超临界流体萃取技术简介

合集下载

超临界萃取技术

超临界萃取技术

1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。

超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。

在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。

因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。

常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。

由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。

早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。

直到20世纪70年代以后才真正进入发展高潮。

1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。

超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。

1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。

超临界流体的物性较为特殊。

表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。

从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。

另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。

超临界流体萃取技术名词解释

超临界流体萃取技术名词解释

超临界流体萃取技术名词解释超临界流体萃取技术是一项新兴技术,它采用超临界流体(上至液态气态,下至亚液态)的性质,实施萃取、结晶、分离等衍生技术,涉及范围广泛,可以获取精细成分,解决了复杂物质或低含量分子难以从混合物中分离、纯化的问题。

超临界流体萃取技术是一种利用超临界流体性质对混合物中的分子进行分离提纯的技术。

它利用超临界流体中的溶度差来实现有机混合物中配体及不饱和有机物质的分离提纯。

其特征在于可调节性强,萃取效率高,操作简单,通用性强,分离选择性高等。

超临界流体的主要构成物是一种确定的混合物,它是由戊烷(C5H12)和二甲基甲醚(CH3OCH3)组成的混合物,其特点在于具有气态和液态的双重特性,其特殊的溶度特性满足了萃取技术的要求,它能够在特定温度和压力条件下溶解给定混合物中的有机成分,并从有机混合物中分离出精细成分。

超临界流体萃取技术的优势在于具有较高的萃取效率,使得对有机物质的提取更加简单。

萃取效率的提高主要取决于溶度的改变,可以在温度和压力的变化中选择高萃取率的条件,从而达到较好的效果。

同时,该技术还具有绿色性,采用超临界流体有助于减少对经典溶剂萃取方法所需的溶剂量,可以有效地降低环境污染,保护环境。

此外,超临界流体萃取技术还可以用于分离和纯化有机物质。

通过调控溶度差及温度和压力条件,可以有效提取出混合物中的有机成分,使得有机混合物中的精细成分更容易被提纯,从而有效提高分离精度。

综上所述,超临界流体萃取技术具有多重优势,它可以有效地提取有机混合物中的精细成分,从而获取精细成分,满足了复杂物质或低含量分子难以从混合物中分离、纯化的问题。

另外,它还具有绿色性,不仅可以有效降低环境污染,而且可以提高分离精度。

总之,超临界流体萃取技术具有调控性强,萃取效率高,操作简单,通用性强,分离选择性高等优势,是一项有前景的技术,将为有机混合物的分离提纯提供新的选择。

超临界流体萃取技术:高效分离与资源回收

超临界流体萃取技术:高效分离与资源回收

超临界流体萃取技术:高效分离与资源回收超临界流体萃取技术是一种高效的分离和资源回收技术,广泛应用于化工、环保、食品、制药等领域。

它利用高压高温的超临界流体对混合物进行处理,能够快速和高效地将不同成分分离,并实现资源的有效回收利用。

超临界流体是介于气态和液态之间的物质状态,具有较高的扩散性、低粘度、高溶解能力等特点。

最常用的超临界流体是二氧化碳(CO2),因其无毒、无害、易获取等优点而成为主要的工业超临界流体。

超临界流体萃取技术的基本原理是利用超临界流体的溶解性差异,实现混合物中各成分的选择性溶解和分离。

在萃取过程中,将混合物与超临界流体接触,超临界流体通过溶解和扩散作用将目标组分从混合物中分离出来。

在一定的温度和压力条件下,超临界流体溶解性改变明显,当目标组分溶解度较大时,超临界流体对其具有较高的溶解能力,可以实现高效萃取;而其他组分具有较低溶解度,可以得到较高的分离效果。

超临界流体萃取技术具有很多优点。

首先,超临界流体具有较低的表面张力和较高的扩散系数,使得萃取速度快,效率高。

其次,超临界流体可通过调节温度、压力和溶解性等参数来实现选择性提取,使得分离效果更加准确和可控。

此外,超临界流体萃取过程无需添加大量的有机溶剂,环保性能好;超临界流体溶剂可回收利用,实现资源的高效回收。

超临界流体萃取技术已在很多领域得到应用。

在化工领域,超临界流体萃取可用于提取天然产物中的活性成分,如萃取植物精油、抗氧化剂等。

在环保领域,超临界流体萃取可将有害物质从废水中提取出来,实现污水的高效处理和资源回收。

在食品和制药领域,超临界流体萃取可用于提取食物中的营养成分、制备纯净的药物等。

尽管超临界流体萃取技术存在一些挑战,如工艺参数的优化、设备的耐压性要求等,但随着科学技术的发展,这些问题将会逐渐克服。

超临界流体萃取技术将为我们提供一种高效、环保的分离和资源回收方法,促进工业生产的可持续发展。

超临界流体萃取技术作为一种高效的分离和资源回收技术,在众多领域中得到广泛应用。

超临界流体萃取

超临界流体萃取

超临界流体萃取超临界流体萃取是一种在化学和化工领域被广泛应用的技术,在物理和化学特性上介于气体和液体之间的超临界流体作为溶剂,可以有效地提取出目标物质。

超临界流体萃取不仅具有高效、环保、无残留等优点,还可以对被提取物进行选择性的分离和富集。

超临界流体萃取的溶剂是指处于超临界状态下的物质,即超临界流体。

超临界流体的特点是密度和粘度较低,扩散性好,可逆性强,具有良好的传质特性。

常用的超临界流体有二氧化碳、乙烯、丙烯等。

超临界流体的选择取决于被提取物质的性质以及实际应用需求。

超临界流体萃取的工作原理是利用超临界流体的溶解力差异,通过温度、压力的调节来实现对目标物质的分离和富集。

在超临界条件下,溶剂与物质之间的相互作用力会发生变化,导致物质在超临界流体中的溶解度发生变化。

通过适当调节温度和压力,可以实现对目标物质的选择性萃取。

超临界流体萃取在食品、医药、化工等领域具有广泛的应用前景。

在食品工业中,超临界流体萃取可以用于提取植物原料中的营养成分、天然色素等;在医药领域,超临界流体萃取可以用于药物的提取、分离和纯化;在化工领域,超临界流体萃取可以用于分离混合物、回收溶剂等。

相比传统的溶剂萃取方法,超临界流体萃取具有许多显著的优点。

首先,超临界流体具有较低的粘度和表面张力,使其能够渗透到微观孔隙中,提高了质量传递速率。

其次,超临界流体的物理性质可以通过改变温度和压力来调节,从而实现对溶剂-物质相互作用的控制。

再次,超临界流体具有较低的表面张力,溶解度可以在较宽的范围内调节,从而实现对目标物质的选择性分离。

最后,超临界流体萃取过程中不使用有机溶剂,减少了有机排放和环境污染。

然而,超临界流体萃取技术也存在一些挑战和限制。

首先,由于超临界流体的物理性质受温度和压力的影响较大,操作条件较为苛刻。

其次,超临界流体的设备和操作成本较高,限制了其在工业生产中的应用。

此外,超临界流体萃取的工艺参数和操作条件的选择需要经验和专业知识的支持。

超临界流体萃取技术

超临界流体萃取技术

超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。

超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。

本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。

同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。

超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。

在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。

常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。

与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。

•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。

•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。

•环保可持续:超临界流体一般是可再生的,可以循环利用。

超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。

相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。

•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。

•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。

制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。

超临界流体萃取技术在中药提取中的应用

超临界流体萃取技术在中药提取中的应用

超临界流体萃取技术在中药提取中的应用随着人们对健康的重视和传统药物的流行,中药在生活中扮演更为重要的角色。

中药的提取过程中,如何更好地提取药效成为了研究的热点。

本文将会介绍一种先进的提取技术——超临界流体萃取技术,并探讨其在中药提取中的应用。

一、超临界流体萃取技术简介超临界流体萃取技术(Supercritical Fluid Extraction,简称SFE),是一种绿色化学提取工艺,其特点在于不使用有机溶剂,而是利用特定条件下物质达到临界点时产生的超临界流体进行分级萃取的一种方法。

所谓超临界,是指在某一温度和压力下,在该状态下的物质不再像气态或液态一样,而是不具有严格定义的状态,而在一定范围内流动性、扩散性、介电常数等物理性质都会变化。

这种物质既有液体的媒体性质,又具有气体的性质,可以在合适的条件下通过改变压力、温度等条件,使得不同基础物质的挥发率有不同的质量转移程度,从而实现药物成分的分离和提取。

二、超临界流体萃取技术在中药提取中的优势1. 提取效率高超临界流体可以以液态形式分子形态进入样品中,绕过其表层存于样品内部,有效提高了原本固体表面提取效率,并且因为提取速度快,效果好,所以可以节省很多的提取时间。

2. 重金属等污染物去除率高使用过的超临界流体可以被完全排放和回收,不会造成环境污染。

同时,与传统提取方法不同的是,超临界流体可以接触到样品中的大分子羟基、氧化羰基、硫醇基等化学基团,提高了提取效果,同时对中药中含有的污染物如重金属等,有较高的去除率,有效改善了中药的品质。

3. 营养价值保留度高超临界流体提取技术的提取温度一般不超过室温,可以保护一些因传统炮制、提取过程老化而改善中药营养价值和药效的核心物质,有效防止了药物成分的降解、氧化等过程,从而能够提高中药的营养价值的保留度。

4. 原材料消耗少传统提取方法中普遍需要很多有机溶剂,如乙酸乙酯、甲醇、丙酮等,而超临界流体萃取则不需要或者使用量大大减少。

超临界流体萃取技术

超临界流体萃取技术

在食品分析方面的应用: 7 在食品分析方面的应用 : 1988年,国际上推出 了第一台商品化的超临界流体萃取(SFE)仪, 早期 主要用于食品分析,如食用香料,脂肪油脂,维生素 等,采用超临界技术分析,能节省时间,节约化学试 剂,排除溶剂干扰,减少人身伤害。紫外(UV)和常 压化学解离质谱法(APCIMS) 的填充柱超临界流 体色谱法(PS-FC),是鉴别和定量测定β-兴奋剂的 通用方法,对于牛肝样品的β-兴奋剂,该法显示出 良好的回收率和较低的交量(RSD <15%) ,此法还 可用于双氯醇胺和柳丁氨醇的测定。对于农药 残留的测定,特别是水中碳硫化合物的测定,超临 界萃取法比较迅速 。对于中药有效成分的分析, 超临界萃取也有应用。
啤酒花有效成分的提取: 2 啤酒花有效成分的提取:1982 年,西德 HEG 公司建造的工业规模超临界萃取啤 酒花生产线投入生产。用有机溶剂萃取 的啤酒花萃取液,色泽暗绿,成分复杂,且残 留有机溶剂。如采用CO2 超临界萃取,萃 取液颜色为橄榄绿色,不仅萃取率高,芳香 成分也不被氧化,而且可避免萃取农药。
一、超临界流体萃取的原理
超临界流体(SCF)是指处于临界温度(Tc)和临界压力(Pc) 以上,其物理性质介于气体与液体之间的流体。这种 流体(SCF)兼有气液两重性的特点,它既有与气体相当 的高渗透能力和低的粘度,又兼有与液体相近的密度 和对许多物质优良的溶解能力。溶质在某溶剂中的溶 解度与溶剂的密度呈正相关,溶质在SCF中的溶解度也 与此类似。因此,通过改变压力和温度,改变SCF的密 度,便能溶解许多不同类型的物质,达到选择性地提 取各种类型化合物的目的。
植物油脂的萃取: 3 植物油脂的萃取:油茶是我国重要的木本 食用油料,我国传统的茶油制取一般采用压 榨法和浸出法,前者残油率高,后者味差色深。 如用超临界CO2 萃取,所得油的颜色、外观, 理化指标均优于溶剂法,且提取率高,杂质少, 水分低,无需精炼。与此相类似的还有利用 超临界萃取豆油、菜籽油、米糠油、棕榈 油、茶籽油、玉米胚芽油、杏仁油、紫苏 油、花生油、山苍子油。另外,采用超临界 萃取技术提取微生物油脂也是近年来研究 的热点,如孢霉菌丝体油脂提取的研究已取 得进展。

超临界流体萃取技术

超临界流体萃取技术
设备,廉价易得,使用安全。
11
可以作为超临界流体的物质虽然多,但仅 有极少数符合要求。临界温度在0~100℃ 以内、临界压力在2~10Mpa以内。
且蒸发潜热较小的物质有二氧化碳 ( TC31.3℃ 、 pC7.15Mpa 、 蒸 发 潜 热 25.25kJ/mol ) 、 丙 烷 ( TC96.8℃ 、 pC4.12Mpa、蒸发潜热15.1kJ/mol)。
而且温度对溶解度的影响还与压力有密切的关系: 在压力相对较低时,温度升高溶解度降低;而在
压力相对较高时,温度升高二氧化碳的溶解能力 提高。
22
3. 二氧化碳流量的影响
二氧化碳的流量[升/(秒·千克原料)]的变化对超 临界流体萃取过程的影响较复杂。
加大CO2流量,会产生有利和不利两方面的影响。
超临界二氧化碳萃取过程受很多因素的影 响,包括被萃取物质的性质和超临界二氧 化碳所处的状态等。
这些影响因素(如二氧化碳的温度、压力、 流量、夹带剂;样品的物理形态、粒度、 黏度等)交织在一起使萃取过程变得较为复 杂。
19
1.萃取压力的影响
压力是超临界二氧化碳萃取过程最重要的参数之一。 萃取温度一定时,压力增加,液体的密度增大,在临界压力附
20
21
2. 萃取温度的影响
萃取温度是超临界二氧化碳萃取过程的另一个重 要因素。
温度对提高超临界流体溶解度的影响存在有利和 不利两种趋势。
一方面,温度升高,超临界流体密度降低,其溶 解能力相应下降,导致萃取数量的减少;
但另一方面,温度升高使被萃取溶质的挥发性增 加,这样就增加了被萃取物在超临界气相中的浓 度,从而使萃取数量增大。
24
5. 物理形态
被萃取原料可能是固体、液体或气体。 其中固体原料被研究得最多。

二氧化碳超临界流体萃取技术简介

二氧化碳超临界流体萃取技术简介
一般用量:1%~5%(质量)
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。

超临界流体萃取

超临界流体萃取

十二、应用前景
• 我国资源丰富,用超临界萃取有广泛的应用前景。 许多都可以用超临界流体技术进行加工,如:银 杏叶、鱼油、卵磷脂、沙棘油、川芎等。大力开 展这方面的研究,能获得很高的经济效益。超临 界萃取技术的应用,除对环境污染少、操作简便、 温度低、省时、提高收率外,还能得到许多种常 规法得不到的成分,这也为我国中药材化学成分 的提取和分离提供了一种有效方法。相信随着人 们对环境保护的日益重视和绿色时代的要求,超 临界流体技术将促进其进一步的开发和利用
二、发展现状
• 最早将超临界CO2萃取技术应用于大规模生产的是 美国通用食品公司,之后法、英、德等国也很快 将该技术应用于大规模生产中。90年代初,中国 开始了超临界萃取技术的产业化工作,发展速度 很快。实现了超临界流体萃取技术从理论研究、 中小水平向大规模产业化的转变使中国在该领域 的研究应用已同国际接轨,在某些地方达到了国 际领先水平。目前,超临界流体萃取已被广泛应 用于从石油渣油中回收油品、从咖啡中提取咖啡 因、从啤酒花中提取有效成分等工业中。
超临界流体萃取
一、概述
• 超临界流体萃取是一种新型提取技术,它利用超 临界条件下的气体做萃取剂,从液体或固体中萃 取出某些成分并进行分离技术。超临界条件下的 气体,也称为超临界流体(SF),是处于临界温 度(Tc)和临界压力(Pc)以上,以流体形式存 在的物质。通常有二氧化碳、氮气、氧化二氮、 乙烯、三氟甲烷等。 • 超临界流体(Supercritical fluid,简称SCF)是指操 作温度超过临界温度和压力超过监界压力状态的 流体。
5.5.超临界流体的极性可以改变
• 超临界流体的的密度和介电常数随着密闭体系压 力的增加而增加,极性增大,只要改变压力,即 可提取不同极性的物质,可选择范围广。

超临界流体萃取技术

超临界流体萃取技术

超临界流体萃取技术引言超临界流体萃取技术(Supercritical fluid extraction, SFE)是一种利用超临界流体对固体样品进行萃取的过程。

超临界流体是介于气体和液体之间的状态,在这种状态下具有类似于气体的低粘度和高扩散性,以及类似于液体的高溶解性。

超临界流体萃取技术在许多领域中得到了广泛应用,例如食品、医药、化妆品等行业。

超临界流体的特性超临界流体具有以下几种独特的特性:1.低粘度:超临界流体的黏度比液体低,因此在流体中的质量传递速度更快。

2.高扩散性:超临界流体的粒子间距比液体小,因此分子在流体中的扩散速度更快。

3.高溶解性:超临界流体具有较高的溶解度,能够更好地溶解固体样品。

4.可调性:超临界流体的溶解度可以通过调整温度和压力来控制,从而实现对萃取过程的精确控制。

超临界流体萃取技术的原理超临界流体萃取技术的原理基于超临界流体的特性。

在该技术中,固态样品首先与超临界流体接触,随着温度和压力的上升,样品中的目标化合物被溶解在超临界流体中。

然后,通过降低温度和压力,从超临界流体中分离出目标化合物。

超临界流体萃取技术常用的超临界流体包括二氧化碳(CO2)和乙烷(C2H6)等。

这些超临界流体在超临界状态下具有较好的溶解性和选择性,能够有效地提取出目标化合物。

超临界流体萃取技术的应用超临界流体萃取技术在许多领域中得到了广泛应用。

食品行业超临界流体萃取技术可以用于食品中有机溶剂残留的提取。

超临界流体能够高效地去除有机溶剂,同时保持食品的营养成分和风味。

医药行业超临界流体萃取技术可以用于药物成分的提取和纯化。

超临界流体能够高效地提取药物成分,同时减少对环境的污染。

化妆品行业超临界流体萃取技术可以用于提取植物精华和天然色素,用于化妆品的生产。

环境监测超临界流体萃取技术可以用于环境中有机污染物的提取和测定。

超临界流体能够高效地提取有机污染物,并且对环境无毒性。

超临界流体萃取技术的优势超临界流体萃取技术相比传统的溶剂提取方法具有以下几个优势:•高效性:超临界流体能够高效地提取目标化合物,减少提取时间和成本。

超临界流体萃取技术

超临界流体萃取技术

2.1超临界流体的基本性质
2.1超临界流体的基本性质
表一 一些浸出溶剂的沸点与临界特性表
溶剂 乙烯 二氧化碳 乙烷
沸点/℃
临界温度Tc/℃
临界压力Pc/MPa
临界密度ρc/(ɡ/cm2)
-103.9 -78.5 -88.0 -44.7
9.2 31.0 32.2 91.8
5.03 7.38 4.88 4.62
流量 计 分 萃 高压 泵
二 氧 化 碳 气 瓶
解 析 釜
解 析 釜 离 柱
取 釜
冷箱 贮 罐
夹 带 剂 罐
高压 泵
4.超临界流体萃取的特点
(1)具有广泛的适应性
由于超临界状态流体溶解度特异增高的现象 是普遍存在。因而理论上超临界流体萃取技术可 作为一种通用高效的分离技术而应用。
( 2 ) 萃 取 效 率 高 , 过 程 易 于 调 节 超临界流体兼具有气体和液体特性,因而超 临界流体既有液体的溶解能力,又有气体良好的 流动和传递性能。并且在临界点附近,压力和温 度的少量变化有可能显著改变流体溶解能力,控 制分离过程
吸附法
3.2基本工艺流程
超临界流体萃取的工艺流程一般是由萃取( CO2 溶 解组分)和分离( CO2 和组分的分离)两步组成。 包括高压泵及流体系统、萃取系统和收集系统三 个部分。
超临界流体萃取的基本流程
萃 取 釜
分 离 釜
热 交 换 器
CO2
热交换器 压缩机 高压泵 过滤器
超临界流体萃取的流程
3.1超临界流体萃取的典型流程
解析方法(一)
压力高,投资大,能 耗高,操作简单,常 温萃取
等温法
3.1超临界流体萃取的典型流程 能耗相对较少,对热 敏 性 物 质 有 影 响

超临界流体萃取技术及其应用简介

超临界流体萃取技术及其应用简介

超临界流体萃取技术及其应用简介一、本文概述《超临界流体萃取技术及其应用简介》一文旨在全面介绍超临界流体萃取(Supercritical Fluid Extraction,简称SFE)这一先进的分离和提取技术,以及其在各个领域的广泛应用。

本文将概述超临界流体萃取技术的基本原理、特点、优势以及在实际应用中的成功案例,从而揭示这一技术在现代科学和工业中的重要地位。

超临界流体萃取技术利用超临界流体(如二氧化碳)的特殊性质,通过调整压力和温度实现对目标组分的有效提取。

与传统的提取方法相比,超临界流体萃取具有操作简便、提取效率高、溶剂残留低、环境友好等诸多优点,因此受到广泛关注。

本文将从理论基础入手,详细阐述超临界流体萃取技术的原理及其在不同领域的应用。

通过案例分析,我们将展示这一技术在医药、食品、化工、环保等领域取得的显著成果,以及其对现代工业发展的推动作用。

我们将对超临界流体萃取技术的发展前景进行展望,以期为读者提供全面的技术信息和应用参考。

二、超临界流体萃取技术的基本原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种先进的提取分离技术,其基本原理是利用超临界状态下的流体作为萃取剂,从目标物质中分离出所需组分。

超临界流体指的是在温度和压力超过其临界值后,流体既非液体也非气体的状态,具有介于液体和气体之间的独特物理性质,如密度、溶解度和扩散系数等。

在超临界状态下,流体对许多物质表现出很强的溶解能力,这主要得益于其特殊的物理性质。

通过调整温度和压力,可以控制超临界流体的溶解能力和选择性,从而实现对目标组分的有效提取。

常用的超临界流体包括二氧化碳(CO₂)、乙烯、氨等,其中二氧化碳因其无毒、无臭、化学性质稳定且易获取等优点,被广泛应用于超临界流体萃取中。

在超临界流体萃取过程中,目标物质与超临界流体接触后,其中的目标组分因溶解度差异而被选择性溶解在超临界流体中。

超临界流体萃取

超临界流体萃取

1.2与其他分离方法的联系 a 蒸馏-物质在流动的气体中,利用蒸汽压不同进行蒸发分
离。
b. 液-液萃取-利用溶质在不同溶液中溶解度不同。 c. 超临界流体萃取-利用SCF,依靠被萃物在不同蒸 汽压下所具有不同化学亲和力和溶解力(蒸汽压-相 分离作用。
1.3 发展史
①1896年 英国 Hanny等通过实验发现金属卤化物可被超 临界乙醇和四氯化碳溶解,但当P降低,金属卤化物又重 新析出。 ②20世纪50年代 Todd等理论上提出SCF萃取分离的可能 性。 ③1978年 一系列SFE有关的学术会议 ④中国 1981年刚刚起步
根据分离对象和分离目的来选择极性或非极性溶剂
2.5夹带剂的使用
(1)单一组分的超临界溶剂缺点包括:
①某些物质在纯超临界流体中溶解度很低,如超临界CO2 只能有效地萃取亲脂性物质,不适合糖、氨基酸等极性 物质 ②选择性不高,导致分离效果不好;
③溶质溶解度对温度、压力的变化不够敏感,使溶质与 超临界流体分离时耗费的能量增加。
P1V 1 P 2V 2 T1 T2
2.2 基本原理
(1)原理:
利用超临界流体在临界区附近,温度和压力微小的变 化,而引起流体密度大的变化,而非挥发性溶质在超 临界流体中溶解度大致和流体的密度成正比。保持T恒 定,增大P,流体密度增大,溶质溶解度增大,萃取能 力增强;降低P,流体密度减小,溶质溶解度降低,萃 取剂与溶质分离。从而能很好的固体或液体中萃取出 某种高沸点或热敏性成分
第八节 超临界流体萃取
1.概述 2.超临界流体萃取的理论基础
3.超临界流体萃取的基本过程
4.超临界流体萃取的应用
5.超临界流体萃取的优缺点
1. 超临界流体萃取-概述
1.1定义

超临界萃取

超临界萃取

超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。

超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。

超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。

超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。

随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。

这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。

2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。

3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。

4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。

由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。

它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。

超临界萃取技术

超临界萃取技术

超临界流体技术研究新进展
SCF萃取精馏技术
在原超临界CO2萃取系统加上一支精馏柱,构成 “萃取釜+精馏柱+分离釜”系统,使超临界CO2的 分离效果得到大大改善。由于许多物质在超临界 CO2中的溶解度随温度的升高而下降,所以一般超 临界CO2 精馏的精馏柱的温度分布是下面低温上面 高温,压力不变,通常采用轴向变温分四段加热。 随着携带有萃取物的CO2自下而上的流动,不断会 有一些组分因溶解度降低而被“淘汰”,并聚集形 成内回流。只有溶解度高的组分才会通过精馏柱在 分离釜中被回收。
CO2流量增加时,其与料液的接触搅 拌作用增强,传质系数和接触面积都相应 增加,改善流体在物料中的流动状态,提 高传质效率。但流量过大时,CO2 耗量增 加,提高生产成本。
影响超临界流体萃取的因素
5、萃取时间
CO2流量一定时,随萃取时间延长, 萃取物的得率增加。但当萃取一定时间后, 由于萃取对象中待分离成分含量减少而使 萃取率逐渐下降,再延续时间,则总萃取 量无明显变化。因此,在确定萃取时间时, 应综合考虑设备能耗和萃取率的关系。
超临界流体萃取的设备及工艺

典型超临界流体萃取设备流程
下图是南通华安超临界萃取有限公司 生产的一种通用流程的萃取设备
超临界流体萃取的设备及工艺
四、超临界流体 技术研究新进展
超临界流体技术研究新进展
超临界流体萃取精馏富集多不饱和脂肪酸 超临界流体制备超细颗粒技术
超临界流体技术的其它利用
超临界流体萃取的原理及特点
操作参数主要为压力和温度,而这两者比
较容易控制。在临界点附近,压力和温度 的微小变化将会引起流体密度很大变化, 并相应地表现为溶解度的变化。因此,可 以利用压力、温度的变化来实现萃取和分 离的过程。即在较高的压力下,将溶质溶 解于流体之中,然后降低流体溶液的压力 或升高流体溶液的温度,使溶解于超临界 流体中的溶质因其密度下降,溶解度降低 而析出,从而实现特定溶质的萃取与分离。

超临界流体萃取技术

超临界流体萃取技术
天然科大学中药学院 天然药物教研室 王乃利
1
(一)超临界流体萃取技术概述
一.超临界流体的概念
物质有三中状态,气态,液态和固态。 物质有三中状态,气态,液态和固态。 除了这三中常见的状态外物质还有另外的 一些状态, 如等离子状态、 一些状态 , 如等离子状态 、 超临界状态 等。
2
温度超过374.4℃, 温度超过374.4℃,水分子有足够的能量来抵抗压力升高的 374.4℃ 压迫,使分子之间保持一定的距离,而不变成液体状态。 压迫,使分子之间保持一定的距离,而不变成液体状态。 无论压力有多高,水分子之间的距离尽管会缩小, 无论压力有多高,水分子之间的距离尽管会缩小,水蒸气的 密度尽管会增大,但无论如何,分子之间都有一定的距离。 密度尽管会增大,但无论如何,分子之间都有一定的距离。 水蒸气的压力大到使其密度与液态的水相接近, 水蒸气的压力大到使其密度与液态的水相接近,它也不会液 这个温度称为水的临界温度(374.4℃), ),与临界温度 化。这个温度称为水的临界温度(374.4℃),与临界温度 相对应的压力称为水的临界压力(22.2MPa), ),水的临界温 相对应的压力称为水的临界压力(22.2MPa),水的临界温 度和临界压力就构成了水的临界点。 度和临界压力就构成了水的临界点。 水处于温度374.4℃以上,压力22.2MPa以上的状态时, 374.4℃以上 22.2MPa以上的状态时 水处于温度374.4℃以上,压力22.2MPa以上的状态时,就称 这种水处于超临界状态,也可以称之为超临界水。 这种水处于超临界状态,也可以称之为超临界水。超临界状 态下水是一种特殊的气体, 态下水是一种特殊的气体,它的密度与液态水相接近而又保 留了气体的性质,我们把它称着“稠密的气体” 留了气体的性质,我们把它称着“稠密的气体”。 为了与水的一般形态相区别, 为了与水的一般形态相区别,这种水即不称为气体也不称为 液体,而称为“流体” 即水的超临界流体。 液体,而称为“流体”,即水的超临界流体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EPA(二十碳五烯酸)是有五个双键的多元
不饱和脂肪酸(C20H30O2)
DHA(二十二碳六烯酸)是有六个双键的多元
不饱和脂肪酸(C22H32O2)
山西省洪洞飞马集团公司(原洪洞县洗煤厂)与
中国科学院山西煤炭化学研究所合作,于1998年投
资4000万元,引进意大利Fedgari公司超临
界CO2萃取装置,制备DHA和EPA等生物活性物质, 国
专题讲座 希望抛砖引玉!
>>记好笔记
2020/4/19
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
第一部分 前言
第二部分 临界和超临界简介
第三部分 超临界流体萃取技术
第四部分 超临界流体萃取的特点
第五部分 超临界CO2流体萃取部分装置
实物图
第六部分 超临界CO2萃取的影响因素
第七部分 超临界流体萃取的应用
第一部分 前言
高中教材有机化 学选修5结束语中 用很长篇幅介绍了 超临界流体萃取, 并从绿色溶剂的角 度叙述了其运用、 优点和发展前景。 结合教材的其他内 容,我根据自身经 历,整理出一些基 础知识,希望对同 事、同学们有所帮 助。
高中教材选修5 Page 75 资料卡片 鱼油 EPA 和 DHA两种不饱和脂肪酸。DHA和EPA即二十碳 五烯酸以及二十二碳六烯酸,其烯键即碳碳双键化学 结构很不稳定,容易被氧化。EPA和DHA同属于Ω-3系 列多不饱和脂肪酸,是人体自身不能合成但又不可缺 少的重要营养素,因此称为人体必需脂肪酸。 DHA是 大脑细胞形成发育及运作不可缺少的物质基础,起补 脑健脑以及提高视力,防止近视眼的作用。 DHA还是 母乳中必要成分,能增强人体免疫能力。。 EPA被称 为“血管清道夫”,包括高血压、高胆固醇、高血脂 、脑血管障碍、心肌梗塞、动脉硬化、青光眼、白 内障等症状有效,它具有疏导清理心脏血管的作用, 从而防止多种心血管疾病。
意大利Fedgari公司超临界CO2萃取装置
第二部分 临界和超临界简介
物质有三种状态: 气态、液态、固态 流体状态
物质的第四态:超临界状态
临界温度:每种物质都有一个特定 温度,在这个温度以上,无论怎样增 大压强,即使密度与液态接近,气态 物质也不会液化。这个温度称为物 质的临界温度。
临界压力:与临界温度相对应的压 力称为临界压力。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强的渗透能力
4 SCF的介电常数,极化率和分子行为 都与气液两相均有明显差别
•总之,超临界流体不仅具有液 体的溶解能力,也具有气体的 扩散和传质能力
第三部分 超临界流体萃取技术
超临界流体萃取定义
(Supercritical Fluid Extraction,SFE)
(0.6-2) ×10-3 0.6-1.6 0.2-0.9
(1-3) ×10-4 (0.2-3) ×10-2 (1-9) ×10-4
0.1-0.4 (0.2-2) ×10-5 (2-7) ×10-4
超临界流体的性质
1 密度类似液体,因而溶剂化能力很强。 密度越大溶解性能越好
2 粘度接近于气体,具有很好的传递性 能和运动速度
冷箱
夹 带

化 碳

剂 罐

瓶罐
高压泵









流程简介
•将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳 气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需 的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超 临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与 被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取 物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以 下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出 溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定 期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷 凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流 体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态 下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分 离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来 。
临界点:物质处于临界状态下的温 度、压力点。
超临界区域:在压强温度图中, 高于临界温度和临界压力的区 域称为超临界区域。
超临界流体:处于超临界状态时, 气液界面消失,体系性质均一, 既不是气体也不是液体,呈流体 状态,故称为超临界流体
试剂 临界温度(℃)
CO2 甲烷
31.06 -83.0
丙烷
二氯二氟 甲烷
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成分并进行分离的 技术。
超临界流体萃取原理
超临界萃取技术是利用流体在超临界 区内,待分离混合物中的溶质在温度和压力 的微小变化时,其溶解度会在相当大的范围 内变动,从而达到分离提纯目的。在较高的 压力下,让溶质充分溶解于超临界流体中, 然后使超临界溶液的压力降低,溶解于超临 界流体中的溶质会因超临界流体的密度下 降,溶解度降低而析出,从而使混合物分离 和提纯。
内配套设计由中国科学院山西煤炭化学研究所刘黎( 研究员)、董桂燕 (总工程师)等设计完成。笔者当 时作为山西省洪洞飞马集团公司(原洪洞县洗煤厂) 项目技术负责人全程参与了项目的前期考察、设计 、引进、安装、调试、试生产等全部工作,为期3年 。
近年来,山西省在太原、运城芮城、临汾大宁等地 ,建成了多条超临界流体生产线。
❖ 基本工艺流程
超临界流体萃取的工艺流程一般是 由萃取(CO2溶解组分)和分离(CO2 和组分的分离)两步组成。
包括高压泵及流体系统、萃取系统 和收集系统三个部分
超临界流体萃取的简单流程萃分取离 Nhomakorabea釜

热 交 换 器
CO2
热交换器 压缩机 过滤器 高压泵
超临界流体萃取的工艺流程
流量计

高压泵

二 氧
甲醇
97.0 111.7 240.5
乙醚
193.6
临界压力(MPa) 7.38 4.6 4.26 3.99 7.99 3.68
超临界流体由于处于临界温度和临 界压力以上,其物理性质介于气体 与液体之间。
物质 密度(g/cm3) 粘度(g/cm/s) 扩散系数(cm2/s ) 状态
气态 液态 SCF
相关文档
最新文档