高中数学必修五教案-应用举例
普通高中数学必修5教案
普通高中数学必修5教案
教学内容:函数的概念和性质
教学目标:学生能够理解函数的概念,掌握函数的性质,能够应用函数解决问题。
教学重点:函数的定义、函数的性质、函数的图像。
教学难点:函数的性质的应用。
教学方法:讲解结合示例,引导学生思考。
教学过程:
一、引入(5分钟)
教师通过提问引入函数的概念,让学生思考函数在日常生活中的应用。
二、讲解函数的定义(10分钟)
教师讲解函数的定义及符号表示,帮助学生理解函数的概念。
三、讲解函数的性质(15分钟)
教师讲解函数的奇偶性、增减性、最值等性质,引导学生思考函数的特点。
四、演示函数的图像(10分钟)
教师通过示例展示函数的图像,让学生理解函数与图像之间的关系。
五、练习与讨论(10分钟)
教师布置练习题让学生巩固所学知识,并讨论解题过程。
六、作业布置(5分钟)
教师布置作业,要求学生完成相关练习。
七、课堂总结(5分钟)
教师总结本节课的重点内容,激励学生继续学习。
评价与展望:本节课通过讲解、示例、练习等方式,帮助学生理解函数的概念和性质,为后续学习奠定基础。
未来将继续引导学生深入理解函数的应用,提高数学解题能力。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_28
《秦九韶-海伦公式》教案【教学内容】人教版数学必修五《秦九韶-海伦公式》【教学对象】高一学生【教材分析】本节内容是高中数学必修五的第一章,是阅读与思考部分中的内容,本节课的主要意在引领学生运用所学知识对“秦九韶-海伦公式”进行证明,并进行有效的应用,让同学们从中体会到数学之美。
【知识背景】海伦公式与秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为:..这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。
相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式:.其实这两个公式实质是一致的,聪明的你能够推导出来吗?对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决一些问题吧。
【学情分析】高二学生在进入本节课的学习之前,需要熟悉前面已学过的余弦定理、三角形面积公式以及平方差公式和完全平方公式。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30
第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。
备课教案高中数学必修五
备课教案高中数学必修五
课题:高中数学必修五——范本
教学目标:
1. 了解范本的基本概念和性质;
2. 掌握范本的常见形式和应用方法;
3. 能够解决与范本相关的数学问题。
教学重点和难点:
重点:掌握范本的基本概念和性质;
难点:运用范本解决具体问题。
教学内容:
1. 范本的定义和性质;
2. 范本的常见形式;
3. 范本在数学问题中的应用。
教学过程:
一、导入(5分钟)
通过举例引入范本的概念,并引导学生思考范本的作用和意义。
二、讲解(15分钟)
1. 讲解范本的定义和性质;
2. 分析范本的常见形式;
3. 教授范本在解决数学问题中的应用方法。
三、练习(20分钟)
1. 给学生几道范本相关的问题,并让学生尝试解答;
2. 对学生的解答进行点评和讲解,帮助他们理解范本的应用方法。
四、拓展(10分钟)
让学生自己设计一个范本题目,并尝试解答。
五、总结(5分钟)
对本课内容进行总结,强调范本的重要性和应用方法。
教学反思:
范本是高中数学中一个非常重要的概念,通过本课的学习,学生可以更深入地理解范本的应用方法和特点,提高数学解题的能力。
在教学过程中,需要注重让学生通过实际练习和应用来加深对范本的理解,激发他们的求知欲和学习兴趣。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
高中数学必修5整套教案
高中数学必修5整套教案教学目标:学生能够区分和应用直线和平面的基本概念,理解直线和平面之间的关系。
教学重点:直线与平面的定义、性质和关系。
教学难点:平面的方程和直线与平面的交点问题。
教学过程:一、导入讨论:通过展示一些实际生活中的直线和平面的例子,引出直线和平面的概念。
二、概念讲解:介绍直线和平面的定义、特点和性质,并让学生做一些相关的练习。
三、直线与平面的关系:讲解直线和平面之间的关系,并通过实际例子辅助理解。
四、实例分析:解决一些直线与平面的交点问题,让学生能够灵活应用所学知识。
五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。
六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。
第二课:圆的基本概念教学目标:学生能够掌握圆的相关概念和性质,理解圆的作图和计算方法。
教学重点:圆的定义、圆周率及相关概念。
教学难点:圆的作图及相关计算题目。
教学过程:一、导入讨论:通过展示圆的相关图片,引入圆的概念。
二、概念讲解:介绍圆的定义、性质和相关概念,并让学生做一些相关的练习。
三、圆的作图:讲解圆的作图方法和相关计算技巧,让学生能够灵活运用。
四、圆周率的应用:介绍圆周率的概念和计算方法,通过实例计算巩固所学知识。
五、练习训练:设计一些练习题让学生巩固所学知识,提高解题能力。
六、总结反思:总结本课内容,让学生自主总结所学知识,并提出问题和思考。
第三课:三角形的基本概念教学目标:学生能够掌握三角形的相关概念和性质,理解三角形的分类和计算方法。
教学重点:三角形的定义、分类及性质。
教学难点:三角形的作图及相关计算题目。
教学过程:一、导入讨论:通过展示三角形的相关图片,引入三角形的概念。
二、概念讲解:介绍三角形的定义、性质和分类,并让学生做一些相关的练习。
三、三角形的作图:讲解三角形的作图方法和相关计算技巧,让学生能够灵活运用。
四、三角形的应用:介绍三角形的应用知识和计算方法,通过实例计算巩固所学知识。
高中数学必修5优秀教案3篇
高中数学必修5优秀教案3篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高中数学必修5优秀教案3篇高中数学必修5优秀教案1教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
2020年人教版高中数学必修5教案---4.应用举例(1)教案
教师课时教案教师课时教案到0.1m) 启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB = ABCACB AC ∠∠sin sin = ABCACB ∠∠sin sin 55= )7551180sin(75sin 55︒-︒-︒︒= ︒︒54sin 75sin 55 ≈ 65.7(m)答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距教师课时教案AC 和BC ,再利用余弦定理可以计算出AB 的距离。
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得 AC = )](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠3。
高中数学必修五教案(精选5篇)
高中数学必修五教案(精选5篇)高中数学必修五教案篇一教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的。
心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
(教师观察学生的表情反映,然后将此问题缩小十倍)。
我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10。
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
高中数学必修五教案优秀8篇
高中数学必修五教案优秀8篇新课标高中数学必修5教案篇一知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观:通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
通过探索得到两角差的余弦公式以及公式的灵活运用两角差余弦公式的推导过程预习自学案一、知识链接1、写出的三角函数线:2、向量,的数量积,①定义:②坐标运算法则:3、,,那么是否等于呢?下面我们就探讨两角差的余弦公式二、教材导读1、、两角差的余弦公式的推导思路如图,建立单位圆O(1)利用单位圆上的三角函数线设则又OM=OB+BM=OB+CP=OA_____ +AP_____=从而得到两角差的余弦公式:____________________________________(2)利用两点间距离公式如图,角的终边与单位圆交于A( )角的终边与单位圆交于B( )角的终边与单位圆交于P( )点T( )AB与PT关系如何?从而得到两角差的余弦公式:____________________________________(3)利用平面向量的知识用表示向量,=(,) =(,)则。
=设与的夹角为①当时:=从而得出②当时显然此时已经不是向量的夹角,在范围内,是向量夹角的补角。
我们设夹角为,则 + =此时 =从而得出2、两角差的余弦公式____________________________三、预习检测1、利用余弦公式计算的值。
2、怎样求的值你的疑惑是什么?______________________________________________________________________________________________________________ 探究案例1. 利用差角余弦公式求的值。
例2.已知,是第三象限角,求的值。
训练案一、基础训练题1、2、¬¬¬¬¬¬¬¬¬¬¬3、二、综合题-------------------------------------------------- 高中数学学习方法技巧总结篇二基础很重要,保持耐心多巩固要学好数学,最关键的是要有一个好的基础。
【高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》第一课时 教案1
《解三角形应用举例》第一课时一、教学目标1.知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.2.过程与方法(1)通过解决“测量平面上两个不能到达的地方的之间的距离”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.(2)进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3.情感、态度与价值观激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.二、教学重点和难点教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解.教学难点:根据题意建立数学模型,画出示意图.教学关键:将实际问题中的距离问题转化为数学问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法,步步改进方法,探求最佳方法.三、教法与学法导航教学方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正.学习方法:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.四、教学过程(一)创设情境,导入新课1. 复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2. 设置情境怎样在航行途中测出海上两个岛屿之间的距离?今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离?(二)主题探究,合作交流1. 解决实际测量问题的过程一般有哪些步骤呢?(1)充分认真理解题意;(2)正确做出图形;(3)把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.2. 实例分析例1 如图1,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75.求A、B两点51,∠ACB=︒的距离(精确到0.1m).图1学生思考并讨论交流下面两个问题:问题1:在△ABC中,根据已知的边和对应角,运用哪个定理比较适当?问题2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出边AB .解:根据正弦定理得:ACB AB ∠sin =ABCAC ∠sin , AB =ABC ACB AC ∠∠sin sin =55sin sin ACB ABC ∠∠=55sin75sin(1805175)︒︒-︒-︒=55sin75sin54︒︒≈ 65.7(m ).答:A 、B 两点间的距离为65.7m.变式1:两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?教师提醒学生按步骤做题,建立数学模型. 解略:2a km例2 如图2,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.图2解:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ,在△ADC 和△BDC 中,应用正弦定理得=++-︒+=)](180sin[)sin(δγβδγa AC sin()sin()a γδβγδ+++, =++-︒=)](180sin[sin γβαγa BC sin sin()a γαβγ++. 计算出AC 和BC 后,再在△ABC 中,应用余弦定理计算出A 、B 两点间的距离AB 分组讨论:还有没有其它的方法呢?师生一起对不同方法进行对比、分析、板演. 变式2:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60°,∠ACD =30°,∠CDB =45°,∠BDA =60°.略解:将题中各已知量代入例2推出的公式,得AB =206.评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁琐,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.(三)拓展创新,应用提高学生阅读教材第12页,了解测量中基线的概念,并找到生活中的相应例子.教材第13页练习第1、2题.(四)小结解斜三角形应用题的一般步骤:1. 分析:理解题意,分清已知与未知,画出示意图.2. 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.3. 求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.4. 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_29
《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。
人教版高中数学必修五同课异构课件:1.2 应用举例 第2课时 解三角形的实际应用举例
两点A,B间可 视但不可达
两点A,B都不 可达
底部可达
求 高 度
底部不可达
三更灯火五更鸡,正是男儿读书时。黑发 不知勤学早,白首方悔读书迟。
——颜真卿
解: 选择一条水平基线HG,使H、G、B三点在同 一条直线上.由在H,G两点用测角仪器测得A的仰角 分别是α,β,CD=a,测角仪器的高是h,那么,在 △ACD中,根据正弦定理可得
【变式练习】 如图是曲柄连杆机构的示意图,当曲柄CB绕C点旋转
时,通过连杆AB的传递,活塞作直线往复运动,当曲柄 在CB0位置时,曲柄和连杆成一条直线,连杆的端点A在A0 处,设连杆AB长为340mm,曲柄CB长为85mm,曲柄自CB0按 顺时针方向旋转80°,求活塞移动的距离(即连杆的端 点A移动的距离AA0)(精确到1mm).
先在△ABC中, 根据正弦定理求得 AC.再在△ACD中求 CD即可.
【变式练习】 3.5 m长的木棒斜靠在石堤旁,棒的一端在离
堤足1.2 m的地面上,另一端在沿堤上2.8 m的地 方,求堤对地面的倾斜角α. (精确到0.01°)
答:堤对地面的倾斜角α为63.77°.
例3 如图,一辆汽车在一条水平的公路上向正 西行驶,到A处时测得公路北侧远处一山顶D在西 偏北15°的方向上,行驶5 km后到达B处,测得此 山顶在西偏北25°的方向上,仰角为8°,求此山 的高CD(精确到1 m).
10°的方向以10海里/小时的速度航行.问我舰需
以多大速度、沿什么方向航行才能用2小时追上敌
舰?(精确到1°)
C
解:如图,在△ABC中,由余弦定理 得:
Байду номын сангаас
10°
A
50° 40°
B
高中数学应用举例教案
高中数学应用举例教案
主题:数学应用举例
时间:2课时
目标:学生能够运用所学数学知识解决实际问题。
教学内容:数学应用举例
教学步骤:
一、导入(5分钟)
教师简单介绍今天的教学内容,让学生明白数学不仅仅是理论,更是应用于解决实际问题的工具。
二、观察问题(10分钟)
1. 教师出示一个实际生活中的问题,例如:小明有一块长方形的花园,宽为10米,长为15米,求花园的面积和周长。
2. 让学生自由讨论解决这个问题的方法,并让其发现相关数学知识点。
三、理解概念(15分钟)
1. 教师引导学生总结出求长方形面积和周长的公式。
2. 教师讲解如何利用公式求解上面提到的问题,让学生理解所学数学知识在实际问题中的应用。
四、练习运用(20分钟)
1. 学生自行计算几个类似问题,如正方形、三角形等的面积和周长。
2. 学生结合实际情境,设计一个自己的问题,并用所学知识解决。
五、总结(5分钟)
教师带领学生总结今天的学习内容,强调数学在实际生活中的重要性。
六、作业布置(5分钟)
布置作业:综合练习册中的相关题目,巩固所学知识。
七、课堂反馈(5分钟)
学生互相讨论、巩固今天的学习内容,教师可以随机点名学生回答问题。
高中数学必修五教案-1.2 应用举例(4)-人教A版
1.3应用举例【课题】:1.2.1 解三角形的实际应用举例【学情分析】:对于未知的距离、高度等,存在着许多可以供选择的测量方案,可以应用全等三角形、相似三角形或直角三角形的方法等等.但是,在测量问题的实际背景下,某些地方也许不能实施,如没有足够的空间、长度太大等等,这些方法有其局限性.本节所介绍的应用两个定理的方法可以弥补这些不足.平行班学生思维能力可能较弱。
【教学目标】(1)知识与技能目标:初步运用正弦定理、余弦定理解决某些与测量和几何计算有关的实际问题. (2)过程与方法目标:通过解决“测量平面上两个不能到达的地方之间的距离”和“测量一个底部不能到达的建筑物的高度”的问题,初步掌握将实际问题转化为解斜三角形问题的方法;进一步提高应用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力. (3)情感、态度与价值观目标:通过学生亲自实施对“测量”问题的解决,体会如何将具体的实际问题转化为抽象的数学问题,体验问题解决的全过程;发展学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流与合作的能力,着重学生多元智能的发展.【教学重点】:重点是如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决. 【教学难点】:分析、探究并确定将实际问题转化为数学问题的思路是难点和关键. 【课前准备】:Powerpoint 课件或投影. 教学环节 教学活动 设计意图创设情景问题1、如图,为了测量某障碍物两侧A 、B 两点间的距离,给定下列四组数据,测量时最好选用数据( )(A) α,a ,b (B)α,β,a (C) a ,b ,γ (D) α,β,b生:最好选用的数据是C ,可以直接根据余弦定理求出AB 的距离,其他数据也可以求出AB 的距离,但不是最佳. 问题2、为了测量上海东方明珠塔的高度,某人站在A处测得塔尖的仰角为75.50,前进38.5m 后到达B 处,测得塔尖的仰角为80.00。
高中数学必修五教案Word
高中数学必修五教案Word
第一课:二次函数的基本概念和性质
1. 教学目标:
- 了解二次函数的概念和性质
- 掌握二次函数的图像特点
- 能够通过公式确定二次函数的图像
2. 教学内容:
- 二次函数的定义
- 二次函数的一般式和标准式
- 二次函数的图像特点
3. 教学过程:
- 导入:通过实际生活中的例子引入二次函数的概念
- 讲解:介绍二次函数的定义和一般式、标准式的转换方法
- 实例演练:通过例题让学生掌握二次函数的图像特点和变化规律
- 拓展:让学生通过练习巩固所学知识
4. 课堂练习:
1. 求解二次函数f(x)=2x²-4x+3的顶点坐标和对称轴方程
2. 根据二次函数的图像特点,判断下列函数的开口方向:
- a) f(x)=x²+3x-2
- b) f(x)=-2x²+4x-1
5. 课后作业:
- 完成练习册中关于二次函数的练习题
- 总结本课中所学知识,写出二次函数的定义和性质
注意:教案仅供参考,具体内容和教学方式可根据教学情况进行调整。
高中数学:1.2应用举例第二课时:测量高度问题(新人教A版必修5)
1. 2应用举例第二课时:测量高度问题一、教学目标:1、能力要求:①综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题; ②体会数学建摸的基本思想,掌握求解实际问题的一般步骤;③能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力2、过程与方法:利用仰角和俯角等条件测量底部不可到达的建筑物高度这类问题不能直接用解直角三角形的方法解决,但常常用正弦定理和余弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题。
二、教学重点、难点:重点:综合运用正弦定理、余弦定理等知识和方法解决一些实际问题。
难点:底部不可到达的建筑物高度的测量。
三、名词解释:1、仰角:朝上看时,视线与水平面夹角为仰角。
2、俯角:朝下看时,视线与水平面夹角为俯角。
3、方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
4、坡度:坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率。
四、例题讲解:例1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。
设计一种测量建筑无高度AB 的方法。
解:选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上。
由在H ,G 两点用测角仪器测得A 的仰角分别为βα,,a CD =,测角仪器的高度为h 。
在ACD ∆中,βα-=∠CAD∴在ACD ∆中,由正弦定理可得:在ACE ∆中,()βαβαα-==sin sin sin sin a AC AE 例2、在某建筑物顶部有一铁塔,在铁塔上B 处测得地面上一点A 的俯角 45=α,在塔底C 处测得A 处的俯角30=β。
已知铁塔BC 部分高为30m ,求出此建筑物的高度CD 。
(精确到m 01.0)解:由已知条件可知 4590=-=∠αABC , 6090=-=∠βACD ,在ABC ∆中,由正弦定理可得:()13304262230sin sin +=-⨯=∠∠=BAC ABC BC AC , 在直角ACD ∆中, 60,90=∠+∠=∠=∠CAB ABC ACD ADC所以,山的高度约为98.40米。
人教版高中数学必修五《应用举例一(测量距离)》课件
sin( )
a sin
a sin
BC
sin
180 0 ( )
sin( )
δγ
D
a
计算出AC和BC后,再在∆ABC中, 应用余弦定理计算出AB两点间的距离
AB AC2 BC2 2AC BC cos
B βα C
要选取合适的基线长度,使测量具有较高的精确度。一般 来说,基线越长,测量的精确度越高。
练习 货轮在海上以40km/h的速度由B向C航行,航行
的方位角是1400 . A处有一灯塔,其方位角是1100,在C
处观察灯塔A的方位角是350,由B到C需航行半个小时,
求C到灯塔A的距离。 1100
B
1400
A
若 测 得CD 3 km, ADB CDB 300 , 2
ACD 600 , ACB 450
解 :在ACD中,
A
B
在BCD中 , 在ABC中 ,
300 300
D
3 2
450
600
C
在测量上,我们根据测量需要适当确定的线段叫做基线, 如例1中的AC,例2中的CD。在测量过程中,要根据实际需
3.在初中我们学习过哪些测量距离的方法? 这些方法在实际应用中是否都可以实施?有没有局限性?
学习目标
1.能够运用正弦定理和余弦定理等解三角形知识,解决不可 到达点的距离测量问题。
2.激发学习数学的兴趣,并体会数学的应用价值;同时培养 运用图形、数学符号表达题意和应用转化思想解决数学问题 的能力。
A
B
δγ
D
a
α
βC
解:测量者可以在河岸边选定两点C、D,
人教A版高中数学必修五1.2 应用举例 第1课时 解三角形的实际应用举例—距离问题 教学能手示范课
AB = AC sin C sin B
解:根据正弦定理,得
AB AC sin ACB sin ABC
AB AC sin ACB 55sin ACB sin ABC sin ABC
55sin 75
55sin 75 65.7(m)
sin(180 51 75 ) sin 54
答:顶杆BC约长1.89m。
A
最大角度
C B
课堂小结
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知,画出 示意图
(2)建模:根据已知条件与求解目标,把已知 量与求解量尽量集中在有关的三角形中,建立 一个解斜三角形的数学模型
(3)求解:利用正弦定理或余弦定理有序地解 出三角形,求得数学模型的解
余弦定理:
a2 b2 c2 2bc cos A
cos A b2 c2 a2 , 2bc
b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos B c2 a2 b2 , 2ca
cos C a2 b2 c2 。 2ab
1.A B C 180
a sin
sin 180 ( ) sin( )
计算出AC和BC后,再在△ABC中,应用余弦定理计 算出AB两点间的距离
AB AC2 BC2 2AC BC cos
变式训练:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
答:A,B两点间的距离为65.7米。
B
A
D
C
例2、 如 图, A, B两 点 都 在 河 的 对 岸(不 可 到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §2.2解三角形应用举例
第一课时
授课类型:新授课
●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。
其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。
对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力
●教学重点
实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解
●教学难点
根据题意建立数学模型,画出示意图
●教学过程
Ⅰ.课题导入
1、[复习旧知]
复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?
2、[设置情境]
请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理
在科学实践中的重要应用,首先研究如何测量距离。
Ⅱ.讲授新课
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解
[例题讲解]
(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。
求A 、B 两点的距离(精确到0.1m)
启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?
启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得 ACB AB ∠sin = ABC
AC ∠sin AB = ABC ACB AC ∠∠sin sin = ABC ACB ∠∠sin sin 55=)
7551180sin(75sin 55︒-︒-︒︒= ︒︒54sin 75sin 55≈ 65.7(m) 答:A 、B 两点间的距离为65.7米
变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?
老师指导学生画图,建立数学模型。
解略:2a km
例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。
首先需要构造三角形,所以需要确定C 、D 两点。
根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,
∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得
AC = )](180sin[)sin(δγβδγ++-︒+a = )
sin()sin(δγβδγ+++a
BC = )](180sin[sin γβαγ++-︒a = )
sin(sin γβαγ++a
计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离
AB = αcos 222BC AC BC AC ⨯-+
分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒
略解:将题中各已知量代入例2推出的公式,得AB=206
评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。
学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。
Ⅲ.课堂练习
课本第14页练习第1、2题
Ⅳ.课时小结
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知,画出示意图
(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解
Ⅴ.课后作业
课本第22页第1、2、3题
●板书设计
●授后记。