数学:存在性问题专项训练(一 九年级训练考试卷)
存在性问题-中考数学综合专题训练试题
第四节存在性问题这类问题是近几年来各地中考的“热点".解决存在性问题就是:假设存在→推理论证→得出结论.若能导出合理的结果,就作出“存在”的判断,导出矛盾,就作出不存在的判断.尤其以二次函数中的是否存在相似三角形、三角形的面积相等、等腰(直角)三角形、平行四边形作为考查对象是中考命题热点.这类题型对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对知识、能力的一次全面的考查.,中考重难点突破)【例1】(汇川中考模拟)抛物线y=错误!x2-错误!x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t s(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,错误!+错误!的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【解析】(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到错误!=错误!,即错误!=错误!,求得错误!+错误!有最小值1,即可求得结果;②存在,求得抛物线y=错误!x2-错误!x+2的对称轴为直线x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定律列方程即可求得结果.【答案】解:(1)在抛物线的解析式中,令y=0,得错误!x2-错误!x+2=0,解得x1=2,x2=4.∵O A〈OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意,得O P=2t,O E=t.∵DE∥OB,∴△CDE∽△CBO,∴错误!=错误!,即错误!=错误!,∴DE=4-2t,∴错误!+错误!=错误!+错误!=错误!=错误!,∵0<t〈2,1-(t-1)2始终为正数,且t=1时,1-(t-1)2有最大值1,∴t=1时,11-(t-12)有最小值1,即t =1时,错误!+错误!有最小值1, 此时OP =2,OE =1, ∴E (0,1),P (2,0);②存在.F 的坐标为(3,2)或(3,7).【规律总结】这类问题一般是对结论作出肯定的假设,然后由肯定的假设出发,结合已知条件建立方程,解出方程的解的情况和结合题目的已知条件确定“存在与否”.解题的方法主要是建立方程模型,由方程有无符合条件的解来肯定“存在与否"的问题.◆模拟题区1.(汇川升学二模)在平面直角坐标系中,抛物线y =x 2+(k -1)x -k 与直线y =kx +1交于A,B 两点,点A 在点B 的左侧.(1)如图①,当k =1时,写出A,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图②,抛物线y =x 2+(k -1)x -k (k>0)与x 轴交于点C ,D 两点(点C 在点D 的左侧),在直线y =kx +1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.解:(1)当k =1时,抛物线的解析式为y =x 2-1, 直线的解析式为y =x +1.联立两个解析式, 得x 2-1=x +1,解得x =-1或x =2, 当x =-1时,y =x +1=0; 当x =2时,y =x +1=3, ∴A(-1,0),B (2,3);(2)设P (x ,x 2-1).如图①所示,过点P 作PF∥y 轴,交直线AB 于点F,则F(x ,x +1). ∴PF =(x +1)-(x 2-1)=-x 2+x +2.S △ABP =S △PFA +S △PFB =错误!PF (x F -x A )+错误!PF (x B -x F )=错误!PF (x B -x A )=错误!PF , ∴S △ABP =错误!(-x 2+x +2)=-错误!错误!错误!+错误!, 当x =错误!时,y P =x 2-1=-错误!。
中考数学专题训练 存在性问题及答案
第二节 存在性问题【例题经典】 条件探索性问题例1 如图,AB ⊥BC 于B ,DC ⊥BC 于C . (1)当AB=4,DC=1,BC=4时,在线段BC 上是否存在点P ,使AP ⊥PD .•若存在,•求线段BP 的长;如果不存在,请说明理由.(2)设AB=a ,DC=b ,AD=c ,那么当a ,b ,c 之间满足什么关系时,在直线BC 上存在点P ,使AP ⊥PD .【分析】(1)假设AP ⊥PD ,有△APB ∽△PDC ,进而求出BP .(2)方法如(1),•但相比之下,添了分类思想.【点评】本例为条件探索型,此类题的解法类似于分析法,假设结论成立,•逐步探索其成立的条件.存在探索性问题例2 (浙江省)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,)两点,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式; (2)若S 梯形OBCD =,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O ,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 【评析】本题是一道存在探索性问题的题型,(1)、(2)两问是常规题,•容易解决.(3)问较难,要分不同情况考虑,首先画出符合题意的图形,•然后结合图形进行计算或推理,若能推导出符合条件的结论或计算出某些未知数的值,则表示存在;•若推出矛盾结论或求不出未知数的值,则所求的点就不存在.3【考点精练】1.如图,在平面直角坐标系中,点A 是动点且纵坐标为4,点B 是线段OA 上的一个动点.过点B 作直线MN 平行于x 轴,设MN 分别交射线OA 与X•轴所形成的两个角的平分线于点E 、F .(1)求证:EB=BF ; (2)当为何值时,四边形AEOF 是矩形?并证明你的结论; (3)是否存在点A 、B ,使四边形AEOF 为正方形.若存在,求点A 与点B 的坐标;• 若不存在,请说明理由.2.(辽宁省)如图,Rt △OAC 是一张放在平面直角坐标系中的直角三角形纸片,点O 与原点重合,点A 在x 轴上,点C 在y 轴上,CAO=30°,将Rt △OAC•折叠,•使OC 边落在AC 边上,点O 与点D 重合,折痕为CE . (1)求折痕CE 所在直线的解析式; (2)求点D 的坐标;(3)设点M 为直线CE 上的一点,过点M 作AC 的平行线,交y 轴于点N ,是否存在这样的点M ,使得以M 、N 、D 、C 为顶点的四边形是平行四边形?若存在,请求出符合条件的点M 的坐标;若不存在,请说明理由.OBOA3.如图所示的平面直角坐标系中,有一条抛物线y=ax2+bx+c交x轴于A、B两点,交y 轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).(1)求二次函数y=ax2+bx+c的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由.4.如图,AB是⊙O的直径,MN是⊙O的切线,C为切点,AC=6cm,AB=10cm.(1)试猜想∠ACM与∠B的大小有什么关系?并说明理由.(2)在切线MN上是否存在一点D,使得以A、C、D为顶点的三角形与△ABC相似?若存在,请确定点D的位置;若不存在,请说明理由.B5.(龙岩市)如图,抛物线y=ax +bx 过点A (4,0),正方形OABC 的边BC•与抛物线的一个交点为D ,点D 的横坐标为3,点M 在y 轴负半轴上,直线L 过D 、M•两点且与抛物线的对称轴交于点H ,tan ∠OMD=. (1)写出a ,b 的值:a=_____,b=______,并写出点H 的坐标(______,______).(2)如果点Q 是抛物线对称轴上的一个动点,那么是否存在点Q ,使得以点O ,M ,•Q ,H 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.6.(莆田市)已知:如图,抛物线经过A (-3,0),B (0,4)和C (4,0)三点. (1)求抛物线的解析式;(2)已知AD=AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1•个单位长度的速度移动;同时..另一动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?•若存在,请求出点M 的坐标;若不存在,请说明理由.(注:抛物线y=ax 2+bx+c 的对称 轴为x=-)132ba7.如图,已知抛物线L1:y=x-4的图像与x轴交于A、C两点.(1)若抛物线L1与L2关于x轴对称,求L2的解析式;(2)若点B是抛物线L1上的一个动点(B不与A、C重合),以AC为对角线,A、B、C•三点为顶点的平行四边形的第四个顶点定为D,求证:点D在L2上;(3)探索:当点B分别位于L1在x轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,•并求出它的面积;若不存在,请说明理由.8.(无锡市)如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm,点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由.答案:例题经典 例1.(1)如果存在点P ,使AP ⊥PD ,那么∠APD=90°,∴∠APB+•∠CPD=90°,∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,∴∠APB+∠BAP=90°.∴∠BAP=∠CPD ,∴△APB ∽△PDC ,∴. 设BP=x ,则PC=4-x ,∴,解得x=2, ∴在线段BC 上存在点P ,使AP•⊥PD ,此时,BP=2.(2)如果在直线BC 上存在点P ,使AP ⊥PD ,那么点P 在以AD 为直径的圆上,且圆的半径为c , 取AD 的中点O ,过点O 作OE ⊥BC ,垂足为E . ∵∠B=∠OEC=∠C=90°,∴AB ∥OE ∥DC .∵AO=DO ,∴BE=CE ,∴OE=(AB+DC )=(a+b ), 当OE<c ,即a+b<c 时,以AD•为直径的圆与直线BC 相交,此时,存在⊙O 和直线BC 的交点P 1、P 2,使AP 1⊥P 1D ,AP 2⊥P 2D , •当OE=c ,即a+b=c 时,以AD 为直径的圆与直线BC 相切. 此时,存在切点P ,使AP ⊥PD . ∴当OE>c 时,即a+b>c 时,以AD 为直径的圆与直线BC 相离. 此时,在直线BC 上不存在点P ,•使AP ⊥PD .综上,当a+b ≤c 时,在直线BC 上存在点P ,使AP ⊥PD . 例2.(1)直线AB 解析式为:(2)设点C 坐标为(x ,,那么OD=x ,∴S 梯形OBCD ==-x 2AB BPPC CD =441xx =-121212121212()2OB CD OD +⨯6由题意:2x1=2,x2=4(舍去),∴(2.(3)当∠OBP=Rt∠时,如图:①若△BOP∽△OBA,则∠BOP=∠OBA=60°,,∴P1(3①③②若△BPO∽△OBA,则∠POB=∠BAO=30°,,∴P2(1.当∠OPB=Rt∠时③过点O作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°,过点P作PM⊥OA于点M.在Rt△PBO中,BP=.∵在Rt△PMO中,∠OPM=30°,∴OM=OP=;,∴P3()④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°,∴P4((由对称性也可得到点P4的坐标).当∠OPB=Rt∠时,点P在x轴上,不符合要求,综合得,•符合条件的点有四个,分别是:P1(3,P2(1,P3(,),P4(,).考点精练1.解:(1)如图①,∵OF是角平分线,∴∠1=∠2,∵MN平行于x轴,∴∠3=∠1,∴∠2=∠3,∴BO=BF.同理可证BO=BE,∴BE=BF.123212343434344344(2)当=时,四边形AEOF 是矩形,∵=, ∴OB=AB .又∵BE=BF ,∴四边形AEOF 是平行四边形,∵OE 、OF 是角平分线,∴∠EOF=90°,∴四边形AEOF 是矩形. (3)如图②,∵MN 平行于x 轴,∴当A 点在y 轴时,即A 点坐标为(0,4)时,有OA ⊥EF ,• 此时,取OA 的中点,由(2)知四边形AEOF 是矩形, ∴四边形AEOF 是正方形, ∴存在点A (0,4),B (0,2),使四边形AEOF 为正方形. 2.(1)直线CE 的解析式为(2)D ((3)(若此点在第四象限)M 1(,-),(•若此点在第二象限)M 2(-,)3.(1)y=x 2-2x-3(2)在抛物线对称轴上存在一点P ,使点P 到B 、C•两点的距离之差最大.作直线AC 交抛物线对称轴于点P ,连结PB ,∵对称轴x=1是线段AB•的垂直平分线,∴PB=PA , ∴PB-PC=PA-PC=AC .(线段AC 为差值最大值), 设直线AC 的解析式为y=•kx+b .把A (-1,0),C (0,-3)代入上式,得,∴k=-3,b=-3,∴直线AC 的解析式为:y=-3x 1-3,•当x=1时,y=-3×1-3=-6, ∴点P 的坐标为(1,-6).4.(1)∠ACM=∠B ,连结OC ,利用圆的切线性质和等腰三角形的性质可证得结论.OB OA 12OB OA 123232232203k b b -+=⎧⎨=-⎩(2)存在两个点D 1、D 2,使得以A 、C 、D 为顶点的三角形与△ABC 相似.过点A 作AD 1⊥MN 于D 1,过点A 作AD 2⊥AC 交MN 于D 2. 由相似三角形对应边成比例可分别求得CD 1和CD 2的长. 5.(1)a=-,b=,H (2,1)(2)答:存在这样的点Q ,使得点O 、M 、Q 、H 为顶点的四边形为平行四边形.由题意可知,△MDC 是直角三角形,CD=3,OC=4,∵tan ∠OMD=, ∴=,•∴CM=9,∴OM=9-4=5. ①要使OMQH 是平行四边形,由题意知OM ∥HQ ,只须OM=OQ , ∵点H•的坐标是1,∴点Q 1(2,-4)②要使OMHQ 是平行四边形,由题意知OM ∥HQ ,只须OM=HQ ,• ∵点H 的坐标是1,∴点Q 2(2,6).6.解:设抛物线的解析式为y=ax 2+bx+c (a ≠0),根据题意得:c=4,且,∴所求的抛物线的解析式为y=-x 2+x+4.4316313CD CM 13193403,1644013a a b a b b ⎧=-⎪-+=⎧⎪⎨⎨++=⎩⎪=⎪⎩解得1313(2)连结DQ .在Rt △AOB 中,,∴AD=AB=•5,•∵AC=AO+CO=3+4=7,∴CD=AC-AD=7-5=2. ∵BD 垂直平分PQ ,∴PD=QD ,PQ ⊥BD ,∴∠PDB=∠QDB , ∵AD=AB ,∴∠ABD=∠ADB ,∵∠ABD=∠QDB ,∴DQ ∥AB , ∴∠CQD=∠CBA ,∠CDQ=•∠CAB ,∴△CDQ ∽△CAB ,∴. ∴AP=AD-DP=AD-DQ=5-=,t=÷1=(秒), ∴t 的值为秒.(3)答:对称轴上存在一点M ,使MQ+MC 的值最小.理由:∵抛物线的对称轴为:x=-=,• ∴A (-3,0),C (4,0)两点关于直线x=对称.连结AQ 交直线x=于点M ,则MQ+MC 的值最小.•过点Q 作QE ⊥x 轴,垂足为E ,∴∠QED=∠BOA=90°, ∵DQ ∥AB ,∴∠BAO=∠QDE ,∴△DQE ∽△ABO ,∴, ∴QE=,DE=,OE=OD+DE=2+=,∴Q (,),设直线AQ 的解析式为y=kx+m (k ≠0),则, 210,577DQ CD DQ DQ AB CA ===即1072572572572572b a 121212107453QE DQ DE QE DE BO AB AO ====即:8767672072078782084177243041k k m k m m ⎧=⎧⎪+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩得∴直线AQ 的解析式为y=, ∴M (,),则:在对称轴上存在点M (,),使MQ+MC 值最小. 7.解:设L 2的解析式为y=a (x-h )2+k ,∵L 1与x 轴的交点A (-2,0),C (2,0),顶点坐标是(0,-4),L 1与L 2关于x 轴对称,∴L 2过A (-2,0),C (2,0),顶点坐标是(0,4), ∴y=ax 2+4,∴0=4a+a 得a=-1,∴L 2的解析式为y=-x 2+4.(2)设B (x 1,y 1),∵点B 在L 1上,∴B (x 1,x 12-4),∵四边形ABCD 是平行四边形,A 、C 关于0对称,∴B 、D 关于0对称, ∴D (-x 1,-x 12+4),将D (-x 1,-x 12+4)的坐标代入L 2:y=-x 2+4,∴左边=右边, ∴点D 在L 2上.(3)设平行四边形ABCD 的面积为S ,则S=2×S △ABC =AC ×│y 1│=4│y 1│,a .当点B 在x 轴上方时,y 1>0,∴S=4y 1,•它是关于y 1的正比例函数且S 随y 1的增大而增大,∴S 既无最大值也无最小值.b .当点B 在x•轴下方时,-4≤y 1<0,∴S=-4y 1,它是关于y 1的正比例函数且S 随y 1的增大而减小,∴当y 1=-4时,•S 有最大值16,但它没有最小值.此时B (0,-4)在y 轴上,它的对称点D 也在y 轴上,∴AC ⊥BD ,∴平行四边形ABCD 是菱形,此时S 最大=16.8.解:(1)过D 作DE ⊥AB 于E ,过C 作CF ⊥AB 于F ,如图1,∵ABCD 是等腰梯形,•∴四边形CDEF 是矩形,∴DE=CD .又∵AD=BC ,∴Rt △ADE ≌Rt △BCF ,AE=BF .又CD=2cm ,AB=8cm ,∴EF=CD=cm ,AE=AF=(8-2)=3cm . 若四边形APQD 是直角梯形,则四边形DEPQ 为知形,∵CQ=t ,∴DQ=EP=2-t ,∵AP=AE+EP ,∴2t=3+2-t ,∴t=秒. 1182422,824284141414141x x x y x y ⎧⎧==⎪⎪⎪⎪+⎨⎨⎪⎪=+=⎪⎪⎩⎩联立得1228411228411253(2)在Rt △ADE 中,cm ),S 梯形ABCD=(8+2)×cm 2). 当S 四边形PBCQ=S 梯形ABCD 时,①如图2,若点Q•在CD 上,即0≤t ≤2,则CQ=t ,BP=8-2t .S 四边形PBCQ =(t+8-2t )×.解之得t=3(舍去). ②如图3,若点Q 在AD 上,即2<t ≤4,过点Q 作HG ⊥AB 于G ,交CD 的延长线于H .由图1知:sin ∠ADE=,∴∠ADE=30°,则∠A=60°. 在Rt △ADG 中,AQ=8-t ,QG=AQ ·sin60°=, 在Rt△QDH 中,∠QDH=60°,DQ=t-2,QH=DQ·sin60°=. 由题意知,S 四边形PBCQ =S △APQ +S △CDQ =×2t ×+×2×, 即t 2-9t+17=0,•解之得t 1(不合题意,舍去),t 2. 答:存在t=,使四边形PBCQ 的面积是梯形ABCD•面积的一半.12121212AE AD =)2t -121292。
最新-初中数学一次函数之存在性问题综合测试卷 精品
初中数学一次函数之存在性问题综合测试卷
一、单选题(共3道,每道35分)
1.如图,直线与坐标轴分别交于点A、点B,点C在y轴上,且OA:AC=1:2,直线
CD⊥AB于点P,交x轴于点D.①点P的坐标为;②若坐标系内的点M,满足以点B、P、D、M为顶点的四边形为平行四边形,则点M的坐标有个,坐标分别
是.()
A.(,6);3,(,6)、(,6)、(,-6)
B.(,6);2,(,6)、(,6)
C.(,6);3,(,6)、(,6)、(,6)
D.(,6);3,(,6)、(,6)、(,-6)
2.如图,直线y=x+b与x轴、y轴分别交于A、B两点,点A(1,0),点C是直线上第一象限内的一动点,①当△AOC的面积为时,点C坐标是,;②在①成立的情况下,若在x正半轴上存在点P,使得△COP是等腰三角形,则点P的坐标
是.()
A.(3,);(6,0)、(,0)、(,0)、(-,0)
B.(3,);(6,0)、(,0),(,0)
C.(2,);(4,0)、(,0)、(,0)
D.(2,);(4,0)、(,0)、(,0)、(,0)
3.如图,直线AB与坐标轴分别相交于点A、B,点A(0,6),B(-8,0),点C(-6,0),P(x,y)是直线AB上的一个动点.当P坐标为,△OPC的面积为
.
A.,
B.
C. D.、。
中考专题:存在性问题专项训练
中考专题:存在性问题专项训练1、如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转1200至OB的位置。
(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由。
-+3交x轴于点A,交y轴于点B,抛物线y=a x2+b x+c经过A、2、如图,已知:直线y=xB、C(1,0)三点。
(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线y=x-+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求点E的坐标;如果不存在,请说明理由。
3、 如图,在平面直角坐标系x Oy 中,一次函数m x y +=45 (m 为常数)的图象与x 轴交于点A (-3,0),与y 轴交于点C ,以直线x =1为对称轴的抛物线y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)经过A 、C 两点,并与x 轴的正半轴交于点B 。
(1) 求m 的值及抛物线的函数表达式。
(2) 设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F 。
是否存在这样的点E ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由。
4、 如图,已知抛物线y=ax 2+bx+c(a ≠0)的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,-3)。
(1) 求抛物线的函数解析式及点A 的坐标。
(2) 求抛物线上求点P ,使S △POA =2S △AOB ;(3) 在抛物线上是否存在点Q ,使△AQO 与△AOB 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由。
5、如图,在平面直角坐标系中,已知抛物线经过点A(0,4)、B(1,0)、C(5,0),抛物线对称轴l与x轴相交于点M。
中考数学存在性问题综合测试卷(含答案)
中考数学存在性问题综合测试卷一、单选题(共6道,每道15分)1.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(1)当t为何值时,PQ∥BC?()A. B.C. D.答案:D试题难度:三颗星知识点:存在性问题2.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(2)设△AQP的面积为y(cm2),则y与t之间的函数关系式为(),在某一时刻t,线段PQ恰好把Rt△ACB的面积平分,则此时t的值为()A. B.C. D.答案:A试题难度:三颗星知识点:存在性问题3.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),(3)连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在某一时刻t,使四边形为菱形?若存在,此时t的值为( )A.存在,B.存在,2C.存在,D.不存在答案:C试题难度:三颗星知识点:存在性问题4.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)∠AOC的度数为( )A. B.C. D.答案:C试题难度:三颗星知识点:存在性问题5.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(2)若四边形BCQP的面积为S(平方单位),则S与t之间的函数关系式为( )A. B.C. D.答案:A试题难度:三颗星知识点:存在性问题6.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(3)设PQ与OB交于点M,是否存在某时刻t使得△OMQ 为等腰三角形?若存在则t的值为()A.存在,1B.存在,C.存在,D.不存在答案:C试题难度:三颗星知识点:存在性问题。
中考数学函数图象中的存在性问题30题必练
函数圄象申的存在性问题30题本专题的制作目的是提高学生在图象中的存在性问题这一部分的解题能力。
分了四个模块:①函数与三角形综合:存在等腰三角形(5题);②函数与三角形综合:存在直角三角形(5题);③函数与三角形综合:存在性之全等与相似(10题);④函数与四边形综合:存在性之平行四边形(10题);共30题。
先仔细研究方法总结、易错总结,再进行巩固练习。
重要的不是题目的数量,而是题目的质量把所有题目都做“过’一遍不是你最大的收获最大的收获应该是当做过无数题目后回过头,发现过去的岁月不是为了走过一次次坑而是为了填上无数个洞模块-函数与三角形综合:存在等腰三角形�1.(1)数形结合,注意使用等腰三角形的性质与判定.(2)函数问题离不开方程,注意方程与方程组的使用.(3)找动点使之与已知两点构成等腰三角形的方法:问题| 作圄|求点坐标等|| |”万能法”民他扣、去腰|/ B I ,,--'r<-----\ 抬别表示出点A,B ,P lt 乍等腰三角形底三I A/ 1 tAili1阳坐标,再表示出线段阳的高,用勾股角|11鸟飞----�::川、马·�B I B P I A P 的长度,战相似建立等量形|己知点A,B 和直|嘀圆一垂”阳快系l,在l上求点P ,t:,.PA B 为等腰三形2.在平面内使构成等腰三角形的三个点中3动点个数大于或等于两个.解决问题的万法:让三个点轮流做顶角顶点,进行分类讨论.3.在具体题目中高时不仅要找出符合题意的点,还要计算出此点的坐标,计算点坐标的方法可以参考以下几种:1.全等或相似(找相等线段或成比例线段); 2.勾股定理;3.锐角三角函数;4.面积法;5.方程或方程组.四军事E@如图,在平面直角坐标系中,已知点A的坐标为(3,1),点B的坐标为(6,日,点C 的坐标为(0,日,某二次函数的图像经过A、B、C 三点.( 1 )求这个二次函数的解中斤式.( 2)假如点Q在该二次函数图像的对称轴上,_§今ACQ是等腰三角形,请直接写出点Q的坐标.\Y \Y。
二次函数综合题存在性问题分类训练(9种类型)(学生版)--2023-2024学年九年级数学上册重难点
二次函数综合题存在性问题分类训练(9种类型)【类型一存在性之等腰三角形】1如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.2如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于A-1,0,B2,0两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)若F为抛物线上一点,连接BC,是否存在以BC为底的等腰△BCF?若存在,请求出点F的坐标;若不存在,请说明理由.3如图,已知抛物线y=-x2+bx+c经过B-3,0两点,与x轴的另一个交点为A.,C0,3(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E,使得AE+CE的值最小,求出点E的坐标;(3)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.4如图,已知抛物线y=-x2+bx+c经过B(-3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【类型二存在性之直角三角形】5如图,在平面直角坐标系中,一次函数y=12x-2的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由.(4)抛物线上(AB下方)是否存在点M,使得∠ABM=∠ABO?若存在,求出点M到y轴的距离,若不存在,请说明理由.6如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,与y轴交于点C0,3,与x轴交于点A和点B.(1)求抛物线的解析式和点A、B的坐标;(2)设点P为抛物线的对称轴直线x=2上的一个动点,求使△PBC为直角三角形的点P的坐标.7如图,在平面直角坐标系xOy中,抛物线y=x2+bx-3与直线l:y=x+1交于A,B两点,点A的坐标为-1,0.(1)求抛物线的解析式及点B的坐标;(2)已知抛物线与x轴有2个交点,右侧交点为C,点P为线段AB上任意一点(不含端点),若△PBC是以点P为直角顶点的直角三角形,求点P的坐标.8如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为1,0.(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB-PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【类型三存在性之等腰直角三角形】9如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.10如图1,在平面直角坐标系中,抛物线y=-23x2+43x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1-S2的值最大时,求P点的坐标和S1-S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A′C′(线段A'C'始终在直线l左侧),是否存在以A′,C′,G为顶点的等腰直角△A′C′G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.11如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.12如图,在平面直角坐标系中,将一等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,其中A的坐标为(0,2),直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)求抛物线的解析式;(2)设抛物线的顶点为D,连结BD、CD,求△DBC的面积;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【类型四存在性之平行四边形】13在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(3,0)和0,3.(1)求抛物线的表达式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当AN+MN有最大值时,求出抛物线上点M的坐标;(3)若点P为抛物线y=ax2+bx+c(a≠0))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点,在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.14如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)在直线BC的下方的抛物线上存在一点M,使得△BCM的面积最大,请求出点M的坐标(3)点F是抛物线上的动点,点D是抛物线顶点坐标,作EF∥AD交x轴于点E,是否存在点F,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.15如图,在平面直角坐标系中,抛物线y=12x2+bx+c(b、c为常数)的顶点坐标为32,-258,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C,点D关于x轴对称,连接AD,作直线BD.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:∠ADO=∠DBO;(4)点P在抛物线y=-12x2+bx+c上,点Q在直线BD上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.16如图,抛物线y=ax2+2ax+c与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是第三象限抛物线上的动点,连接AC,当△ACD的面积为3时,求出此时点D的坐标;(3)将抛物线y=ax2+2ax+c向右平移2个单位,平移后的抛物线与原抛物线相交于点M,N在原抛物线的对称轴上,H为平移后的抛物线上一点,当以A、M、H、N为顶点的四边形是平行四边形时,请直接写出点H的坐标.【类型五存在性之菱形】17如图,抛物线y=ax2+bx+c过点A-1,0.,B3,0,C0,3(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.18综合与探究:如图,已知抛物线y=-38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC 交于点F,与抛物线的对称轴交于点D.(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.19如图,直线y =mx +n m ≠0 .与抛物线y =-x 2+bx +c 交于A -1,0 ,B 2,3 两点.(1)求抛物线的解析式;(2)若点C 在抛物线上,且△ABC 的面积为3,求点C 的坐标;(3)若点P 在抛物线上,PQ ⊥OA 交直线AB 于点Q ,点M 在坐标平面内,当以B ,P ,Q ,M 为顶点的四边形是菱形时,请直接写出点M 的坐标.20如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y ,且新抛物线y 经过线段BC的中点F,新抛物线y 与y轴交于点M,点N为新抛物线y 对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.【类型六存在性之矩形】21如图①,抛物线y=ax2+x+c a≠0与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD交直线BC于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图②.过点P作PF⊥CE,垂足为点F,当CF=EF时,请求出m的值;(3)如图③,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.22已知抛物线y =ax 2+bx -4a ≠0 交x 轴于点A 4,0 和点B -2,0 ,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD +PE 取最大值时,求点P 的坐标及PD +PE 最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.23综合与探究如图,抛物线y=ax2-3x+c a≠0与x轴交于A(4,0),C两点,交y轴于点B(0,-4),点P为y轴右侧抛物线上的一个动点.(1)求抛物线的解析式;(2)当P在AB下方时,求△ABP面积的最大值;(3)当∠ABP=15°时,△BOP的面积为;(4)点M为抛物线对称轴上的一点,点N为平面内一点,是否存点M、点N,使得以A、B、M、N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;如不存在,请说明理由.24如图,直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2-83x+c(a≠0)经过A,C两点,交x轴的正半轴于点B,连接BC.(1)求抛物线的解析式.(2)点P在抛物线上,连接PB,当∠PBC=45°时,求点P的坐标;(3)已知点M从点B出发,以每秒1个单位长度的速度沿BA运动,同时点N从点O出发,以每秒3个单位长度的速度沿OC,CA运动.当点M,N运动到某一时刻时,在坐标平面内是否存在点D,使得以A,M,N,D为顶点的四边形是矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【类型七存在性之正方形】25如图,抛物线y=-14x2+bx+c的对称轴与x轴交于点A1,0,与y轴交于点B0,3,C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求ACAB的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.26综合与探究如图,抛物线y=ax2+bx+6与x轴交于A-2,0,B4,0两点,与y轴交于点C,直线y=23x-4与x轴交于点D,与y轴交于点E.若M为第一象限内抛物线上一点,过点M且垂直于x轴的直线交DE于点N,连接MC,MD.(1)求抛物线的函数表达式及D,E两点的坐标.(2)当CM=EN时,求点M的横坐标.(3)G为平面直角坐标系内一点,是否存在点M使四边形MDEG是正方形.若存在,请直接写出点G的坐标;若不存在,请说明理由.27如图,已知直线y=-x+4与抛物线y=ax2+bx交于点A4,0两点,点P为抛物线上和B-1,5一动点,过点P作x轴的垂线,交直线AB于Q,PN⊥AB于点N.(1)求抛物线的解析式;(2)当点P在直线AB下方时,求线段PN的最大值;(3)是否存在点P使得△ABP是直角三角形,若存在,请求出点P坐标,若不存在,请说明理由;(4)坐标轴上是否存在点M,使得以点P,N,Q,M为顶点的四边形是正方形,若存在,请直接写出点M的坐标,若不存在,请说明理由28如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【类型八存在性之相似三角形】29如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A,B,与y轴交于点C,经过点x+2交抛物线于点D,点D与点A的横坐标互为相反数,P是抛物线上一动点,连接A的直线y=-12AC.(1)求抛物线的表达式;(2)若点P在第一象限内的抛物线上,当∠PBA=2∠BAD时,求直线BP的表达式;(3)点Q在y轴上,若△DQP∽△COA,请直接写出点P的坐标.30如图,已知抛物线过三点O0,0,弧AB过线段OA的中点C,若点E为弧AB,B2,23,A8,0所在圆的圆心.(1)求该抛物线的解析式.(2)求圆心点E的坐标,并判断点E是否在这条抛物线上.(3)若弧BC的中点为P,是否在x轴上存在点M,使得△APB与△AMP相似?若存在,请求出点M的坐标,若不存在说明理由.31如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD相似时,点P的坐标;32如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线和直线AC的函数解析式;(2)若点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求四边形CDAF的最大面积;(3)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OAC相似,请直接写出点P的坐标.【类型九存在性之角度问题】33如图,抛物线y=ax2+bx+2经过A-1,0为抛物线上、B4,0两点,与y轴交于点C,点D x,y 第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为4时,求点D的坐标;(3)该抛物线上是否存在点D,使得∠DCB=2∠ABC,若存在,求点D的坐标;若不存在,请说明理由.34如图,抛物线y=ax2+bx-1a≠0与x轴交于点A1,0和点B,与y轴交于点C,抛物线的对称轴交x轴于点D3,0,过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.35如图,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx a>0经过点A(-1,3)和x轴正半轴上的点B,AO=OB.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的度数;(3)联结AM、BM、AB,若在坐标轴上存在一点P,使∠OAP=∠ABM,求点P的坐标.36如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A1,0两点,,B3,0与y轴交于点C,其顶点为点D,点E的坐标为0,-1,该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式.(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
九年级数学考点大串讲(人教版):二次函数综合(6种存在性问题专练)(原卷版)
难关必刷01二次函数综合(6种存在性问题专练)【模型梳理】一、等腰三角形存在性根据等腰三角形的定义,若为等腰三角形,则有三种可能情况:(1)AB=BC;(2)BC=CA;(3)CA=AB.但根据实际图形的差异,其中某些情况会不存在,所以等腰三角形的存在性问题,往往有2个甚至更多的解,在解题时需要尤其注意.1、知识内容:在用字母表示某条线段的长度时,常用的方法有但不仅限于以下几种:(1)勾股定理:找到直角三角形,利用两边的长度表示出第三边;(2)两点间距离公式:设A(x1,y1)、B(x2,y2)2、解题思路:(1)利用几何或代数的手段,表示出三角形的三边对应的函数式;(2)根据条件分情况进行讨论,排除不可能的情况,将可能情况列出方程(多为分式或根式方程)(3)解出方程,并代回原题中进行检验,舍去增根.二、直角三角形存在性在考虑△ABC是否为直角三角形时,很显然需要讨论三种情况:①∠A=90°;②∠B=90°;③∠C=90°.在大多数问题中,其中某两种情况会较为简单,剩下一种则是考察重点,需要用到勾股定理。
以函数为背景的直角三角形存在性问题1、知识内容:在以函数为背景的此类压轴题中,坐标轴作为一个“天然”的直角存在,在解题时经常会用到,作出垂直于坐标轴的直线来构造直角。
另外,较困难的情况则需要用到全等或者勾股定理的计算来确定直角三角形.2、解题思路:(1)按三个角分别可能是直角的情况进行讨论;(2)计算出相应的边长等信息;(3)根据边长与已知点的坐标,计算出相应的点的坐标.三、平行四边形的存在性问题1.要先明确定点和动点,常以定点为对角线和边进行分类;2.三定一动,有三种情况,可借助平移,全等、中点公式等知识确定坐标..(坐标平移规律:左减右加变x上加下减变y如何平移?可先确定其中两点的变化作参照,以此变化确定)3.两定两动:以定线段作边或对角线,确定分类;常借助对应边相等、坐标间关系及中点坐标公式建等式求解常见设问:已知A、B,求另外两点C、D与A、B两点构成平行四边形分类讨论:当AB为边时,找AB平行且等于的CD利用距离建立数量关系,求出相应点的坐标;当AB为对角线时,AB的中点即为对角线的交点,结合图形的对称性,围绕对角顶点的横坐标和纵坐标之和分别相等进行求解,列出两个二元一次方程组来求解.4.三动点或四动点:往往有不变特征,如两边始终平行,满足相等即可四、菱形的存在性问题(常为含60°角的菱形)通常有两大类:1.已知三个定点探究菱形时,分别以三个定点中的任意两个定点确定线段为要探究的菱形的对角线画出所有菱形,结合题干要求找出满足条件的菱形;2已知两个定点去探究菱形时,以两个定点连线所成的线段作为要探究菱形的对角线或边长画出符合题意的菱形,结合题干要求找出满足条件的菱形:3.计算:建立类似平行四边形的存在性问题来解五、矩形的存在性问题等价于直角三角形的存在性问题(其特点往往是2定点2动点),通过构造一线三等角模型或勾股定理,可以求出其中一个顶点的坐标,再根据对称性求出另一个顶点的坐标。
存在性问题专题
存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
例1(2011广东)22.如图,抛物线2517144y x x =-++与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.【答案】解:(1)∵A 、B 在抛物线2517144y x x =-++上, ∴当=01x y = 时,当5=32x y = 时。
即A 、B 两点坐标分别为(0,1),(3,52)。
设直线AB 的函数关系式为=y kx b +, ∴ 得方程组:1532b k b =+= ,解之,得 121k b ==。
直线AB 的解析式为1=12y x +。
(2)依题意有P 、M 、N 的坐标分别为P (t ,0),M (t ,112t +),N (t ,2517144t t -++) ()225171515110344244s MN NP MPt t t t t t ∴==-⎛⎫++-+=+≤≤ ⎪⎝⎭=--(3)若四边形BCMN 为平行四边形,则有MN=BC ,此时,有25415452=+-t t ,解得11=t ,22=t 所以当t=1或2时,四边形BCMN 为平行四边形。
存在性问题专项训练(二)(含答案)
学生做题前请先回答以下问题问题1:菱形存在性问题通常转化成什么问题来处理?利用的是菱形的哪个判定?问题2:正方形的存在性问题通常转化为什么问题来处理?利用的是正方形的哪个判定?问题3:对比平行四边形存在性,菱形的存在性以及正方形的存在性问题处理思路,总结处理存在性问题的一般方法.存在性问题专项训练(二)一、单选题(共6道,每道16分)1.如图,已知抛物线经过点A(-2,0)及原点O,点B在抛物线上,点C在抛物线的对称轴上,若以点A,O,B,C为顶点的四边形是平行四边形,则点B的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行四边形的性质与判定2.如图,抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴为直线.点P从点C出发沿y轴负方向运动,点Q从点B出发沿x轴正方向运动,P,Q两点同时出发,速度均为每秒1个单位长度,过点P作x轴的平行线交抛物线于点E.设运动的时间为t(秒),若以P,A,Q,E为顶点的四边形是平行四边形,则t的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平行四边形的存在性3.如图,已知抛物线经过原点O和x轴上的一点A,抛物线的顶点为E,对称轴与x轴交于点D.N是坐标平面内任一点,M是对称轴上的一点,使得以N,A,E,M为顶点的四边形是菱形,则点N的坐标为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:菱形的存在性4.如图,直线与x轴交于点A,与y轴交于点P.M为线段OA上一动点,过点M作MN⊥PM,交AP于点N.Q为坐标平面内一点,若以A,M,N,Q为顶点的四边形为菱形,则点M的横坐标为( )A.8B.C.6D.答案:B解题思路:试题难度:三颗星知识点:菱形的存在性5.如图,抛物线交x轴于A,C两点(点A在点C的右侧),交y轴于点B.点D的坐标为(-1,0),若点P是直线AB上的动点,点Q是坐标平面内一点,则当以A,D,P,Q为顶点的四边形是正方形时,点Q的坐标为( )A.(-1,4)或(1,2)B.(-1,4),(1,2)或(5,-2)C.(3,4)或(1,-2)D.(2,2)或(-1,-2)答案:C解题思路:试题难度:三颗星知识点:正方形的存在性6.如图,在平面直角坐标系中,抛物线与x轴交于点A(-1,0),B(4,0).点M,N在x轴上,且点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m,将线段CN绕点N逆时针旋转90°后,得到对应线段DN.E是抛物线对称轴上一点,F是坐标平面内一点,若以D,N,E,F为顶点的四边形是以DN为边的正方形,则m的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:正方形的存在性。
九年级十一短训班动点存在性问题学力测试
九年级十一短训班动点存在性问题学力测试
试卷简介:全卷共2道题目,一道选择题,一道解答题,考查学生对动点问题地全面掌握一、单选题(共1道,每道50分)
1.(2011浙江湖州)如图,已知A、B是反比例函数图像上地两点,
BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN地面积为S,P点运动时间为t,则S关于t地函数图像大致为()
A.
B.
C.
D.
二、解答题(共1道,每道50分)
1.(2010浙江舟山)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P 从点A开始沿AC方向以每秒cm地速度运动,同时,点Q从点D出发沿DB方向以每
秒1cm地速度运动,当点P到达点C时,P,Q同时停止运动,设运动地时间为x秒(1)当点P在线段AO上运动时.①请用含x地代数式表示OP地长度;②若记四边形PBEQ地面积为y,求y关于x地函数关系式(不要求写出自变量地取值范围);(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC地其他位置时,以P,B,E,Q 为顶点地四边形能否成为梯形?若能,求出所有满足条件地x地值;若不能,请说明理
由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:相似三角形存在性问题的处理思路是:
①从_______入手,分析定点、动点,找固定的边和角,确定三角形的形状;找相等的角当作__________;
②分析形成因素,考虑相似三角形的________,比如若有一组角相等,则只需_____________,依据判定确定__________,列出对应的关系式;
③画图求解,围绕对应的关系式,根据图形特征,表达相关线段长,用关系式列方程;
④结果验证,回归点的__________进行验证;____________,结合图形进行验证.
问题2:在“角度的存在性“专题中,有“若,则”这个结论,
尝试推导这个结论.
问题3:对比相似,全等,角度的存在性处理思路,在整体分析思路上有什么相同点?
问题4:对比相似,全等,角度的存在性处理思路,在分析定点,动点之后各自分析的动作有什么不同?
问题5:结合前面所学的存在性问题,思考对任意图形的存在性问题如何处理?
存在性问题专项训练(一)
一、单选题(共10道,每道10分)
1.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )
A.6
B.7
C.8
D.9
2.已知△ABC的三条边长分别为6,8,12,过△ABC任一顶点画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )
A.6条
B.7条
C.8条
D.9条
3.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=7,AD=3,BC=4,P是AB边上一点,
若△PCD是以点P为直角顶点的直角三角形,则AP的长为( )
A.1或6
B.3或4
C.或1或6
D.或3或4
4.如图,在△ABC中,∠ABC=90°,AB=4,BC=2.P是线段BC上一动点,Q是线段AC上一动点,且始终满足.当△CPQ是直角三角形时,CP的长为( )
A.0,2
B.
C. D.
5.如图,在矩形ABCD中,AB=3,BC=4,E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处.当为直角三角形时,BE的长为( )
A. B.
C. D.
6.平面直角坐标系中,已知点,点P是反比例函数图象上的一个动点,过点P作PQ⊥x轴,垂足为Q,若以点O,P,Q为顶点的三角形与△OAB 相似,则相应的点P共有( )
A.1个
B.2个
C.3个
D.4个
7.将三角形纸片ABC按如图所示的方式折叠,使点B落在AC边上的点处,折痕交AB于点E,交BC于点F.已知AB=AC=6,BC=8,若以点,F,C为顶点的三角形与△ABC相似,则BF的长为( )
A. B.4
C. D.
8.如图,在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在BC边上以3cm/s的速度由点B向点C运动;同时点Q在AC边上以相同的速度由点C向点A运动,其中一个点到达终点时另一个点也随之停止运动.当△BPD与△CQP全等时,点P运动的时间为( )
A. B.
C. D.
9.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为,矩形PDFE的面积为,运动时间为t秒,则t=( )秒时,.
A. B.6
C. D.3
10.如图,在△ABC中,∠ABC=90°,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC 边上找到一点Q,使∠BQP=90°,则x的取值范围是( )
A. B.
C. D.。