数学模型(第三版)第七章
【高中数学选修第三册】第七章二项分布1
7.4 二项分布与超几何分布7.4.1 二项分布新版课程标准学业水平要求1.结合生活中的实例,了解二项分布;2.了解二项分布的均值和方差及其意义. 1.结合教材实例,了解二项分布的概念.(数学抽象)2.会利用公式求服从二项分布的随机变量的概率、均值以及方差.(数学运算)3.能利用二项分布概率模型解决实际问题.(数学建模)必备知识·素养奠基1.n重伯努利试验(1)伯努利试验:我们把只包含两个可能结果的试验叫做伯努利试验.(2)定义:我们将一个伯努利试验独立地重复进行n次所组成的随机试验称为n 重伯努利试验.(3)特征:①同一个伯努利试验重复做n次;②各次试验的结果相互独立.定义中“重复”的含义是什么?提示:“重复”意味着各次试验成功的概率相同.2.二项分布(1)定义:一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P=p k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布.(2)记法:X~B.(3)结论:P=1.(4)确定一个二项分布模型的步骤:①明确伯努利试验及事件A的意义,确定事件A发生的概率p;②确定重复试验的次数n,并判断各次试验的独立性;③设X为n次独立重复试验中事件A发生的次数,则X~B.3.二项分布的均值与方差如果,X~B,那么E=np,D=np.1.思维辨析(对的打“√”,错的打“×”)(1)依次投掷四枚质地不同的骰子,点数1出现2次的试验是4重伯努利试验.( )(2)若随机变量X~B,则X=1,2,…,n.()(3)若随机变量X~B,则P=·p k.( )提示:(1)×.因为骰子的质地不同,点数1出现的概率不同,因此不是4重伯努利试验.(2)×.X=0,1,2,…,n.(3)×.P=p k,k=0,1,2,…,n.2.(2020·钦州高二检测)某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为( )A. B. C. D.【解析】选C.某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为P=×=.3.某一批植物种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是( )A. B. C. D.【解析】选C.由n重伯努利试验恰有k次发生的概率公式得:P==.关键能力·素养形成类型一求n重伯努利试验的概率【典例】1.(2020·临汾高二检测)随着二胎政策的开放,越来越多中年女性选择放下手中的工作,为二胎做准备.某公司为了使广大中年女性安心备孕,且不影响公司的正常效益,对公司所有中年女性进行生育倾向调查.已知该公司共有6名中年女性,若每名中年女性倾向于生二胎的概率为,且各名中年女性之间不相互影响,则恰有4位中年女性倾向生二胎的概率为( )A. B. C. D.2.(2020·丰台高二检测)某篮球运动员在训练过程中,每次从罚球线罚球的命中率是,且每次罚球的结果相互独立.已知该名篮球运动员连续4次从罚球线罚球.(1)求他第1次罚球不中,后3次罚球都中的概率;(2)求他4次罚球恰好命中3次的概率.【思维·引】1.转化为6重伯努利试验,一次试验发生的概率为;2.(1)利用概率的乘法公式计算;(2)利用4重伯努利试验的概率公式计算.【解析】1.选C.依题意,所求概率为··=15××=.2.(1)设该篮球运动员第1次罚球不中,后3次罚球都中为事件A,则第i(i=1,2,3,4)次罚球命中为事件B i,则A=B2B3B4;因为每次罚球的结果相互独立,所以所求的概率为P(A)=P()P(B2)P(B3)P(B4)=×××=.(2)因为该名篮球运动员4次罚球恰好命中次数X是一个随机变量,则X~B,所以所求的概率为P(X=3)=··=.【内化·悟】你能列举出几个常见的n重伯努利试验的例子吗?提示:(1)反复抛掷一枚质地均匀的硬币.(2)正(次)品率的抽样.(3)有放回抽样.(4)射手射击目标命中率已知的若干次射击.【类题·通】关于n重伯努利试验概率的计算首先要判断是否符合n重伯努利试验的特征,其次求出一次试验的概率,最后用n 重伯努利试验的概率公式计算.【习练·破】某人射击一次击中目标的概率为0.6,经过3次射击,设X表示击中目标的次数,则P(X≥2)等于________.【解析】击中目标的次数X≥2,则击中次数为3次或2次.P(x=3)=0.63=,P(x=2)=0.62×0.4=,所以P(x≥2)=P(x=3)+P(x=2)=.答案:类型二求服从二项分布的随机变量的分布列【典例】某商场为了了解顾客的购物信息,随机在商场收集了100位顾客购物的相关数据如表:一次购物款[0,50) [50,100) [100,150) [150,200) [200,+∞) (单位:元)顾客人数20 a 30 20 b统计结果显示100位顾客中购物款不低于150元的顾客占30%,该商场每日大约有4 000名顾客,为了增加商场销售额度,对一次购物不低于100元的顾客发放纪念品.(1)试确定a,b的值,并估计每日应准备纪念品的数量;(2)现有4人前去该商场购物,求获得纪念品的数量ξ的分布列.【思维·引】(1)先计算购物款不低于150元的人数,再求b,a.(2)先计算1人获得纪念品的概率,再利用4重伯努利试验求概率、分布列.【解析】(1)由已知,100位顾客中购物款不低于150元的顾客有b+20=100×30%,b=10;a=100-(20+30+20+10)=20.该商场每日应准备纪念品的数量大约为4 000×=2 400.(2)由(1)可知1人购物获得纪念品的频率即为概率P==,故4人购物获得纪念品的数量ξ服从二项分布ξ~B,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,所以ξ的分布列为:ξ0 1 2 3 4P【内化·悟】利用二项分布求分布列的步骤是什么?提示:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n,p→写出二项分布的分布列→将k值代入求解概率.【类题·通】关于利用二项分布求分布列(1)关键是确定随机变量服从二项分布,以及二项分布中的相关参数;(2)利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【习练·破】高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【解析】(1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X,则P(X=3)=××=,P(X=4)=××=,P(X=5)=××=.所以至少有3次发芽成功的概率P=P(X=3)+P(X=4)+P(X=5)=++==.(2)随机变量ξ的可能取值为1,2,3,4,5.P(ξ=1)=,P(ξ=2)=×=,P(ξ=3)=×=,P(ξ=4)=×=,P(ξ=5)=×1=.所以ξ的分布列为:ξ 1 2 3 4 5P【加练·固】在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X,求X不小于4的概率. 【解析】(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为··+,所以所求的概率为1-=.(2)当X=4时记为事件A,则P(A)=···=.当X=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B则P(B)=··+=,所以射击次数不小于4的概率为+=.类型三二项分布模型的应用角度1 求均值、方差【典例】(2020·广州高二检测)已知随机变量X~B,那么随机变量X的均值E(X)=( )A. B. C.2 D.【思维·引】利用二项分布的均值公式计算.【解析】选B.因为随机变量X~B,所以E(X)=4×=.答案:【素养·探】★本例考查二项分布的均值、方差的公差计算,同时考查了数学运算的核心素养.本例若随机变量X~B(n,p),若E(ξ)=3,D(ξ)=2,求n的值.【解析】因为随机变量X~B(n,p),所以E(ξ)=np,D(ξ)=np(1-p),因为E(ξ)=3,D(ξ)=2,所以np=3①;np(1-p)=2②.把①代入②得到1-p=,所以p=,把p的值代入①,得到n=9.答案:9角度2 解决实际问题【典例】(2020·海口高二检测)假定人们对某种特别的花粉过敏的概率为0.25,现在检验20名大学生志愿者是否对这种花粉过敏.(1)求样本中恰好有两人过敏的概率及至少有2人过敏的概率;(2)要使样本中至少检测到1人过敏的概率大于99.9%,则抽取的样本容量至少要多大?(3)若检验后发现20名大学生中过敏的不到2人,这说明了什么?试分析原因. 附:0.7518=0.005 6,0.7519=0.004 2,0.7520=0.003,lg 0.75=-0.124 9.【思维·引】(1)利用对立事件简化概率计算;(2)利用概率公式列出不等式,通过对数运算求样本容量的范围;(3)从假设、抽样检验的科学性分析.【解析】(1)设样本中对花粉过敏的人数为X,则X~B(20,0.25),所以P(X=2)=×0.252×0.7518=0.067,P(X≥2)=1-P(X=0)-P(X=1)=1-0.7520-×0.25×0.7519=1-0.003-0.021=0.976.所以样本中恰好有两人过敏的概率为0.067,至少有2人过敏的概率为0.976.(2)设样本容量为n,该样本中检测到对花粉过敏的人数为Y,则Y~B(n,0.25), 所以P(Y≥1)=1-P(Y=0)=1-0.75n>99.9%,解得0.75n<0.001,取对数得nlg0.75<-3,解得n>=24.02,所以抽取的样本容量至少为25人.(3)由(1)知检验的20人中不到2人过敏的概率为1-0.976=0.024,此概率非常小,在正常情况下一次试验中几乎不会发生,出现这种情况的原因可能有:①原假设不成立,即每个人对这种花粉过敏的概率不到0.25.②检验的样本只针对大学生,没有随机性.③检验的环节出现了问题.【类题·通】关于二项分布的应用(1)若随机变量符合二项分布,则可直接利用公式求均值和方差;(2)在一些综合性的问题中,二项分布模型要与其他的概率知识,如独立事件同时发生,抽样等知识相结合应用.解题过程中要分清随机变量取值的实际意义,利用相关的概率知识解题.【习练·破】甲、乙两人进行投篮比赛,两人各投3球,谁投进的球多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未进条件下,甲最终获胜的概率.【解析】(1)甲投进2球的概率是×=,乙投进1球的概率是×=.所以甲投进2球且乙投进1球的概率为×=.(2)甲第一次未进最终获胜的情况有:①甲后2球都投进,乙投进1球或都不进: P1=×·=×=.②甲后2球进1球,乙都不进.P2=×××=×=,所以甲第一次投篮未进,最终获胜的概率为P1+P2=.课堂检测·素养达标1.下列随机变量X不服从二项分布的是( )A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n次数据电脑被病毒感染的次数【解析】选B.选项A,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为,每一次试验都是独立的,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率相等,进行5局比赛,相当于进行了5次独立重复试验,故X服从二项分布;选项D,由二项分布的定义,可知被感染次数X~B(n,0.3).2.在比赛中运动员甲获胜的概率是,假设每次比赛互不影响,那么在五次比赛中运动员甲恰有三次获胜的概率是( )A. B. C. D.【解析】选B.由n次独立重复试验的概率计算公式,得·=.3.现有5个人独立地破译某个密码,已知每人单独译出密码的概率均为p,且<p<1,则恰有三个人译出密码的概率是( )A.p3B.p2(1-p)3C.p3(1-p)2D.1-(1-p)2【解析】选C.由题意可知,恰有三个人译出密码的概率P=p3(1-p)2.4.为响应国家“足球进校园”的号召,某校成立了足球队,假设在一次训练中,队员甲有10次的射门机会,且他每次射门踢进球的概率均为0.6,每次射门的结果相互独立,则他最有可能踢进球的个数是( )A.5B.6C.7D.8【解析】选B.某校成立了足球队,假设在一次训练中,队员甲有10次的射门机会,且他每次射门踢进球的概率均为0.6,每次射门的结果相互独立,他踢进球的个数X~B(10,0.6),E(X)=10×0.6=6,则他最有可能踢进球的个数是6.5.设X~B(4,p),且P(X=2)=,那么一次试验成功的概率p是________.【解析】P(X=2)=p2(1-p)2=,即p2(1-p)2=,解得p=或p=.答案:或【新情境·新思维】设随机变量Y满足Y~B,则函数f(x)=x2-4x+4Y无零点的概率是( ) A. B. C. D.【解析】选A.因为函数f(x)=x2-4x+4Y无零点,所以Δ=(-4)2-4×1×4Y<0,所以Y>1,所以P(Y>1)=P(Y=2)+P(Y=3)+P(Y=4)=++=.。
《数学建模》课程教学大纲
《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。
通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。
三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。
基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。
2、教学重点:数学建模的基本方法和步骤。
3、教学难点:数学建模初步能力的培养。
第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。
基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。
能运用所学知识建立数学模型,并对模型进行综合分析。
2、教学重点:比例方法建模,类比方法建模。
3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。
掌握较简单的优化模型的建立和解法。
2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。
新教材2023年高中数学第七章随机变量及其分布列7
[规律方法] 应用乘法公式的关注点 1.功能:已知事件A发生的概率和事件A发生的条件下事件B发生的 概率,求事件A与B同时发生的概率. 2 . 推 广 : 设 A , B , C 为 三 个 事 件 , 且 P(AB) > 0 , 则 有 P(ABC) = P(C|AB)P(AB)=P(C|AB)P(B|A)P(A).
[解析] (1)令事件 A={取得蓝球},B={取得蓝色 E 型玻璃球}.
解法一:∵P(A)=1116,P(A∩B)=146=14,
1 ∴P(B|A)=PPA∩AB=141=141.
16
解法二:∵n(A)=11,n(A∩B)=4,
∴P(B|A)=nnA∩AB=141.
题型二
概率的乘法公式
典例2 (1)已知P(A)=0.4,P(B)=0.5,P(A|B)=0.6,则P(B|A)= ___0_._7_5__;
及格的概率是
( A)
A.51
B.130
C.12
D.31
[解析] 设 A 为事件“数学不及格”,B 为事件“语文不及格”, P(B|A)=PPAAB=00..0135=15,所以当数学不及格时,该学生语文也不及格的 概率为15.
2.某人忘记了一个电话号码的最后一个数字,只好去试拨,他第一
次失败、第二次成功的概率是
(2)某市场供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂 产品的合格率是95%,乙厂产品的合格率为80%,则买到一个甲厂的合 格灯泡的概率为___0_.6_6_5___.
[解析] (1)∵P(A)=0.4,P(B)=0.5,P(A|B)=0.6, ∴ P (AB)= P (B) ·P (A|B) =0.5×0.6=0.3. ∴P(B|A)=PPAAB=00..34=0.75. (2)记事件 A 为“买到甲厂产品”,事件 B 为“买到合格产品”,则 P(A)=70%,P(B|A)=95%,所以 P(AB)=P(A) ·P(B|A)=70%×95%=0.665.
韩伯棠管理运筹学第三版-第七章-运输问题分析ppt课件.ppt
B1 B2 B3 产量
A1 6 4 6
200
A2 6 5 5 销量 250 200 200
300 500
650 23
B1 B2 B3
产量
A1
6
4
6
200
A2
6
5
5
销量 250 200 200
300 500
650
解:增
B1 B2 B3
加一个 A1 6 4 6
虚设的 A2 6 5 5
产地运 A3 0 0 0 输费用 销量 250 200 200
6
4 6 200
A2
6
5 5 300
销量 150 150 200
B1
B2
B3 产量
A1
x11
x12
x13 200
A2
x21
x22
x23 300
销量 150 150 200
Min f = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23
A1 A2 销量
B1 6 6 150
B2 4 5 150
§2
运输问题的计算机求解
运行管理运筹学计算机软件:
点击运输问题模块
14
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
§2
运输问题的计算机求解
点击新建
选择Min
输入3
输入4
点击确定
15
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
第七章交通量速度和密度之间的关系
由格林希尔茨线性模型 vs v f (1 K K j ) b aK 有: b=Vf=80, a=Vf/Kj=80/96, V=80-80/96*30=55 Km/h Q=KV=30*55=1650辆/小时 Q=KV= K(b-aK), 令dQ/dK=b-2aK=0,得Km=48辆/Km,则 Vm=80-80/96*48=40 Km/h Qm=Km Vm=48*40=1920辆/小时
【 例 5】
HYIT
思考题
1、交通流三参数间有什么关系?有哪些特征变量? 2、描述交通量、密度、速度之间的相互关系。 3、在一条24km长的公路段起点断面上,在5min内测得60辆 汽车,车流量是均匀连续的,车速V=30km/h,试求交通 量Q,车头时距ht,车头间距hs,密度K以及第一辆车通过 该路段所需的时间t。 4、在交通流模型中,假定速度V和密度K之间的关系式为 V=a(1-bK)2, 试依据两个边界条件,确定系数a、b值,并 导出速度与流量、速度与密度的关系式。
HYIT
§7-4 流量-速度关系
特征描述
Q与v为二次函数关系 • K、Q较小时,v vf K、Q↑, v vm(临界速度) • 车流密度继续增大K ↑ ↑ , Q↓, v ↓; K=Kj时,Q=0、v=0。
HYIT
流量-速度-密度关系
从格林希尔茨的速度—密度模型、流量—密度模型、
速度—流量模型可以看出,Qm、Vm和Km是划分交通是否 拥挤的重要特征值。 当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤; 当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。
研究基础
交通量 vph or vphl 速度 区间平均速度 kmph (or mph) 密度 vpkm(or vpm) or vpkml(or vpml) 交通流为连续流 没有外部固定因素(如交通信号)影响的不间断 的交通流。 A Q、V、K? LAB B
第七章 化归、反演、模型方法
4 而 sin x cos x 1 sin x cos x 2 1 1 (t 2 1), 2 2
a 2 at 于是, y=f(t)
1 1 2 1 2 (t a ) a . 2 2 2
1 2 1 1 (t 1) t 2 at a 2 2 2 2
四、等与不等的转化与化归 例4 若f(x)是定义在R上的函数,对任意实数x都 有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,则 f(2010)= . 思维启迪 通过两个不等关系,转化为f(x+1)= f (x)+1这个等量关系. 解 ∵f(x+1)≤f(x+3)-2≤f(x)+3-2=f(x)+1,
ax4+bx2+c=0(a≠0)
通过换元,化归为一元二次方程就是将该问 题模式化,规范化。
化归方法包括三个要素: 化归对象------即把什么东西进行化归;
化归目标-------即化归到何处去;
化归途径-------如何进行化归。
上面所举的例子中,
化归的对象----双二次方程; 化归的目标----一元二次方程;
1 或x 8, 2
∴x的取值范围是 (0, 1 ) (8, ).
2
二、正难则反的转化与化归
例2 已知三条抛物线:y=x2+4ax-4a+3, y=x2+(a1)x+a2, y=x2+2ax-2a 中至少有一条与x轴相交,求
实数a的取值范围.
思维启迪 三条抛物线中至少有一条与 x 轴相交 的情况比较多,反面为三条抛物线与x轴都不相 交,只有一种情况. 解 令y=0,由
数模第三版习题答案解读
《数学模型》作业解答第一章(2008年9月9日)4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .8. 假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,单位时间内人口的增量与)(t x x m -成正比(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果比较.解:现考察某地区的人口数,记时刻t 的人口数为()t x (一般()t x 是很大的整数),且设()t x 为连续可微函数.又设()00|x t x t ==.任给时刻t 及时间增量t ∆,因为单位时间内人口增长量与)(t x x m -成正比, 假设其比例系数为常数r .则t 到t t ∆+内人口的增量为:()()()t t x x r t x t t x m ∆-=-∆+)(. 两边除以t ∆,并令0→∆t ,得到⎪⎩⎪⎨⎧=-=0)0()(x x x x r dtdxm 解为rtm m e x x x t x ---=)()(0如图实线所示,当t 充分大时 m x 它与Logistic 模型相近.0x t9.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面 或反面思考.试尽可能迅速回答下面问题:(1) 某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿. 次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经 过路径中的同一地点.为什么?(2) 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者 进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?(3) 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻 不一定相同.甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,仅约10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(4) 某人家住T 市在他乡工作,每天下班后乘火车于6:00抵达T 市车站,他的 妻子驾车准时到车站接他回家,一日他提前下班搭早一班火车于5:30抵T 市车站,随即步行回家,他的妻子象往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常 提前了10分钟.问他步行了多长时间?(5) 一男孩和一女孩分别在离家2 km 和1 km 且方向相反的两所学校上学,每天 同时放学后分别以4 km/h 和2 km/h 的速度步行回家.一小狗以6 km/h 的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中,问小狗奔波了多少路程?如果男孩和女孩上学时小狗也往返奔波在他们之间,问当他们到达学校时小狗在何处?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标, 第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点.方法二:设想有两个人, 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. 0d t早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.(3)不妨设从甲到乙经过丙站的时刻表是8:00,8:10,8:20,…… 那么从乙到甲经过丙站的时刻表应该是8:09,8:19,8:29……(4)步行了25分钟.设想他的妻子驾车遇到他后,先带他前往车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车多跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻应该是5:55.(5)放学时小狗奔跑了3 km .孩子上学到学校时小狗的位置不定(可在任何位置),因为设想放学时小狗在任何位置开始跑,都会与孩子同时到家.之所以出现位置不定的结果,是由于上学时小狗初始跑动的那一瞬间,方向无法确定.10*. 某人第一天上午9:00从甲地出发,于下午6:00到达乙地.第二天上午9:00他又从乙地出发按原路返回,下午6:00回到甲地.试说明途中存在一点,此人在两天中同一时间到达该处.若第二天此人是下午4:00回到甲地,结论将如何?答:(方法一)我们以甲地为始点记路程,设从甲地到乙地的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从乙地到甲地的路函数为)(t g ,并设甲地到乙地的距离为a (a >0).由题意知:,0)9(=f a f =)18(,a g =)9(,0)18(=g . 令)()()(t g t f t h -=,则有0)9()9()9(<-=-=a g f h ,0)18()18()18(>=-=a g f h 由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]18,9[0∈∃t ,使0)(0=t h ,即)()(00t g t f =. 若第二天此人是下午4:00回到甲地,则结论仍然正确,这是因为0)9()9()9(<-=-=a g f h ,0)16()16()16()16(>=-=f g f h .(方法二)此题可以不用建模的方法,而变换角度考虑:设想有两个人,一人从甲地到乙地,另一人从乙地到甲地,同一天同时出发,沿同一路径,必定相遇.若第二天此人是下午4:00回到甲地,则结论仍然正确.《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 rc c T 21*2= ⎩⎨⎧==---22/112/112/12/1ππk g m l g tl由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆ni Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 925002+-=TdT dC又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物 体积(立方米/箱)重量 (百斤/箱)利润 (百元/箱)甲 5 2 20 乙4510已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值 由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和32ll1x1l2x个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明:(1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N . 2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h Ex()x f由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max Nx rx h -=,易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2<αβ与207P 的结果一致. (2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.。
自动控制原理(第三版)第七章线性离散系统分析与设计
要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
第七章 离散系统的数学模型
第四节 离散系统的数学模型
例
系统结构如上图所示,求G(z).
-1)G (z) 1 1 G ( z ) = (1 -z G1(s)= S(S+1) G2(s)=2S2(S+1) T = 1S (z-1) z[(z-e-1)-(-Ts z-1)( z-e-1) + (z-1)2] (1-e ) 2 1 = 解: -1) z · G(s)= ( z-1) S (z-e (S+1) S e-1z+(1-2e-1) 0.386 z +0.264 1 1 1 1 = = 1 ] 2-1.368 ] + = Z [ G2(z)(= Z[ z-e z-1)( ) z z+ 0.386 S+1 S S2 S2(S+1)
四、开环系统的脉冲传递函数
采样系统的脉冲传递函数的求取与 连续系统求传递函数类似。但脉冲传递 函数与采样开关的位置有关。当采样系 统中有环节串联时,根据它们之间有无 采样开关,其等效的脉冲传递函数是不 相同的。
第四节 离散系统的数学模型
1.串联环节间无采样开关
G1(s)和G2(s)的两个环节相串联如图:
n阶离散定常系统脉冲传递函数为: b0 b1 z 1 bm1 z ( m1) bm z m C( z) G( z ) R( z) 1+a1 z 1 a2 z 2 an1 z ( n1) an z n
第四节 离散系统的数学模型
例:已知差分方程 c(k ) r (k ) 5c(k 1) 6c(k 2) 输入序列r(k)=1,初始条件c(0)=0,c(1)=1,试用迭代法求 输出序列c(k),k=0, 1, 2, · · · , 10。 解:根据初始条件及递推关系,得 c ( 0) 0
数学模型第三版课后习题答案
《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L 齐次线性方程组为:它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即 的基本解为 得到两个相互独立的无量纲量 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组 的基本解为得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mgkl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为又 ( ∴ T =0于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为 又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l 以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为 这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值. 由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f (1)快速静脉注射: 设给药量为0D .t k - (2)恒速静脉滴注(持续时间为τ): 设滴注速率为,00,000==C k t f k ,则解得(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42N hr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xN rx ∴r ENe x -=0,01=x . ∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 rE ENeh -=dE dh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-=则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 等都是完全路径.此竞赛图的邻接矩阵为令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==,()()()TAS S 5,4,2,3,412==, ()()()TAS S 9,7,4,6,723==,()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层 准则层方案层2.成哪3答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为当mn2较小,1 n 时,有 E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为 ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章 1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型2. 数学模型对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中著名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型。
数学模型第三版(高等教育出版社)课后习题答案
设曲线 和 相交于点 ,在点 附近可以用直线来近似表示曲线 和 :
----------------------(1)
--------------------(2)
从上述两式中消去 可得
, -----------(3)
上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.
《数学模型》作业解答
第七章(2008年12月4日)
1.对于7.1节蛛网模型讨论下列问题:
(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 时段的价格 由第 和第 时段的数量 和 决定,如果仍设 仍只取决于 ,给出稳定平衡的条件,并与7.1节的结果进行比较.
(2)若除了 由 和 决定之外, 也由前两个时段的价格 和 确定.试分析稳定平衡的条件是否还会放宽.
答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验.对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.
售出报纸数 (百份)
0
1
2
3
4
5
概率
0.05
0.1
0.25
0.35
0.15
0.1
试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?
解:设每天订购 百份纸,则收益函数为
收益的期望值为G(n) = +
现分别求出 = 时的收益期望值.
高等数学第七章.ppt
规
划
a11x1+a12x2+…+a1nxn=b1
(1)
的
a21x1+a22x2+…+a2nxn=b2
(2)
标
准
……
型
am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为
一
max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法
第
一
节
线
《经济大词典》定义线性规划:一种
性
具有确定目标,而实现目标的手段又有
规
一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。
的
基
本
原
理
二、线性规划三要素
第
第7章潮流计算的数学模型及基本解法
2013-1-10
7
综上所述,若选第N个节点为平衡节点,剩下n个节点(n=N-1) 中有r个节点是PV节点,则有n-r个节点是PQ节点。因此除了平衡 节点外,有n个节点注入有功功率,n-r个节点注入无功功率以及r 个节点的电压幅值是已知量。 在直角坐标系,待求的状态变量共2n个,用
x e
T
f
T T
代入(7-10)式,经整理后有
Vn D I n Ys Vs L Vn U Vn 1
2013-1-10
(7-11)
12
考虑到电流和功率的关系式,上式写成迭代格式为
( k 1)
Vi
i -1 n ( k) ( k) 1 Si Ys Vs Yij V j Yij V j i 1,2, ,n Yii j1 ji 1 k Vi
Vn Y(I n Ys Vs )
-1 n
(7-14)
上式也可以写成
Vn Z(I n Ys Vs ) n
~
~
(7-15)
其中 Z n 是 Yn 的逆矩阵,即以平衡节点为电压 给定节点建立的节点阻抗矩阵。
二、关于高斯法的讨论
对于形如
f x 0
(7-16)
的非线性代数方程组,总可以写成 x x
故有
(7-4)
Pi ei ai f i bi Q f a e b i i i i i
Vi Vi
i 1,2,……, N
(7-5)
式(7-4)和式(7-5)是直角坐标系表示的潮流方程。 如果节点电压用极坐标表示,即令
第七章 自动规划
湖南科技大学计算机学院
戴祖雄
2
机器人规划(robot planning)是机器人学的一个重要研究领域, 也是人工智能与机器人学的一个令人感兴趣的结合点。已经研 究出一些机器人高层规划系统。其中,有的系统把重点放在消解 原理证明机器上,它们应用通用搜索启发技术,以逻辑演算表示 期望目标。STRIPS和ABSTRIPS就属于这类系统。这种系统把世 界模型表示为一阶谓词演算公式的任意集合,采用消解反演 (resolution refutation)来求解具体模型的问题,并采用中间结局分析 (means-ends analysis)策略来引导求解系统达到所要求的目标。另 一种规划系统采用管理式学习(supervised learning)来加速规划过 程,改善问题求解能力。PULP-1即为一类具有学习能力的规划系 统,它是建立在类比基础上的。PULP-1系统采用语义网络来表示 知识,比用一阶谓词公式前进了一步。进入20世纪80年代以来, 又开发出其他一些规划系统,包括非线性规划、应用归纳的规划 系统和分层规划系统等。专家系统已应用于许多不同层次的机 器人规划,这是一个较新的研究课题。随着Agent研究的深入,近 年来又提出了基于Agent的规划。
人工智能及其应用
(第三版)
研究生用书
蔡自兴
第七章 自动规划
自动规划(automatic planning)是一种重要的问题 求解技术,它从某个特定的问题状态出发,寻求一系列 行为动作,并建立一个操作序列,直到求得目标状态为 止。与一般问题求解相比,自动规划更注重于问题的求 解过程,而不是求解结果。此外,规划要解决的问题,如 机器人世界问题,往往是真实世界问题,而不是比较抽 象的数学模型问题。自动规划系统与专家系统均属于 高级求解系统与技术。 在研究自动规划时,一般都以机器人规划与问题求 解作为典型例子加以讨论。这不仅是因为机器人规划 是自动规划最主要的研究对象,更因为机器人规划能够 得到形象的和直觉的检验。有鉴于此,往往把自动规划 称为机器人规划。机器人规划的原理、方法和技术,可 以推广应用至其他规划对象或系统。
第七章 响应面设计法
例1:某药物毫微球包封率的 优化
• 已知在155F下蒸发35分钟,得到的包封
率是40%。
为
•
设首次优化区间为(150,160F)、 (30,40分)
什 么 除
• 自变量规范化:
以 5
• 采用22析因设计(加5个中心对照点)?
• 通过中心对照点检验弯曲性,拟合一阶 方程,对模型进行统计检验
• 2因素的等径设计(Equiradial design for 2 factors)
• 大于2因素的等径设计(Equiradial design for more than 2 factors)
一、2因素等径设计
• 按单纯形形状可以分为:三角形Triangle、正方形square、正五 边形pentagon和正六边形hexagon四种。
否定先前的模型是没有根据的放弃模型不用更是不应该的欲发现真正的最优试验条件调整试验范围是必f检验给出的显著性与否是判断回归模型是否有效的当然依据一般情况下回归平方和与剩余平方和的比值越大则模型的可信度愈高表现在复相关系数或相关系数上r数值就越大一元线性回归分析常用相关系数表述相关关系的大小且r值可正可负但是建模的过程中我们不能简单地追求高的回归平方和与剩余平值模型的建立一定要根据专业的知识进行数理统计中一个重要的概念是自由度若选进方程中的项过多使误差自由度为1甚至为0虽然r2更加接近于1模型看上去很完美但这时有关的结论的可靠性是很差的
最速上升(或下降)法步骤
• 确定优化区域:x1(x1i,x1j),….. xn(xni,xnj) • 将自变量范围规范在(-1,1)之间 • 根据试验(如析因设计)结果确定线性模型 • 假定x1=x2=…..=xn=0为原点或基点 • 选取一个过程变量的步长△xj,通常以回归系数绝对
数学第三节第七章模型或原型的制作教案
数学第三节第七章模型或原型的制作教案第三节制作模型【教材版本】通用技术必修1《技术与设计1》(江苏教育出版社)【设计理念】以“做中学、学中做”为落脚点,让学生在动手实践的过程中体验产品设计的一般过程,经历挫折和失败,品味成功的喜悦,感受“想”与“做”的差异,激发技术设计的灵感。
【教材分析】立足实践是通用技术课程的一个特色。
学生亲历技能学习的实践过程,从中可以体验和领悟技术操作的要领和方法。
《制作模型》是苏教版第七章《模型或原型的制作》动手操作的章节,其内容也包含着思想和方法,模型或原型的制作是技术设计的重要环节,它对学生掌握技术设计的过程,实现方案到产品的转化具有重要作用。
这一节课要上得好,有利于激发学生对以后学习有很大的影响。
本节内容是本教材中学生亲历动手操作实践最多的章节,是学生经过发现和明确问题、方案构思、方案呈现等设计环节后,把抽象的纸介设计实体化的过程,是极大激发学生兴趣、和创造力的过程,其过程不仅包含着技术及其设计的重要思想和方法,还蕴藏着能迁移到学生日常生活、学习等广泛领域的思想和方法,况且模型或原型的制作还是技术设计的重要环节,它对技术设计中的测试、试验、评估交流起着实体化的支撑。
故本节课应属于本章的重点章节;教材在介绍了制作模型的一般步骤后,以三组台灯的制作加工过程为例展开,由于其既不能吸引学生,也很难激发学生的创造欲望。
为了加强书中内容前后章节的连贯与交融,本章的制作项目选择了多功能学习用品盒(架)作为示例。
它以生动形象的方式向学生展示了模型的制作过程。
多功能学习用品盒(架)案例贴近学生实际,让学生在亲切自然的氛围中获得知识。
【学情分析】学生对模型概念有一定的认识如:生物中所用的人体模型、人体器官的模型,物理中用到的弹簧振子等模型。
本节应指导学生运用前面所学的知识,选择合理的加工工艺,完成一个简单产品模型或原型的制作,并对产品的外观,加以润色。
由于学生的动手能力不同,应加强巡视和指导,并强调操作的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
记 b r 1
(1)的平衡点y*=N
r 1 1 (2)的平衡点 x r 1 b
讨论 x* 的稳定性
补充知识
一阶非线性差分方程 xk 1 f ( xk ) (1) 的平衡点及稳定性 (1)的平衡点 x*——代数方程 x=f(x)的根
xk 1 f ( x* ) f ( x* )(xk x* ) (2) (1)的近似线性方程
1 经济稳定
结果解释
经济不稳定时政府的干预办法
y y0 0 y g f g f x
1. 使 尽量小,如 =0 需求曲线变为水平
以行政手段控制价格不变
2. 使 尽量小,如 =0
供应曲线变为竖直
靠经济实力控制数量不变
0 x0 x
模型的推广 生产者管理水平提高
• 生产者根据当前时段和前一时段 的价格决定下一时段的产量.
由假设2知,某甲是代谢消耗相当弱的人。
1)不运动情况的两阶段减肥计划
• 第一阶段: w(k)每周减b千克, c(k)减至下限10000千卡
w(k ) w(k 1) b
c(k 1) 1
w(k 1) w(k ) c(k 1) w(k )
w(k ) w(0) bk
1 8000 0.025
[ w(k ) b]
b c(k 1) w(0) (1 k )
12000 200 k Cm 10000
k 10
第一阶段10周, 每周减1千克,第10周末体重90千克 吸收热量为 c(k 1) 12000 200k , k 0,1,,9
第七章
差分方程模型
7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长
7.1 市场经济中的蛛网模型
供大于求 价格下降
商品数量与价格在振荡 增加产量 价格上涨 供不应求
减少产量
现 象
问 题 • 商品数量与价格的振荡在什么条件下趋向稳定?
Kf
1/ K g
结果解释 结果解释
考察 , 的含义
xk~第k时段商品数量;yk~第k时段商品价格.
yk y0 ( xk x0 )
~ 商品数量减少1单位, 价格上涨幅度
xk 1 x0 ( yk y0 )
~ 价格上涨1单位, (下时段)供应的增量 ~ 消费者对需求的敏感程度 ~ 生产者对价格的敏感程度 小, 有利于经济稳定 小, 有利于经济稳定
1 b 3
x* 不稳定
y
1 x 1 b
*
稳定性
f ( x* ) b(1 2 x* ) 2 b
f ( x * ) 1
f (0) b 1
x* 稳定 不稳定
b 3 ( f ( x * ) 1)
yx
xk 1 x0 ( ) k ( x1 x0 ) xk 1 x0 ( xk x0 )
1 ( 1 / )
xk x0 xk
P0稳定 K f K g P0不稳定 K f K g
1 ( 1 / )
方程模型与蛛网模型的一致
二阶线性常系数差分方程 x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2xk 2 xk 1 xk 2(1 ) x0
k xk c11 c2 k (c1, c2由初始条件确定) 方程通解 2
1, 2~特征根,即方程 2 0 的根
1)不运动情况的两阶段减肥计划
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克 基本模型 w(k 1) w(k ) c(k 1) w(k )
w(k 1) (1 )w(k ) Cm
w(k n) (1 )n w(k ) Cm[1 (1 ) (1 )n1 ]
n
已知 w(k ) 90, 要求 w(k n) 75, n 求
75 0.975 (90 50) 50
n
lg(25 / 40) n 19 lg 0.975
第二阶段19周, 每周吸收热量保持10000千卡, 体重按
w(n) 40 0.975 50 (n 1,2,19) 减少至75千克.
讨论平衡点的稳定性,即k, ykN ?
离散形式阻滞增长模型的平衡点及其稳定性
yk yk 1 yk ryk (1 ) (1) N
变量 代换
r yk 1 (r 1) yk 1 yk (r 1) N
r xk yk ( r 1) N
xk 1 bxk (1 xk ) (2)
0.025 0.003 0.028 Cm Cm n w( k n ) (1 ) [ w( k ) ] 75 0.972n (90 44.6) 44.6 n 14
运动 t=24 (每周跳舞8小时或自行车10小时), 14周即可.
2
平衡点稳定,即k, xkx0的条件:
1, 2 1
2
( ) 8 1, 2 4
2
1, 2
平衡点稳定条件
2
比原来的条件
1 放宽了!
7.2 减肥计划——节食与运动
背 景
• 体重指数BMI=w(kg)/l2(m2). 18.5<BMI<25 ~ 正常; BMI>25 ~ 超重; BMI>30 ~ 肥胖. • 多数减肥食品达不到减肥目标,或不能维持. • 通过控制饮食和适当的运动,在不伤害身体 的前提下,达到减轻体重并维持下去的目标.
曲线斜率
P3
K f Kg
P1 x1 x
y0 0
K f Kg
P2
x2 x0 x3
方程模型
在P0点附近用直线近似曲线
yk f ( xk )
yk y0 ( xk x0 ) ( 0) xk 1 x0 ( yk y0 ) ( 0)
xk 1 h( yk )
蛛 网 模 型 yk f ( xk ) xk 1 h( yk ) yk g ( xk 1 ) x1 y1 x2 y2 x3 设x1偏离x0 xk x0 , yk y0 xk x0 , yk y0
P0是不稳定平衡点
P3 f P0 P1 x0 x g P4
• 当不稳定时政府能采取什么干预手段使之稳定?
• 描述商品数量与价格的变化规律.
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格.
消费者的需求关系
生产者的供应关系
y
需求函数 yk f ( xk )
减函数
供应函数 xk 1 h( yk ) 增函数
yk g ( xk 1 )
f g P0 x0
n
2)第二阶段增加运动的减肥计划 根据资料每小时每公斤体重消耗的热量 (千卡): 跑步 7.0 跳舞 3.0 乒乓 4.4 自行车(中速) 游泳(50米/分) 2.5
7.9 模型 w( k 1) w( k ) c ( k 1) w( k ) t t~每周运动时间(小时) =1/8000(千克/千卡), =0.025 取t=0.003, 即t=24
3)达到目标体重75千克后维持不变的方案
每周吸收热量c(k)保持某常数C,使体重w不变
w(k 1) w(k ) c(k 1) ( t )w(k ) w w C ( t )w
C ( t )w
• 不运动 C 8000 0.025 75 15000(千卡) • 运动(内容同前) C 8000 0.028 75 16800(千卡)
xk 1 h( yk )
yk yk 1 xk 1 h 2
设供应函数为 xk 1 x0 [( yk yk 1 ) / 2 y0 ]
需求函数不变
yk y0 ( xk x0 )
2xk 2 xk 1 xk 2(1 ) x0 , k 1,2,
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克.
1)在不运动的情况下安排一个两阶段计划. 第一阶段:每周减肥1千克,每周吸收热量逐渐减少, 直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标. 2)若要加快进程,第二阶段增加运动,试安排计划. 3)给出达到目标后维持体重的方案.
基本模型
w(k) ~ 第k周(末)体重 c(k) ~第k周吸收热量
w(k 1) w(k ) c(k 1) w(k )
=1/8000(千克/千卡)
~ 代谢消耗系数(因人而异)
1)不运动情况的两阶段减肥计划 • 确定某甲的代谢消耗系数 每周吸收20000千卡 w=100千克不变 w w c w c 20000 0.025 w 8000 100 即每周每千克体重消耗 20000/100=200千卡
Cm Cm (1 ) [ w(k ) ]
n
1 以 0.025 , , Cm 10000 代入得 8000
w(k n) 0.975 [w(k ) 50] 50
n
• 第二阶段:每周c(k)保持Cm, w(k)减至75千克
w(k n) 0.975 [w(k ) 50] 50
分 析
• 体重变化由体内能量守恒破坏引起. • 饮食(吸收热量)引起体重增加.
• 代谢和运动(消耗热量)引起体重减少.
模型假设