《成比例线段》公开课教学设计【北师大版九年级数学上册】
北师大版九年级数学上册_名师教学设计:4。1_成比例线段(第1课时)
成比例线段郑州市第七中学方敏一、学情分析相似图形是现实生活中广泛存在的现象,在小学时学生就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例). 所以学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比时不会感到很困难.二、教学目标1.结合现实情境,感受学习线段的比的必要性,了解线段的比和成比例线段.2.借助几何直观,了解比例的基本性质及其简单应用.3.通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养数学应用意识,体会数学与自然、社会的密切联系.三、教学重、难点重点:理解线段的比和成比例线段的概念及比例的基本性质.难点:判断四条线段是否成比例.四、教学方法探索法、发现法五、教学过程分析本节课设计了六个教学环节:第一环节:设置情境,引入新课;第二环节:新知探究;第三环节:应用新知;第四环节:巩固新知;第五环节:回顾新知;第六环节:布置作业.第一环节设置情境,引入新课(1)通过用幻灯片展示生活的的图片,并提出问题:观察下列图形,每一组图形有什么特点?(设计目的:引发学生思考相似图形的特征,激发学生的学习兴趣.)(2)请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?(设计目的:从生活图片过渡到平面图形,引导学生寻找表示方法,引出线段的比.)利用多媒体技术,通过放大或缩小得到形状相同、大小不同的图形,引导学生观察放大、缩小的过程中图形上的相应线段也被放大或缩小,从而发现结论.对于形状相同、大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.第二环节:探究新知(一)线段的比1. 活动:同桌之间用不同的长度单位测量课本的长和宽(精确到0.1 cm),并求出这两条线段的长度比.问题:你们的结论相同吗?两条线段长度的比与所采用的长度单位有没有关系?(设计目的:让学生对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关. 但要采用同一个长度单位.)概念:如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比AB :CD =m :n ,或写成AB m CD n=,其中,AB ,CD 分别叫做这个线段比的前项和后项. 如果把m n 表示成比值k ,那么AB k CD =或AB =k ·CD . 2. 问题:如图,五边形 ABCDE 与五边形A ′B ′C ′D ′E ′形状相同,AB =5 cm ,A ′B ′=3 cm . 请问:线段AB 与线段A ′B ′的比是多少?这个比值刻画了这两个五边形的大小关系.3. 问题:如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD AB EF EF EH AD EH的值,你发现了什么?(提问目的:学生观察发现有两组线段的比相同,引入成比例线段.)(二)成比例线段1. 概念四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.(讲评要点:四条线段成比例,与四条线段的顺序有关,不能变动. 例如,上图中的AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段,但是AB,AD,EH,EF就不是成比例线段.)2.练习(1)判断下列线段a、b、c、d是否是成比例线段:①a=2 cm,b=4 cm,c=3 m,d=6 m;②a=0.8,b=1,c=3,d=2.4 .(2)a、b、c、d是成比例线段,其中a=3 cm,b=2 cm,c=9 cm,求线段d的长.(设计目的:通过练习加深学生对成比例线段概念的理解.)(三)比例的基本性质1.小组合作如果a,b,c,d四个数成比例,即a cb d=,那么ad=bc吗?追问:反过来如果ad=bc,那么a,b,c,d四个数成比例吗?即a cb d=成立吗?(设计目的:通过提问复习回顾小学学过的比例的基本性质,让学生了解新旧知识之间的联系.)第三环节:应用新知例1. 如图,一块矩形绸布的长AB=a m,宽AD=1 m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE:AD=AD:AB,那么a的值应当是多少?第四环节:巩固新知(平板推送检测内容)1、下列各组中的四条线段成比例的是( C )A、a=1、b=3、c=2、d=4;B、a=4、b=6、c=5、d=10;C、a=2、b=4、c=3、d=6 ;D、a=2、b=3、c=4、d=1.2、已知a、b、c、d成比例线段,且a=2、b=4、c=9,则d=(C)A、10B、15C、18D、203、在比例尺为1:500000的平面地图上,A、B两地的距离是6 cm,则A、B两地的实际距离是( D )A、60 kmB、1.2 kmC、20 kmD、30 km4、已知2a=3b(b≠0),则下列比例式成立的是(D)A、32ab=B、23a b=C、23ab=D、32a b=(设计目的:让学生利用平板完成课堂检测,便于及时反馈学生的学习效果.)能力提升已知线段AB,如图,按下列要求进行尺规作图,①过点B作BD⊥AB,使BD=12 AB;②连接AD,在AD上截取DE=DB;③在AB上截取AC=AE.试判断:线段AC、AB、BC、AC是否是成比例线段?(设计目的:学生完成后利用平板拍照上传到作品库,便于反馈并及时纠正.)第五环节:回顾新知这节课我们学习了哪些知识?生活中还有哪些利用线段比的事例?你能举例吗?(设计目的:让学生回顾本节课的学习内容,学会归纳,善于总结,做一个有心人. 同时,也体现数学来源于生活并应用于生活.)第六环节:布置作业(A、B层)必做题:课本79页习题4.1第1题、第2题.(A层)选做题:课本79页习题4.1第3题.教学反思:教学中穿插了让同桌之间用不同的单位测量课本的长与宽(精确到0.1 cm),并求出这两条线段的长度之比. 添加这个环节目的是对学生得出“两条线段长度的比与所采用的长度单位无关”的结论埋下伏笔. 提问时问题不够准确,学生已经有了全等图形和比例的知识作为铺垫,生活中也存在大量相似图形的例子,所以学生学习起来不会很难,可以大胆的放手让学生自己去动手操作、动脑思考,老师可以在适当的时候给予帮助和补充.。
北师大版九年级上册数学4.1成比例线段一(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了成比例线段的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对成比例线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.成比例线段的基本性质:引导学生探究并证明成比例线段的两个基本性质:(1)如果线段a、b与线段c、d成比例,那么线段a、b的任意一组对应线段也与线段c、d成比例;(2)如果线段a、b与线段c、d成比例,且线段a、b的长度分别为m、n,那么线段c、d的长度分别为λm、λn(其中λ为常数)。
二、核心素养目标
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解成比例线段的基本概念。成比例线段是指如果两条线段a、b与另外两条线段c、d满足a∶b=c∶d,那么线段a、b与线段c、d成比例。它在几何学中具有重要地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析梯形、相似三角形等图形,了解成比例线段在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“成比例线段在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
北师大版九年级上册数学4.1成比例线段一(教案)
一、教学内容
九年级数学上册《成比例线段》教案、教学设计
(5)课堂小结:对本节课的主要内容进行总结,强调成比例线段的重要性。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决能力等方面,给予积极的评价和鼓励;
(2)终结性评价:通过课后作业、阶段测试等形式,了解学生对成比例线段知识的掌握情况,及时发现问题并进行针对性的辅导。
(四)课堂练习,500字
为了巩固学生对成比例线段知识的掌握,我将设计以下课堂练习:
1.基础练习:给出一些成比例线段的判定题,让学生独立完成;
2.提高练习:设计一些实际问题,让学生运用成比例线段知识解决;
3.拓展练习:给出一些复杂几何问题,如相似三角形中的成比例线段问题,让学生尝试解决。
在练习过程中,我会及时给予学生反馈,指导他们纠正错误,提高解题能力。
4.教学策略:
(1)关注学生的个体差异,提供个性化的辅导,使每个学生都能在原有基础上得到提高;
(2)注重培养学生的几何直观能力,引导学生通过观察、分析、归纳等方法探索几何规律;
(3)鼓励学生提问和质疑,培养学生的批判性思维和创新意识;
(4)整合现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
5.通过实际操作,培养学生的观察能力、空间想象能力和逻辑思维能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.创设情境,引导学生自主探究成比例线段的概念;
2.通过实际例子,让学生感受成比例线段在生活中的应用,培养学生学以致用的意识;
3.采用问题驱动的教学方法,引导学生主动发现、提出和解决问题;
四、教学内容与过程
《成比例线段》示范课教学设计【九年级数学上册北师大】
第四章 图形的相似4. 1 成比例线段学生的知识技能基础: 这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比.也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法.在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习.学生活动经验基础:上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等.已经感受了数学知识源于生活,用于生活.各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力. 1. 了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.2. 经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识.3. 通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系.【教学重点】 理解线段比的概念及其求解.【教学难点】求线段的比,注意线段长度单位要统一.课件.一、创设情境,引入新知1. 看一看,想一想.这棵大树有多高?◆教材分析◆教学目标◆教学重难点 ◆◆课前准备◆ ◆教学过程小敏思考后,她只用一根卷尺, 测出了大树影子BC,自己的身高A1 B1及影子B1 C1三个数据,然后通过计算,立刻得出了树高AB.你能行吗?这里需要什么知识?【设计意图】:通过实际生活中的例子,让学生在上新课之前就对新的知识产生了浓厚的兴趣.这样更利于新课的进行.2. 想一想,算一算:这幅图片中的实际自然景观有多大?(已知中国自然景观卫星影像图1:18 700 000)为解决这些问题,需要……系统地学习相似图形的一些相关知识.为此,我们先来学习线段的比.【设计意图】:在此节课,可以培养师生,生生合作的精神.二、合作交流,探究新知(一)如果两个数的比值与另两个数的比值相等,就说这四个数成比例.我们把这四个数成比例,表示成,或a∶b=c∶d,其中a、、d叫做比例外项,b、c叫做比例内项,比例有如下性质: a c ad bc b d =⇔= (a ,b ,c ,d 均不为零) (二)请你想一想什么叫做两条线段的比呢?请同学们测量课本封面相邻两边a ,b 的长.如:a =14.8cm ,b =22cm .a 与b 的比是多少?14.8372255a cmb cm == 如果选用一个长度单位量得两条线段a ,b 的长度分别为m ,n .那么两条线段的比a :b =m :n 或a m b n=. 其中a ,b 分别叫做这个线段比的前项和后项. ,,m a k k a k b n b ==⋅如果把表示成比值那么或 . (三)跟着我学如何理解两条线段的比实践出真知:①若a =148 mm ,b =220 mm ,求a ∶b ;②若a =148 mm ,b =22 cm ,求 a ∶b .14837:;22055a mmb mm ==解(1) 148148372222055a mm mmb cm mm ===(2)。
数学北师大版九年级上册《4.1成比例线段教学设计》
《成比例线段》教学设计阳山县青莲中学叶兰香一、学情分析相似图形是现实生活中广泛存在的现象,学生在小学时就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例),相似是全等的拓广与发展。
学生已经具备一些知识基础、活动经验基础等,学习线段的比应该不会有困难,但由于学生原有知识水平比较差,故学生在探究线段的比的性质时可能会遇到障碍。
二、教材分析(一)教学内容分析《成比例线段》是新北师大版九年级数学上册第四章《相似图形》第一节的内容。
本节课既是第四章的章节起始课,又是概念课,在教法、学法以及培养学生自主学习能力方面,都有着重要意义,本节课的成功直接关系到整章书的教学效果。
(二)教学目标1.了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3. 理解和掌握比例的基本性质,并会简单应用。
(三)教学重点和难点教学重点:理解线段的比与成比例线段的概念及其求解。
教学难点:求线段的比,注意线段长度单位要统一。
三、教学方法:自主、合作、探究法四、教学模式及教学流程播放视频,导入新课——目标展示,明确任务——探究新知,交流建构——拓展提升,发展能力——课堂小结,反思收获——课堂后测,拓展反馈——布置作业,课后延伸。
五、教学过程:(一)播放视频,导入新课视频内容:第一部分从学生生活中形状相同,大小不相同的图片入手,引出相似图形;第二部分提出问题:如何比较两个相似图形的大小?如何把一个图形放大或者缩小?如何判定两个三角形是否相似?第三部分明确研究相似图形的基础是比例线段,并阐述了比例线段的作用。
(设计意图:利用学生身边的图片引入,吸引学生注意力,提高学生学习兴趣;作为章节起始课,让学生了解在这一章当中我们将要学习的内容,并解决为什么要学的问题。
)(二)目标展示,明确目的1. 了解线段的比的概念,会求两条线段的比;2. 掌握成比例线段的概念,会判断线段是否成比例;3 . 理解和掌握比例的基本性质,并会简单应用。
《成比例线段》示范公开课教学设计【北师大版九年级数学上册】
第四章图形的相似4.1 成比例线段第1课时教学设计一、教学目标1.结合现实情境感受学习线段的比的必要性,借助几何直观了解线段的比和成比例线段.2.掌握比例的性质.3.掌通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养数学应用意识,体会数学与自然、社会的密切联系.二、教学重点及难点重点:比例的基本性质.难点:比例的基本性质的运用.三、教学用具多媒体课件、直尺或三角板.四、相关资源《生活中的相似》图片.五、教学过程【情境引入】在实际生活中,我们经常会看到许多形状相同的图片,这些形状相同的图片之间有什么关系呢?带着这个问题让我们开始今天的学习吧!师生活动:教师展示图片并出示问题,学生思考、讨论.设计意图:通过生活中的图片引入本课,激发学生学习本节课的兴趣.【探究新知】想一想你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?用什么刻画、描述形状相同图形的不同点呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导学生回答.答:第一个图形和最后一个图形形状相同,第三个图形和第六个图形形状相同,第四个图形和第五个图形形状相同;这些形状相同的图形的大小不同.对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.设计意图:让学生亲自观察、分析、探究,培养学生的观察能力,分析和解决问题的能力.形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABkCD=,或AB=k·CD.两条线段的比实际上就是两个数的比.思考如图,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm,线段AB与线段A'B'的比是多少?师生活动:教师出示问题,学生思考,教师找学生代表回答.解:AB ∶A'B'=5∶3,53就是线段AB 与线段A'B'的比,这个比值刻画了这两个五边形的大小关系.设计意图:通过本题让学生及时巩固所学概念.做一做 如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EF ,EH 的长度分别是多少?分别计算AB EF ,AD EH ,AB AD ,EF EH的值,你发现了什么?师生活动:教师出示问题,学生思考、计算,教师找学生代表回答.解:AB =8,AD EF =4,EH =824AB EF ==,2AD EH ==,AB AD =,EF EH ==, 发现:AB AD EF EH =,AB EF AD EH=. 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.如上题中,AB ,EF ,AD ,EH 是成比例线段,AB ,AD ,EF ,EH 也是成比例线段.设计意图:通过“做一做”让学生发现规律,从而引出成比例线段的概念.议一议 如果a ,b ,c ,d 四个数成比例,即a c b d=,那么ad =bc 吗?反过来,如果ad =bc (a ,b ,c ,d 都不等于0),那么a ,b ,c ,d 四个数成比例吗?师生活动:教师出示问题,学生思考、讨论,教师分析、引导. 解:如果a cb d=,那么ad =bc ;如果ad =bc (a ,b ,c ,d 都不等于0),那么a ,b ,c ,d 四个数成比例,即a c b d=. 理由:因为a c b d =,所以b ,d 均不为0.两边同时乘以bd ,得ad =bc .或设a c k b d ==,则a =bk ,c =dk .因此,ad =(bk )d =b (dk )=bc .因为ad =bc ,且a ,b ,c ,d 都不等于0,两边同除以bd ,得a cb d =,即a ,b ,c ,d 四个数成比例.注意:a ,b ,c ,d 四个数成比例,它们是有顺序的,它们对应的关系只能是a cb d =或a ∶b =c ∶d .设计意图:通过“议一议”引出比例线段的基本性质.【典例精析】例 如图,一块矩形绸布的长AB =a m ,宽AD =1 m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD AD AB=,那么a 的值应当是多少?师生活动:教师出示例题,学生尝试完成,教师给出规范的解题过程.解:根据题意可知,AB =a m ,AE =13a m ,AD =1 m . 由AE AD AD AB=,得1131a a =,即2113a =. ∴a 2=3.开平方,得a =(a =舍去).设计意图:让学生进一步加深对比例的基本性质的理解,培养学生分析问题、解决问题的意识和能力.【课堂练习】1.下列各组的四条线段中,成比例的线段是( ).A .1 cm ,2 cm ,3 cm ,4 cmB .1 cm ,2 cm ,4 cm ,8 cmECC.2cm,3cm,5cm,1 cm D.2 cm,3 cm,4 cm,5 cm2.下列四组线段中,能成比例的是().A.3,6,7,9 B.3,6,9,18 C.2,5,6,8 D.1,2,3,4 3.若a=0.2 m,b=4 cm,则线段a∶b=________.4.a,b,c,d是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,求线段d的长.5.如图,在△ABC中,D,E分别是AB和AC上的点,AB=12 cm,AE=6 cm,EC=5 cm,且AD AEDB EC=,求AD的长.师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.B.2.B.3.5∶1.4.解:∵a,b,c,d是成比例线段,∴a cb d=,即362d=.∴d=4 cm.5.7211AD=cm.设计意图:让学生巩固所学知识.六、课堂小结1.两条线段的比如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.2.成比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.注意:a,b,c,d成比例时,它们是有顺序的,它们对应的关系只能是a cb d=或a∶b=c∶d.3.比例的基本性质如果a cb d=,那么ad=bc;如果ad=bc(a,b,c,d都不等于0),那么a cb d=.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.1 成比例线段(1)1.两条线段的比2.成比例线段3.比例的基本性质。
北师大版数学九年级上册4.1成比例线段(第一课时)优秀教学案例
1.学生总结:让学生回顾自己的学习过程,总结成比例线段的知识点,发现自身的不足,明确改进方向。
2.同伴评价:学生互相评价,给出建设性意见,促进共同进步。
3.教师总结:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习动力。
4.利用评价结果,调整教学策略,为后续教学提供参考。如:针对学生的掌握情况,适当增加成比例线段在实际应用方面的教学内容。
(四)反思与评价
1.学生自我反思:让学生回顾自己的学习过程,总结成比例线段的知识点,发现自身的不足,明确改进方向。
2.同伴评价:学生互相评价,给出建设性意见,促进共同进步。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,激发学生的学习动力。
4.利用评价结果,调整教学策略,为后续教学提供参考。如:针对学生的掌握情况,适当增加成比例线段在实际应用方面的教学内容。
二、教学目标
(一)知识与技能
1.让学生掌握成比例线段的定义,理解成比例线段的判定方法,能运用成比例线段解决实际问题。
2.通过对成比例线段的学习,培养学生运用数学知识描述现实生活中的现象,提高学生的数学建模能力。
3.使学生能够熟练运用成比例线段的知识,对线段进行合理的比较和判断,提高学生的空间想象能力。
北师大版数学九年级上册4.1成比例线段(第一课时)优秀教学案例
一、案例背景
本节课的主题是“成比例线段”,这是北师大版数学九年级上册4.1的内容,也是学生在初中阶段首次系统接触比例线段的知识。在此之前,学生已经学习了线段、射线、直线等基础知识,对本节课的学习奠定了基础。然而,成比例线段的概念较为抽象,对于九年级的学生来说,理解起来仍存在一定难度。因此,在教学过程中,我需要充分考虑学生的认知特点,设计符合他们思维水平的学习活动,以提高他们的学习兴趣和积极性。
北师大版九年级数学上册《成比例线段》第1课时示范公开课教学设计
第四章图形的相似4.1 成比例线段第1课时一、教学目标1.结合现实情境感受学习线段的比的必要性,借助几何直观了解线段的比和成比例线段.2.学会求两条线段的比,体会用比值表示两条线段之间的关系;掌握比例的基本性质及其简单应用.3.能利用比例的基本性质解决有关问题.4.通过现实情境,进一步发展学生从数学角度提出问题、分析和解决问题的能力,培养学生的数学应用意识.二、教学重难点重点:理解线段比的概念及其求解,掌握比例的基本性质及简单应用.难点:利用比例的基本性质解决有关问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【观察思考】教师活动:教师展示两组图片,引导学生分别观察他们的特征,教师引导学生观察并回答下面问题.问题:第一组图中两个亭子比较,你发现了什【合作探究】教师活动:那我们现在观察一组的几何图形,你能在下面图形中找出形状相同的图形吗?预设答案:教师引导,就上面一组图进一步观察思考下面问题:1.图中形状相同的图形有什么不同?2.形状相同的图形其中的一个如何由另一个得到?3.形状相同的图形对应线段如何变化?4.形状相同而大小不同的两个图形,你认为如何描述它们的大小关系?预设答案:1.形状相同,大小不同2.图形之间的“放大、缩小”3.图形上相应的线段也被“放大、缩小”4.对于形状相同而大小不同的两个图形,可以用相应“线段长度的比”来描述图形的大小关系.【归纳】教师活动:展示ppt中讲解线段的比的定义并讲解:如果选用同一个长度单位量的两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比.记住:AB ∶CD =m ∶n ,或写成,其中,线段AB ,CD 分别叫做这个线段比的前项和后项.若我们把m ∶n 表示成比值k ,则或AB =k ﹒CD. 总结:两条线段的比实际上就是两个数的比. 【思考】 提出问题:(1)在求两条线段的比时应注意哪些问题? (2)两条线段的比结果有单位吗?(3)两条线段长度的比与所采用的长度单位有没有关系? 预设答案并总结:①两条线段的比就是长度的比,它没有单位; ②两条线段的比是有顺序的;③两条线段比与所选的长度单位无关; ④求两条线段比时.如果单位不同,那么必须先化成同一单位,再求它们的比. 【想一想】如图,五边形 ABCDE 与五边A′B′C′D′E′形状相同,AB =5cm ,A′B′=3cm.线段AB 与线段A′B′的比是________.答案:5∶3nmCD AB =k CDAB=注意:这个比值刻画了这两个五边形的大小关系. 【做一做】如图,设小方格的边长为1,四边形 ABCD 与四边形 EFGH 的顶点都在格点上,那么①AB ,AD ,EF ,EH 的长度分别是多少?提示:根据方格纸的方格数及勾股定理求出对应四条线段的长度2226210AD =+= 2226210AD =+=继续提出问题:①分别计算下面几个比的值∶AB AD AB EFEF EH AD EH、、、 预设解答:824AB EF == 210210AD EH == 82105210AB AD ==4210510EF EH ==教师进一步提出问题:你发现了什么? 预设:AB AD EF EH=、AB EF AD EH =【归纳】【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AEAD=ADAB,那么a的值应当是多少?分析∶依题意知,AB=a m,AE=13a m,AD=1m.又有AE ADAD AB,根据比例的基本性质即可求出a的值.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.C为线段AB上一点,AC∶CB=5∶3.则AC∶AB= ,AB∶CB= .2.甲、乙两地相距35km,图上距离为7cm,则这张图的比例尺为( )A.5∶1B.1∶5C.1∶500000D.500000∶13.已知线段AB=2.5米,CD=400厘米,则线段AB和CD的比是.4.如图,将一张矩形纸片沿它的长边对折(EF为折痕),得到两个全等的小矩形。
九年级数学上册4.1.1成比例线段教案新版北师大版
课题:4.1.1成比例线段教学目标:1.结合现实情境,感受学习线段的比的必要性,了解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简单应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.教学重、难点:重点:了解线段的比和成比例线段的概念,了解比例的基本性质及其应用.难点:了解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图欣赏,情境导入导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相同,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相同,这就是相似图形(多媒体出示图2).你知如何刻画图形的相似吗?你知道如何判定两个三角形相似吗?你知道如何将一个图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,了解相似三角形的性质,并利用图形的相似解决一些简单的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1成比例线段(1)】图1 图2处理方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知活动1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)图中形状相同的图形,大小有什么不同?(2)形状相同的图形其中的一个如何由另一个得到?(多媒体动画演示图形的放大与缩小)(3)形状相同的图形对应的线段如何变化的?(4)形状相同而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形,可以用相应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比(ratio)就是它们的长度比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABkCD=,或AB=k·CD.两条线段的比实际上就是两个数的比.处理方式:教师利用多媒体出示两条线段的比的定义.强调相关要点,明确两条线段的比实际上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm.AB∶A′B′=5 : 3,就是线段AB与线段A′B′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.3.想一想(1)在计算两条线段的比时我们要注意什么?(2)两条线段长度的比与所采用的长度单位有没有关系?(3)两条线段的比结果有单位吗?处理方式:学生思考并在小组内交流以上问题,举例说明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比结果没有单位,是一个数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.活动2:成比例线段(多媒体出示)如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD AB EF EF EH AD EH的值,你发现了什么?处理方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算,,,AB AD AB EF EF EH AD EH 的值,在计算的过程中体会AB AD EF EH =,AB EF AD EH=.教师借助多媒体展示解题思路及解题过程,规范学生的解题步骤的书写.完成后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB ,EF ,AD ,EH 是成比例线段,AB ,AD ,EF ,EH 也是成比例线段.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段是否成比例.(1)2,(2)3,2,(3)4,6,5,10;(4)12,8,15,10.a b c d a b c d a b c d a b c d ===============处理方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的顺序有关.设计意图:通过练习巩固学生对概念的理解.活动3:比例的基本性质议一议如果a,b,c,d四个数成比例,即a/b=c/d,那么ad=bc吗?反过来如果ad=bc,那么a,b,c,d四个数成比例吗?与同伴交流.处理方式:第一个问题可引导学生从两方面加以说明,一方面根据等式的基本性质,在ab=cd两边同时乘bd,得到ad=bc;另一方面可以介绍引入比值k的方法:设ab=cd=k,那么a=bk,c=d k,因此ad= bk·d=b·kd=bc.第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc (a,b,c,d都不等于零),那么ab=cd.设计意图:通过对两个问题的讨论引出比例的基本性质.三、例题解析,应用新知例1如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE ADAD AB=,那么a的值应当是多少?处理方式:引导学生阅读、理解题意,自己尝试解答,教师利用实物投影展示学生的做题情况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB=a m,AE=13a m,AD=1m.由AE ADAD AB=,得1131aa=,即2113a=.∴a2=3.开平方,得aa).设计意图:通过例题提供应用比例基本性质的一个具体情境,加深学生对比例基本性质的理解.让学生利用所学的知识来解决实际生活中的问题.想一想:生活中还有哪些利用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表示方法;前项、后项及比值k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么ab=cd.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是_ _____.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是___ ___ .3.已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=_ _ __.4.如果2x=5y,那么xy=__ __.5.把mn=pq写成比例式,写错的是()A. m pq n=; B.p nm q=; C.q nm p=; D.m pn q=.6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=___,b=___,c=___.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本 79页习题4.1 第1题、第2题.选做题:课本 79页习题4.1 第3题.板书设计:。
《成比例线段(1)》教案 2022年北师大版九年级数学上
4.1.1成比例线段(1)【教学目标】知识与技能:知道线段比的概念.会计算两条线段的比. 过程与方法通过计算作图掌握概念:线段的比、成比例线段。
情感、态度与价值观在获得知识的过程中培养学习的自信心. 【教学重难点】教学重点:成比例线段、比例的性质教学难点:会求两条线段的比,注意线段长度的单位要统一. 【导学过程】【创设情景,引入新课】、小学里已经学过了比例的有关知识,下面请同学们口答下列问题: (1)若a 与b 的比值和c 与d 的比值相等,应记为: 。
(2)已知2:3=4:x ,则:x= 。
【自主探究】(1) 自主学习完成课本60--62页试一试与概括:填写下列空格: (1)、“比例线段”的概念: 。
已知四条线段a 、b 、c 、d,如果dcb a =(或a:b=c:d ),那么a 、b 、c 、d 叫做组成比例的 , (2)“比例线段”和“线段的比”的区别“比例线段”和“线段的比”这两个概念有什么区别?结论: (3)注意:概念的有序性线段的比有顺序性,a:b 和b:a 通常是不相等的。
比例线段也有顺序性,如dcb a =叫做线段a 、b 、c 、d 成比例,而不能说成是b 、a 、c 、d 成比例。
【课堂探究】例1如图一块矩形的绸布长AB=am ,宽AD=1m ,按照图中所示的方式将它剪裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同。
即 那么a 的值应当是多少?判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10;(2)a =2,b =5,c =152,d =35. 解:AB ADAD AE =把(1)题中a、b、c、d调换位置可以得到几种情况?哪些情形是成比例线段。
成比例线段在大小排序上有何规律?给你四个数据怎样最快的获取成比例线段排序的最大可能性?总结:如何判断成比例线段,说出你的方法并交流。
【当堂训练】1、已知m、n、p、q是成比例线段,其中m=2cm,n=6cm,q=27cm,则p=_______cm.2、(★★)已知三个数1,2、3,请你再添一个数,使它们构成的四个数成比例关系。
北师大版九年级数学上册4.1:成比例线段 教案
相似图形与成比例线段【学习目标】1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。
2、了解成比例线段的概念,会确定线段的比。
【学习重点】相似图形的概念与成比例线段的概念。
【学习难点】成比例线段概念。
【学习过程】知识点一:比例线段定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两条线段的比相等,如果a cb d=,那么就说这四条线段a、b、c、d叫做成比例线段,简称比例线段。
例1:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例?解:练习一:1、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例?2、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的比是___________3、已知线段a=12、b =23+、c=23-、若a cb x=,则x=_________若()0b yyy c=>,则y=__________4、下列四组线段中,不成比例的是()A a=3 b=6 c=2 d=4B a=1 b=2c=3d=6C a=4 b=6 c=5 d=10D a=2b=3c=2 d=6知识点二:比例线段的性质比例性质是根据等式的性质得到的,推理过程如下:(1) 基本性质:如果a c b d=,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形b d ac =、a b cd =、c d a b = (2) 合比性质:如果a c b d =,那么a b c d b d±±= (3) 等比性质:如果a c e m b d f n ====()0b d f n ++++≠,那么a c e m ab d f n b ++++=++++例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -=练习二:1、已知35a b =,求a b a b +-2、若234a b c ==,则23a b c a++=_________3、已知mx ny =,则下列各式中不正确的是( )A m x n y =B m n y x =C y m x n =D x y n m = 4、已知570x y -=,则x y=_______ 5、已知345x y z ==,求x y z x y z +++-=________。
北师大版九年级数学上册说课稿:4.1成比例线段
北师大版九年级数学上册说课稿:4.1 成比例线段一. 教材分析北师大版九年级数学上册的“4.1 成比例线段”一节,是在学生已经掌握了比例的性质,以及线段的基本知识的基础上进行的一节内容。
这一节主要向学生介绍成比例线段的定义及其性质,以及如何通过成比例线段来解决一些实际问题。
教材通过生活中的实例,引出成比例线段的定义,接着通过大量的练习,让学生加深对成比例线段的理解。
在这一节的内容中,学生需要掌握成比例线段的定义,以及如何判断两条线段是否成比例,同时,还需要学会如何通过成比例线段来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于比例的性质和线段的知识有一定的了解。
但是,对于成比例线段的定义及其应用,可能还比较陌生。
因此,在教学过程中,我将会以学生已有的知识为基础,引导学生逐步理解成比例线段的定义,并通过大量的练习,让学生掌握成比例线段的性质和应用。
三. 说教学目标1.知识与技能目标:理解成比例线段的定义,掌握成比例线段的性质,能够判断两条线段是否成比例,并能够运用成比例线段来解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生体验到数学在生活中的应用。
四. 说教学重难点1.教学重点:成比例线段的定义及其性质。
2.教学难点:如何判断两条线段是否成比例,以及如何运用成比例线段来解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极参与。
2.教学手段:利用多媒体课件,为学生提供丰富的学习资源,提高教学效果。
六. 说教学过程1.导入:通过生活中的实例,引出成比例线段的定义。
2.新课导入:讲解成比例线段的性质,让学生通过观察、操作、思考,理解并掌握成比例线段的性质。
3.练习巩固:布置一些相关的练习题,让学生通过练习,加深对成比例线段的理解。
北师大版九年级数学上册教学设计:4.1成比例线段
5.课堂小结与反馈:
-通过课堂小结,帮助学生巩固所学知识,形成知识网络。
-及时给予学生反馈,针对学生的个体差异,进行个性化指导,促进学生的全面发展。
6.课后作业与拓展:
-布置适量的课后作业,巩固学生对成比例线段的理解和应用。
4.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高解题技巧。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生主动探索、积极思考的精神。
2.培养学生的审美观念,让学生认识到成比例线段在几何图形中的美感,提高学生的审美素养。
3.培养学生的团队合作意识,让学生在小组合作中学会互相尊重、互相帮助,共同进步。
此外,我还会布置适量的课后作业,让学生在课后巩固所学知识。同时,鼓励学生在生活中观察、发现成比例线段的实例,将数学知识应用于实际,提高学生的学以致用能力。通过本节课的学习,使学生掌握成比例线段的知识,为后续学习几何知识打下坚实的基础。
五、作业布置
为了巩固学生对成比例线段知识的掌握,培养其独立思考和解决问题的能力,特此布置以下作业:
-学生在小组合作中,如何有效地交流想法,共同克服解题过程中的困难。
(二)教学设想
1.引入阶段:
-通过生活中的实例,如地图比例尺、相似图形的放大与缩小等,自然引入成比例线段的概念。
-设计互动游戏,让学生在活动中体验成比例线段的特点,激发学生的学习兴趣。
2.基本概念教学:
-利用多媒体教学资源,直观展示成比例线段的性质,帮助学生形成清晰的几何直观。
1.基础作业:
(1)完成课本第4.1节后的练习题,包括选择题、填空题和解答题,要求学生在规定时间内独立完成,并对照答案进行自我检查。
北师大版初中数学九年级上册《1成比例线段成比例线段与比例的基本性质》公开课教学设计_0.doc
第四章图形的相似1.成比例线段 ( 一)一、学生知识状况分析相似图形是现实生活中广泛存在的现象,在小学时学生就接触过比例的知识,在七年级下册时学生已学习了全等图形(其实全等图形就是相似图形的一个特例)。
所以学生已经具备一些知识基础、活动经验基础等,学生在学习线段的比时不会感到很困难。
二、教学任务分析(一)教学知识点1、了解相似形、线段的比概念;2、会求两条线段的比 , 应用线段的比解决实际问题。
(二)能力训练要求通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系。
(三)情感与价值观要求1.有关比例的计算,让学生懂得数学在现实生活中的作用,从而增强学生学好数学的信心;2.通过解答实际问题,激发学生学数学的兴趣,增长社会见识;在与他人的共同探索、讨论问题的过程中,增强合作交流的意识。
教学重点:理解线段比的概念及其求解。
教学难点:求线段的比,注意线段长度单位要统一。
教学方法:探索、发现法教学准备:多媒体课件,导学案三、教学过程分析第一环节设置情境,引入新课活动内容:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形。
活动目的:引发学生思考相似图形的特征,激发学生的学习兴趣。
实际效果:学生们都很兴奋,对学习充满了好奇心。
第二环节:新课讲解活动内容:请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?2. 引入线段的比 :如果选用同一个长度单位量得两条线段 AB,CD 的长度分AB m别是m ,n,那么就说这两条线段的比(ratio )AB:CD=m:n,或写成CDn 其m中,AB,CD 分别叫做这个线段比的前项和后项.如果把 n表示成比值 k,那么ABkCD,或 AB=k ·CD.两条线段的比实际上就是两个数的比。
五边形 ABCDE 与五边形 A ’B ’C ’D ’E ’形状相同, AB=5cm ,A ’ B ’=3cm 。
北师大版九年级数学上册教案-第四章第一节成比例线段
第四章图形的相似第一节成比例线段第1课时成比例线段(一)教学目标1.结合现实情景了解线段的比和成比例线段.2.理解并掌握比例的性质及其简单应用.3.通过现实情景,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.教学重点理解并掌握比例的性质及其简单应用.教学难点利用引入比值k的方法研究比例的主要性质.教学设计(设计者:×××)教学过程设计一、创设情景明确目标活动内容:形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小图形可以看成由较大图形“缩小”而成的.在这个过程中,两个图形上的相应的线段也被“放大”或“缩小”.因此,对于形状相同而大小不同的两个图形,我们可以用相应线段的长度之比来描述它的大小关系.让同学们举出一些实例来:例如:全班男生与女生人数之比为几比几?黑板的长与宽之比为几比几?等等.二、自主学习指向目标自学教材第76至78页.见学生用书“课前预习”部分.三、合作探究 达成目标探究点一 比和比例线段如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB ∶CD =m ∶n ,或写成AB CD =m n,其中,线段AB ,CD 分别叫做这个线段比的前项和后项,如果把m n 表示成比值k ,那么AB CD=k ,或AB =k ·CD ,两条线段的比实际上就是两个数的比.【针对训练】①已知a ,b ,c ,d 是成比例线段,其中a =3cm ,b =2cm ,c =6cm ,求线段d 的长. ②下列四组线段中,a ,b ,c ,d 能成比例线段的是( )A .a =1,b =2,c =3,d =4B .a =0.5,b =3,c =2,d =10C .a =1.1,b =2.2,c =3.3,d =4.4D .a =2,b =3,c =6,d =3探究点二 如果a b =c d ,那么ad =bc ,反之:如果ad =bc ,那么a b =c d两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足a b =c d,那么ad =bc 吗?反过来,如果ad =bc ,那么a b =c d吗?与同伴交流. (学生相互间讨论,从数取值的情况来讨论,经过交流后得出正确的结论.)在引出成比例线段的概念后,研究比例的一些性质,比例的性质不仅适用于有关线段的比例,而且也适用于有关数的比例.第一个问题可以通过引入比值k 的方法,借助代数推理得到解决:设a b =c d=k ,那么a =kb ,c =kd ,ad =kb ·d =b ·kd =bc ;对于第二个问题,要注意:由ad =bc 得出a b =c d是有条件的.如果a b =c d,那么ad =bc .(比例的基本性质) 如果ad =bc (a ,b ,c ,d 都不等于0),那么a b =c d(注意指出这个结论与基本性质是互逆关系.)[例题讲解]见教材P78例1【针对训练】①见教材P79随堂练习第2,3题.②见学生用书第57页“当堂训练”第1,2题.四、总结梳理 内化目标1.比和比例线段的定义.2.如果a b =c d,则ad =cb ,反之也成立. 五、达标检测 反思目标1.如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB ∶CD =________,或写成AB CD=________.2.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为()A.3∶4B.2∶3C.3∶5D.1∶24.一张矩形报纸ABCD的长AB=a厘米,宽BC=b厘米,E,F分别是AB,CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于()A.2∶1 B.1∶ 2 C.3∶1 D.1∶ 3六、布置作业见教材第79页习题4.1第1,2,3题.见学生用书“课后作业”栏题目.第2课时成比例线段(二)教学目标1.理解并掌握比例的等比性质及其简单应用.2.通过实例应用提高学生解决问题的能力和分析问题的能力.教学重点理解并掌握比例的等比性质及其应用.教学难点等比性质定理的应用.教学设计(设计者:×××)教学过程设计一、创设情景明确目标如图,已知ABHE=BCEF=CDFG=ADHG=2,你能求出AB+BC+CD+ADHE+EF+FG+HG的值吗?由此你能得出什么结论?已知:a ,b ,c ,d ,e ,f 六个数,如果a b =c d =e f ,那么a +c +e b +d +f =a b成立吗?为什么? 这就是我们本节课要研究解决的问题——成比例线段(二).二、自主学习 指向目标自学教材第79至80页.见学生用书“课前预习”部分.三、合作探究 达成目标探究点 等比性质,如果:a b =c d =…m n (b +d +f +…+n ≠0)那么a +c +…+m b +d +…+n =a b[推导过程]:设a b =c d =…=m n=k ,则有:a =bk ,c =dk ,m =nk∴a +c +…+m b +d +…n =(b +d +…+n )k b +d +…+n=k =a b ∴a b =c d =…m n(b +d +…+n ≠0),那么: a +c +…+m b +d +…+n =a b. 【例题讲解】见教材P80例2.等比性质在实际应用中可以起到灵活,简便的效果.【针对训练】①见教材P80随堂练习.②见学生用书第59页“当堂训练”第1,2,3题.四、总结梳理 内化目标等比性质:如果a b =c d =…=m n (b +d +…+n ≠0),那么:a +c +…+m b +d +…+n =a b. 五、达标检测 反思目标1.如果a b =c d ,那么a +b b=________; 如果a b =c d ,那么a -b b=________. 2.已知a b =53,则b a +b=________. 3.已知a ∶b ∶c =3∶5∶10,且a +c -b =16,求a ,b ,c 的值.4.已知x 2=y 7=z 5,设A =y x +y +z,B =x +z y ,C =x +y -z x ,试比较A ,B ,C 的大小. 六、布置作业见教材第81页习题4.2第1,2题.见学生用书“课后作业”栏题目.。
北师大版-数学-九年级上册-4.1 成比例线段(1) 教案
成比例线段(1)教学目标:1.了解相似形、线段的比的概念,掌握简单的应用.2.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题、解决问题的能力. 教学重点:理解线段比的概念及求解.教学难点:会求两条线段的比,注意线段长度的单位要统一.知识要点:1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例.2.A.B.C.d 四个实数成比例,可表示成a :b =c :d 或a cb d =,其中B.c 叫做内项,A.d 叫做外项.3.基本性质:a cb d=<=>ad =bc (A.B.C.d 都不为零) 重要方法:1.判断四个数A.B.C.d 是否成比例,方法1:计算a :b 和c :d 的值是否相等;方法2:计算ad 和bc 的值是否相等,(利用ad =bc 推出a b =c d) 2.“a c =b d <=>a b =c d ”的比例式之间的变换是抓住实质ad =bc . 教学过程:一、复习引入举例说明生活中大量存在形状相同,但大小不同的图形.如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等.二、探究结论如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么就说这两条线段的比(ratio )AB :CD =m :n ,或写成n m CD AB =其中,AB ,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k ,那么kCD AB ,或AB =k ·CD .两条线段的比实际上就是两个数的比.五边形ABCDE 与五边形A ’B ’C ’D ’E ’形状相同,AB =5cm ,A ’B ’=3cm.AB : A ’B ’=5 : 3,就是线段AB 与线段A ‘B ’的比. 这个比值刻画了这两个五边形的大小关系.想一想:两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.做一做:如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EH ,EF 的长度分别是多少?分别计算,,,AB AD AB EH EH EF AD EF值.你发现了什么?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.上图中AB ,EH ,AD ,EF 是成比例线段,AB ,AD ,EH ,EF 也是成比例线段.议一议:如果a ,b ,c ,d 四个数成比例,即a /b =c /d ,那么ad =bc 吗?反过来如果ad =bc ,那么a ,b ,c ,d四个数成比例吗?比例的基本性质如果a cb d=,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么a cb d=.例:如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE ADAD AB=,那么a的值应当是多少?解:221由题意可知,,,13由,得1a1311即13∴3开平方,得a3(3舍去)aAB am AE am AD mAE ADAD ABaaa=========变式:一个等腰三角形形状的梁架,腰AB=5米,底边BC=8米,AD是底边BC上的高.求ABBD和ABAD.解:由等腰三角形的三线合一性质,可得:BD =421=BC (米) AD =3452222=-=-BD AB (米) 所以34=AD BD ,53=AB AD三、课堂小结1.比例的概念,比例的基本性质;2.判断四个数成比例的基本方法;3.比例式变形的常用方法:(1)利用等式性质;(2)设比值.四、作业:习题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形的相似
4. 1 成比例线段教学设计
学生的知识技能基础:
这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比.也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法.在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习.
学生活动经验基础:
上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等.已经感受了数学知识源于生活,用于生活.各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力.
1.了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数
学的角度提出问题、分析问题和解决问题的能力.
2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识.
3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系.
【教学重点】
理解线段比的概念及其求解.
【教学难点】
求线段的比,注意线段长度单位要统一.
课件.
一、创设情境,引入新知
1. 看一看,想一想.这棵大树有多高?
◆教材分析
◆教学目标
◆教学重难点
◆
◆课前准备
◆
◆教学过程
小敏思考后,她只用一根卷尺, 测出了大树影子BC,自己的身高A1 B1及影子B1 C1三个数据,然后通过计算,立刻得出了树高AB.你能行吗?这里需要什么知识?
【设计意图】:通过实际生活中的例子,让学生在上新课之前就对新的知识产生了浓厚的兴趣.这样更利于新课的进行.
2. 想一想,算一算:
这幅图片中的实际自然景观有多大?
(已知中国自然景观卫星影像图1:18 700 000)
为解决这些问题,需要……
系统地学习相似图形的一些相关知识.
为此,我们先来学习线段的比.
【设计意图】:在此节课,可以培养师生,生生合作的精神.
二、合作交流,探究新知
(一)如果两个数的比值与另两个数的比值相等,就说这四个数成比例.
我们把、、、这四个数成比例,
表示成,或:=:,
其中、叫做比例外项,
、 叫做比例内项, 比例有如下性质: a c ad bc b d =⇔= (a ,b ,c ,d 均不为零) (二)请你想一想什么叫做两条线段的比呢?
请同学们测量课本封面相邻两边a ,b 的长.
如:a =14.8cm ,b =22cm .
a 与
b 的比是多少?
14.8372255
a cm
b cm == 如果选用一个长度单位量得两条线段a ,b 的长度分别为m ,n .那么两条线段的比a :b =m :n 或a m b n
=. 其中a ,b 分别叫做这个线段比的前项和后项.
,,m a k k a k b n b
==⋅如果把表示成比值那么或 . (三)跟着我学如何理解两条线段的比
实践出真知:
①若a =148 mm ,b =220 mm ,求a ∶b ;
②若a =148 mm ,b =22 cm ,求 a ∶b .
14837:;22055
a mm
b mm ==解(1) 148148372222055
a mm mm
b cm mm ===(2)。
(四)①设线段AB =2cm ,AC =4cm ,两条线段的长度比是
②设线段AB =200cm ,AC =4m ,两条线段的长度比是
注意:两条线段单位要统一.
两条线段的长度比叫做这两条线段的比.
(五)通过图形探知
请找出上图的3组比例线段,并写出比例式.
一般地,如果四条线段a,b,c,d中,a与b的比等于c与d的比,即a c
b d
,那么这四条
线段叫做成比例线段,简称比例线段. 三、运用新知
例1 :已知线段a=10mm , b=6cm,
问:这四条线段是否成比例?为什么?
答:这四条线段成比例.
∵a =10mm =1cm
即线段a 、c 、d 、b 成比例.
想一想: 是否还可以写出其他几组成比例的线段.
答:可以.
如: 等.
例2:如图,在平行四边形ABCD 中,∠B =30°,AD =10.AE 为BC 边上的高,垂足E 为BC 中点.
求:AE ∶BC .
解:在Rt △ABE 中,B =300
∴AB =2AE .
∵BC =AD =10,E 是BC 中点,
∴BE =5,由勾股定理可得
3AE =
3106
AE BC ∴== 例3:如图,P 为线段AB 上一点AB -BC =10cm ,BC ∶AC =3∶5.
求:AC 的长.
解:设BC =3x ,AC =5x
则AB =5x +3x =8x
AB -BC =8x -3x =5x =10
x =2
AC =5x =5×2=10(cm ).
四、巩固新知
1.已知线段a =2cm ,b =4.1cm ,c =4cm ,d =8.2cm ,下面哪个选项是正确的?( )
d b =36=12∴a c =d
b a d =
c b c a =
b d d a =b c
A. d, b, a, c成比例线段
B. a, d, b, c成比例线段
C. a, c, b, d成比例线段
D. a, d, c, b成比例线段
2.下列各组线段的长度成比例的是()
A.2cm,3cm,4cm,1cm
B.1.5cm,2.5cm,6.5cm,4.5cm
C.1.1cm,2.2cm,3.3cm,4.4cm
D.1cm,2cm,2cm,4cm
正确答案:C D
五、归纳小结
1.一个生活常识:在同一时刻,物高与影长成比例.
2.线段的比.
3.将所学知识网络化.
4.要养成用一双数学眼睛去观察生活.
5.与同伴谈谈你的收获与体会.
6.判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等.
(2)查看是否有两条线段的积等于其余两条线段的积 .
略.
◆教学反思。