有限差分法有限元法蒙特卡洛法数值计算方法在静电场中的应用实例七、教学方法1. 采用案例分析法,深入讲解静电场中的电势能和势能曲线,让学生理解静电力做功与势能变化的关系。
大学物理 真空中的静电场
第九章 真空中的静电场一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a02ελπ. (C)i a04ελπ. (D)()j i a+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。
据Guass 定理:SEdS=iiqε∑⎰r R ≤时,有:20r 2rL=LE ρππε,即:0=r 2E ρε r R >时,有:20R 2rL=L E ρππε,即:20R =2rE ρε[ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq.(C)024εq . (D) 048εq . 【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) aq 08επ.(C) a q 04επ-. (D) aq 08επ-.【提示】:220048PaM Maq q V E dl dr raπεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ.【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。
大学物理课后习题答案 真空中的静电场
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
大学物理 真空中的静电场
电荷守恒定律说明:物质带电现象的本质是电荷的转移。 二、真空中的库仑定律:点电荷的相互作用规律 1、点电荷(理想化模型) 点电荷:没有形状和大小的带电体。 对实际带电体,当其线度比电荷间距小很多时,可视为点 电荷。 2、库仑定律 真空中,两个静止的点电荷之间相互作用力的大小,与 它们的电量的乘积成正比,与它们之间距离的平方成反比。 作用力的方向沿着它们的联线。同号电荷相斥,异号电荷相 吸。 q1 q 2 r 数学表述: f k
q0 放在电场中P点,受力 F ,而比值 F / q0 。与q0 无关。
单位:N/C 或 V/m
3) 点电荷 q 在外电场 E 中受电场力 F = q E
三、电场强度的计算
1. 点电荷Q 所产生电场的电场强度
试探电荷q 在点电荷Q 的电场中受力为 F
由电场强度定义:
Q
r0
+
P
F
2
dS 4 r
0
4r
2
q
q
0
2) 通过包围一个点电荷的任意闭合曲面的电通量
q Φe E dS E dS S S 0
具有相同立体角的不同曲面dS 和dS 的电通量相同。 3) 通过不包围点电荷的任意闭合曲面的电通量
S q S
n E E1 E 2 E 3 E n E i i 1
F1
q0
F2
Q1 Q2 r0 i
Qi
Fi
即: E
Qi 4 r 2 ri i 1 0 i 1
n
所以,电场强度满足矢量叠加原理
3. 电荷连续分布的带电体所产生的电场强度 若电荷连续分布,可在带电体上取微元电荷 dq,由点 电荷的场强公式写出场强,根据场强叠加原理求矢量和 (即求积分)
真空中的静电场(含答案,大学物理作业,考研真题)
班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·
q·
(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。
(完整版)大学物理静电场
(
r
l 2
)2
1
(r
l 2
)2
1
E
(
r
l 2
)2
E
若r>>l,则有:
E 2ql 4 0r3
2Pe 4 0r3
写成矢量形式即为:
E 2Pe 4 0r3
电偶极子在电场中所受的力
如图所示 M=flSin
=qElSin =PeESin
则 M Pe E
f +
l
pe
f
θ
E
[例2] 如图示,求一均匀带电直线在 O点的电场。
3、电荷的量子化 e =1.6021892±0.0000046×10-19C 密里根油滴实验
二、库仑定律(Coulomb’s Law)
1、库仑定律
F
k
q1q2 r122
其中 k 1
4 0
0 8.85 1012C 2N 1m2
2、矢量性:
1 Qq
F
4 0
r2
r0
r0 F
与电荷电性无关(指研 究对象) 的方向与电荷电性及r0 有关
r2
Cos
5、选择积分变量
选作为积分变量,则
l = atga =atg(-/2)
=-aCtg dl=aCsc2 d r2=a2+l2=a2+a2Ctg2
=a2Csc2 所以有:
Y
dE
X
θ2
0
aa
r
a
θ1
q
dl
l
dEX
1 4 0
Cos aCsc2d a2Csc2
1 4 0
d a
Cos
大学物理 (下)
3-真空中的静电场
v v ΦE = ∫ E ds = ∫SEds
S
= E∫ ds = E 4π r
S
2
r
Q
R
r≥R时:
ΦE = 4π r E外 = Q ε0
2
1 Q 或 ∴E外 = 2 4πε0 r
v 1 Qv E外 = r 3 4πε0 r
r
r
R
r<R时:
1 4 3 2 ΦE = 4πr E内 = ∫ ρdV = ρ π r ε0 3 ε0 3 Q r Q 2 Qρ = π 内 3 ∴4 r E = 3 (4 3)πR R ε0
2
εo
1
3
当 r≤R 时:
Qr E1 = 3 4πεo R
Q
r R
当 r>R 时:
E2 =
Q 4πεor
2
当 r≤R 时:
U1 = ∫ E1dr + ∫ E2dr
r R
R
∞
q R
=∫
R
r
Qr Q dr + ∫ dr 3 2 R4 4πεo R πεor
2
∞
Q Q Q(3R r ) 2 2 = = (R r ) + 3 8πεo R 4πεo R 8πεo R
∫
q3 qi
S
q1
v v v v v v ∴ΦE = ∫ E dS = ∫ (E1 + E2 +L+ En ) dS
S
S
= ΦE1 + ΦE2 +LΦEn =
即:
1
ε0
i
∑q
S内
k
i
M
q2
qn
v v 1 ΦE = ∫ E ds =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、电磁学的理论框架
1、场的概念 物理场即是相互作用场。是物质存在的两种基本形态之
一,存在于整个空间。如电场、磁场、引力场、核力场等。 任何物质之间的相互作用都是依靠相应的场来实现的。
物理场是传递相互作用的媒质。
根据量子场论的观点,场和实物粒子有不可分割的关系。 即一切粒子都可以看作是相应的物理场的最小单位(量子)。
电量:物体所带电(荷)的多少叫电量。 常用Q 或 q 表示。 单位:库仑(C)
电量的最小单元 ( 基本电量 ):
e 1.602177331019 C
2、电荷的量子化
一切带电体的电量是 e 的整数倍: q ne
—— 电荷的量子化
说明
1)当 q >> e 时, 电量可以认为是连续变化的。
2)“夸克”的电量为: 1 e或 2 e
不随时间变化的场称为稳恒场,随时间变化的场称为
非稳恒场,或交变场。
vv vv( x, y, z)
vv vv( x, y, z, t)
T T (x, y, z)
T T (x, y, z,t)
电(磁)场既是物理场,也是数学场。
场是物质存在的一种形式。使人类认识了一类新的物质。 场是物理学中最重要的基本概念之一。 场物质与实物物质的异同
1820年奥斯特发现电流的磁效应。于是,电学与磁学彼 此隔绝的情况有了突破,开始了电磁学的新阶段。
1831年,英国物理学家法拉第发现电磁感应现象,进一 步证实了电现象与磁现象的统一性。
1865年,麦克斯韦建立了系统的电磁场理论,预测了光 的电磁性质,实现了物理学史上又一次大综合。
从1785年(我国清代乾隆五十年),到1865年(我国清 朝同治四年)麦克斯韦方程建立,人类花了八十年的时间, 终于揭示出电磁现象的基本规律。
第十章 真空中的静电场
本章和下一章研究静止电荷所产生的电场 — 静电场
本章内容:描述静电场的两个基本物理量: 电场强度和电势。
两条基本实验定律: 库仑定律和场叠加原理。
两条基本定理: 高斯定理和环路定理。
§10 .1 电荷 库仑定律
一.电荷: 1、电荷和电量: 电:物质的固有属性。电荷有正、负之分。 电荷的相互作用:同性相斥,异性相吸。
讨论:
1)
F
q1q0
4 0r 2
称
0
为
真空
电
容率
2) F 的方向:同性相斥
异性相吸
四、静电力的叠加原理:
1、静电力的 两个以上静止点电荷对一个静止点电荷的作用 叠加原理: 力,等于各个点电荷单独存在时对该点电荷作
用力的矢量和。
即F F1 F2 Fn
F
i
Fi
i
1
4 0
q0qi r02i
er0 i
q1
注意 矢量和!
2、一般带电体对点电荷 q0 的作用力:
电荷元d
q,
dF
整个带电体
1
4 0
q0d r2
q
er
dq
r
F
dF
q0
4 0
dq r2
er
q2
F2
F
q0
z
F1
F
•q0
dF
O y
x
一、电场
§10.2 电场 电场强度
1、历史上的两种典型观点:
a、超距作用:电荷之间的作用力可超越距离、瞬时传递。
2、电场强度的定义:
理论和实
① 将同一试探电荷放在电场中不同点,它受 的力一般不同,表明电场是按空间分布的。
践表明:
② 将不同试探电荷放在电场中同一点,它们 受的力也不相同,表明电场力不仅与场点 有关而且与试探电荷有关。
任何一门科学都有其发展史,都是人类长期实践活动 和理论思维的产物。
人类有关电磁现象的认识可追溯到公元前600年。 公元前6、7世纪人类发现了磁石吸铁、摩擦起电等现象。
1750年米切尔提出磁极之间的作用力服从平方反比定律; 1785年库仑公布了用扭秤实验得到电力的平方反比定律, 使电学和磁学进入了定量研究的阶段。
光子—电磁场 电子—电子场 引力子—引力场
数学场:数学场就是在空间的每一点都对应某个物理量 的确定值,这个空间就称为该量的场。数学场不一定是物质 存在的形式而是为了研究方便才引入的一个概念。如果这个 物理量是矢量,则称为矢量场。例如速度场、电场强度场。 如果这个物理量是标量,则称为标量场。例如温度场、大气 压力场。是空间位置的函数的物理量就是场。
b、近距作用:电荷之间的作用力必须通过中间介质的传递。
2、电场:电荷周围存在的一种特殊物质。它对位于其中的 电荷 有作用力。
电荷 电场 电荷
3、电场的基本特性:
1)电场要对放在其中的其他电荷产生力的作用。这种 力称为电场力。
2)当电荷在电场中移动时,电场力要对其做功。
二、电场强度
1、试探电荷: 检验空间某点是否存在电场以及电场的强弱的电荷。 要求: ① 线度应足够小。(为什么?) ② 电量应足够小。 (由于它的引入不致引起原有电量的重新分布。)
3
3
但实验尚未直接证明。
二、电荷守恒定律 (1843年)
在一个孤立系统(与外界没有电荷交换)内发生的任 何的变化过程中,系统电荷总数 (正、负电荷的代数和)保 持不变。
三、库仑定律:
1、点电荷: 本身的几何线度比起它到其他带电体的距离小得多
l
D l
D
到底小到何程度,取决于研究问题的精度,与带电量多少无关,与 带电体形状无关,但试探电荷有电量限制.
实物物质
场物质
不 ★由原子,分子组成,
同
看得见,摸得着
点
★无空间可入性
★运动速度远小于光速
★场物则不同
★有空间可入性 ★以光速运动
相
① 具有质量、能量、动量和角动量。
同
② 遵从动量守恒定律、角动量守恒
点
定律和能量守恒定律。
2、电磁学的研究方法:
(1)归纳法 实验-模型-理论 (2) 演绎法 传承性-释疑性-新的理论预言
2、库仑定律:空中法两国静科止学点家电库荷仑间、的1相78互5年作通用过力实遵验循总的结规出律真。
设两个点电荷, 如图放置:
r
q1
er
F
q0
F
F
k
q1q0 r2
er
1
4 0
q1q0 r2
evr
在 SI 单位制中,k = 9×10 9 N ·m 2 / C 2
1 k
4 0
0
1
4 k
8.85 1012 C2/N m2
第四篇 电磁学
第 四 篇 电磁学(electromagnetic)
一、电磁理论的建立和发展 电磁学是研究电磁现象及其基本规律的一门学科。它主要
研究电荷、电流产生电场、磁场的规律,电场和磁场的相互联 系,电磁场对电荷、电流的作用,以及电磁场对物质的各种效 应等。电磁学是现代工程技术和自然科学的重要基础。