概率统计2.第3章作业题
概率统计作业题
![概率统计作业题](https://img.taocdn.com/s3/m/2b53e9234b35eefdc8d3338d.png)
概率论及统计应用练习题安徽工业大学应用数学系编第一章练习题1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”i A 表示“第i 个开关闭合”请用i A 表示事件B解:6543231A A A A A A A B =2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.解:设事件1A 表示被监测器发现,事件2A 表示被保安人员发现,B 表示小偷被发现。
8.02.04.06.021212121=-+=-+=+=)()()()()(表示小偷被发现。
表示被保安人员发现,表示被监测器发现,设事件A A P A P A P A A P B P B A A3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?解:三人到校先后共有3!种情形,周昂比张文丽先到校有23C 种情形。
5.0!323===C n m P4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问(1) 乙市为雨天时,甲市为雨天的概率是多少? (2) 甲市为雨天时,乙市为雨天的概率是多少? (3) 甲、乙两城市至少有一个为雨天的概率是多少?解:设事件1A 表甲市为雨天,2A 表乙市为雨天。
3/218.0/12.0)(/)()/()1(22121===A P A A P A A P6.02.0/12.0)(/)()/()2(12112===A P A A P A A P26.012.018.02.0)()()()()3(212121=-+=-+=+A A P A P A P A A P5.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?解:设1A 表活到20岁,2A 表活到25岁。
概率论与数理统计(茆诗松)第二版课后第三章习题参考解答
![概率论与数理统计(茆诗松)第二版课后第三章习题参考解答](https://img.taocdn.com/s3/m/2cc2f91c580216fc700afd6f.png)
1
(1)(X1, X2, X3)的联合分布列; (2)(X1, X2)的联合分布列. 解: (1) P{( X 1 , X 2 , X 3 ) = (0, 0, 0)} =
⎛ 50 ⎞⎛ 30 ⎞⎛ 20 ⎜ ⎜ i ⎟ ⎟⎜ ⎜ j⎟ ⎟⎜ ⎜ ⎝ ⎠ ⎝ ⎠⎝ 5 − i − 且 P{ X = i, Y = j} = ⎛100 ⎞ ⎜ ⎜ 5 ⎟ ⎟ ⎝ ⎠
故 (X, Y ) 的联合分布列为
⎞ ⎟ j⎟ ⎠ , i = 0, 1, 2, 3, 4, 5; j = 0, L , 5 − i ,
i =1, 2 的分布列如下,且满足 P{X1X2 = 0} = 1,试求 P{X1 = X2}.
4. 设随机变量 Xi ,
Xi P
−1 0 1 0.25 0.5 0.25
解:因 P{X1 X2 = 0} = 1,有 P{X1 X2 ≠ 0} = 0, 即 P{X1 = −1, X2 = −1} = P{X1 = −1, X2 = 1} = P{X1 = 1, X2 = −1} = P{X1 = 1, X2 = 1} = 0,分布列为
故 (X, Y ) 的联合分布列为
Y X 0 1 2 3 4 5
0 0.00032 0.004 0.02 0.05 0.0625 0.03125
1 0.0024 0.024 0.09
2 0.054 0.135
3 0.054 0.0675 0 0 0
4 0.0081 0.02025 0 0 0 0
5 0.00243 0 0 0 0 0
概率论与数理统计配套习题
![概率论与数理统计配套习题](https://img.taocdn.com/s3/m/68a80cd931126edb6e1a108e.png)
Z
=
1, 0,
如果 X + Y 为零或偶数; 如果 X + Y 为奇数.
第三章 连续型随机变量及其分布 第五次作业
3.1 设随机变量 X 服从二项分布 B(2,0.4) .试求 X 的分布函数,并作出它的图像.
8
学号
专业
姓名
作业号
3.4
cx3, 已知随机变量 X 的密度函数为 f (x) =
0 < x < 1; 确定常数 c 的值,并求出 P(−1 < X < 0.5) 与分布函数.
∞
数为 λ p 的泊松分布.[提示: P(Y= k=) ∑ P( X= n)P(Y= k X= n) .] n=k
7
学号
专业
姓名
作业号
2.26 已知 X 与Y 的联合概率函数如下.(1)分别求U = max{X ,Y},V = min{X ,Y}的概率函数;(2)试
求U 与V 的联合概率函数.
X
Y -2 -1 0 1 4
1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.15 某商店出售晶体管,每盒装 100 只,且已知每盒混有 4 只不合格品.商店采用“缺一赔十”的销售方 式:顾客买一盒晶体管,如果随机地取 1 只发现是不合格品,商店要立刻把 10 只合格品的晶体管放在盒子 中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取 3 只进行测试,试求他发现全是不合格 品的概率.
《概率论与数理统计》第三版 龙永红 第一、二、三章练习及答案
![《概率论与数理统计》第三版 龙永红 第一、二、三章练习及答案](https://img.taocdn.com/s3/m/25b1e211ba1aa8114431d987.png)
《概率论》第一章 练 习 一、填空题:(1)设A 、B 为随机事件,P (A )=0.7,P (A -B )=0.3,则P (A B )= 。
(2)设A 、B 为随机事件,P (A )=0.92,P (B )=0.93,P (B/A )=0.85,则P (A/B )=_ _,P (A B )=_ __。
见课本习题—20题(3)设事件A 、B 相互独立,已知P (A )=0.5,P (A B )=0.8,则P(A B )= , P (A B )= 。
(4)袋中有50个乒乓球,其中20个黄球,30个白球,今两人依次随机地从中各取一球,则第二个人取得黄球的概率是 。
(5)设两个独立事件A 、B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A )= 。
(6)一射手对同一目标独立地进行4次射击,若至少命中一次的概率是80/81,则该射手的命中率为 。
(7) 袋中有5个黑球,3个白球,大小相同,一次随机地取出4球,其中“恰好2个黑球,2个白球”的概率为: 、(8) 事件A 、B 、C 中至少有两个不发生,可用运算符号表示为: ;而运算符号C B A -+)(则表示事件 。
(9) A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则 P (B )= ;P (A B )= 。
(10) 设A 、B 为互不相容事件,P (B )=0.4,P (A+B )=0.75,则 P (A )= ;P (AB )= 。
(11)设A 、B 为互不相容事件,P (A )=0.35,P (A+B )=0.80,则 P (B )= ;P (A )-P (AB )= 。
(12)A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则B)= 。
P(B)= ;P(A(13)某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率为(14)设每次试验成功的概率为:P(0<P<1),则3次重复试验中至少失败1次的概率为(15)甲、乙两个人独立地对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是二、计算题:1、现有编号为1,2,3的3个盒子,1号盒中有3个红球,2个黄球;2号盒中有2个红球,3个黄球;3号盒中有1个红球,4个黄球。
刘建亚概率论与数理统计课后习题第2,3章答案
![刘建亚概率论与数理统计课后习题第2,3章答案](https://img.taocdn.com/s3/m/49c3b7d3ce2f0066f53322c9.png)
解: 知识点: P43均匀分布函数及其概率密度函数。 由题意知, X ∼ U (2, 5), 从而, X 的概率密度函数为 { 1 , x ∈ (2, 5); 3 f (x) = 0, 其他.
2 X 落在(3, 5]之间的概率为 3 ,
f (x) dx √ c dx 1 − x2
X 落在(2, 3]之间为 1 3 从而, 至少有两次观测值大于3的概率为 P = = = 19. 题目见课本P57. 解: 知识点: P24伯努利概型、 P37二项分布概念、 P45指数 分布及其概率密度函数。 X 表示顾客在某银行窗口等待服务的时间。 Y 表示一个月内他未等到服务而离开窗口的次数。 由于他一个月去银行5次 1 2 2 3 2 · ( )3 C3 · ( )2 · + C3 3 3 3 4 8 + 8 27 20 27
3 从5只球中取出3只, 取出的总数为C5 。
= 1,
从而得到, a = 1。 (2)由离散概率分布的性质可知 ∑∞ a k=1 2k = 1, 因此有 a·
1− 1 2
1 2
由题知,X 表示所取出3只球中的最大号码,所以X 的可 能取值为分别为3, 4, 5。 当X = 3时, 其它两个球只能是1, 2, 故 P (X = 3) =
由于某人的成绩为78分因此高于78分人数的概率为px781???781?700276?789992002909令p1为某单位的录取率又由于某单位招聘155人有526人报名因此52602947进一步由于px7802909p102947录取率为p1155故此人能够被录取
概率论与数理统计课后习题
第 2 章
=
3 10
当X = 4时, 其它两个球只能是从1, 2, 3, 4中任取2个, 故 C2 6 P (X = 5) = 4 = 3 C5 10 因此, X 的分布列为 X P 3. 题目见课本P56。 解: 知识点:P7古典概率定义、 P35超几何分布概念。 X 表示取出四只中所含次品的只数。 由于有3件次品, 则X 可能取值为 0, 1, 2, 3, 进而由古典概 率定义和超几何分布, 得 P (X = k ) =
概率论与数理统计第三章习题及答案
![概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/250bbbdc6f1aff00bed51e25.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题答案
![概率论与数理统计第三章习题答案](https://img.taocdn.com/s3/m/62ad34f6910ef12d2af9e73d.png)
3
3 = ⋅ lim 4 n→∞
1⎡ ⎛1⎞ ⎢1 − ⎜ ⎟ 4⎣ ⎢ ⎝4⎠
0, 1, 2, 5,由题意,显然 ξ ~ B(5,0.2) 解:设 ξ代表设备使用的个数, ξ= ",
2 2 3 2 (1) P (ξ = 2) = C 5 p q = C5 ⋅ (0.2) 2 ⋅ (0.8) 3 = 0.2048
( 2) P (ξ ≤ 2) = P (ξ = 0) +P (ξ = 1) +P (ξ = 2)
2⎡ ⎛2⎞ ⎢1 − ⎜ ⎟ k ∞ 3⎣ ⎢ ⎝3⎠ ⎛2⎞ 而 ∑ ⎜ ⎟ = lim n →∞ 2 k =1 ⎝ 3 ⎠ 1− 3 1 所以, 2 c=1,从而 c = . 2
n −1
⎤ ⎥ ⎥ ⎦
=
2 1− 3
2 3
=2
3 ,以 ξ 表示首次取得成功的试 验 4 次数序号,试写出 ξ 的分布律,并求出 ξ 为偶数的概率 p。 7.设在某种试验中,试验 成功的概率为
0 1 2 = C5 (0.2) 0 (0.8) 5 + C 5 (0.2)1 (0.8) 4 + C 5 (0.2) 2 (0.8) 3 = 0.94208
( 3) P (ξ ≥ 2) = 1 − P (ξ = 0) − P (ξ = 1)
0 1 = 1 − C5 (0.2) 0 (0.8) 5 − C 5 (0.2)1 (0.8) 4 = 0.26272
概率论与数理统计 期末测试(新)第三章练习题
![概率论与数理统计 期末测试(新)第三章练习题](https://img.taocdn.com/s3/m/788101c2bb4cf7ec4afed0bc.png)
一、选择题1、随机变量X 和Y 相互独立,且方差21()Var X σ=,22()Var Y σ=,(120,0σσ>>),12,k k 是已知常数,则12()Var k X k Y -等于( )。
(A) 221122k k σσ- (B) 221122k k σσ+ (C)22221122k k σσ- (D) 22221122k k σσ+2、 随机变量X 与Y 相互独立,且方差()2Var X =,() 1.5Var Y =,则(321)Var X Y --等于( )。
(A) 9 (B) 24 (C) 25 (D) 23、 已知随机变量X 与Y 的方差,()4Var X =,()9Var Y =,协方差cov(,)2X Y =,则(2)V a r X Y -等于( )。
(A) 25 (B) 13 (C) 17 (D) 214、 已知随机变量X 与Y 的方差,()9Var X =,()16Var Y =,相关系数(,)0.5corr X Y =,则()Var X Y -等于( )。
(A) 19 (B)13 (C) 37 (D) 255、5个灯泡的寿命12345,,,,X X X X X 相互独立同分布且()i E X a =,()i Var X b =(1,2,3,4,5i =),则5个灯泡的平均寿命123451()5Y X X X X X =++++的方差()Var Y =( )。
(A) 5b (B) b (C) 0.2b (D) 0.04b6、如果随机变量X 与Y 不相关,则正确的是( )。
(A) ()()()Var aX bY aVar X bVar Y +=+ (B) ()()()Var X Y Var X Var Y -=- (C)()()()Var XY Var X Var Y = (D) ()()()E XY E X E Y =7、如果随机变量X 与Y 独立,则正确的是( )。
概率论与数理统计第3章复习题(含解答)
![概率论与数理统计第3章复习题(含解答)](https://img.taocdn.com/s3/m/7dded4d4b9f3f90f76c61bda.png)
《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。
《概率论与数理统计》习题及答案 第三章
![《概率论与数理统计》习题及答案 第三章](https://img.taocdn.com/s3/m/3871bd89b0717fd5360cdcbd.png)
《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
《概率论与数理统计答案》第三章
![《概率论与数理统计答案》第三章](https://img.taocdn.com/s3/m/9fb2593043323968011c9243.png)
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为
后
答
D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—
案
若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网
。
ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α
概率论与数理统计答案 第三章习题
![概率论与数理统计答案 第三章习题](https://img.taocdn.com/s3/m/aa2a4fb6ccbff121dc36831a.png)
解
f
X
(
x)
fY
(
y)
2x(1
0,
|
y |),0
x 1,| y|1 其它
f (x, y)
故X和Y不相互独立.
14.设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,
Y的概率密度为
fY
(
y)
1 2
e
y
2
,
y
0
(1)求X和Y的联合概率密度;
0, y 0
(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.
(X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
X0 1 2
pk 1 2 1
4 44
Y0 1 2 3
pk 1 3 3 1
8 88 8
X Y0123
012
1 10 0 88
0 220
88
00 11
88
1 P{Y=j} 8
3 8
3 8
1 8
P{X=i}
0 25/36 5/36 5/6
0 45/66 10/66 5/6
1 5/36 1/36 1/6
1 10/66 1/66 1/6
P{X=i} 5/6 1/6 1
P{X=i} 5/6 1/6 1
13(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立.
y)dy y (4)
4
(2)
2
概率论与数理统计第三章课后习题及参考答案
![概率论与数理统计第三章课后习题及参考答案](https://img.taocdn.com/s3/m/3199f906fc4ffe473268ab0e.png)
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。
概率论及数理统计习题集及答案
![概率论及数理统计习题集及答案](https://img.taocdn.com/s3/m/1f04ca5c6529647d272852e0.png)
第1章概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D为开关。
设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L与R为通路(用T表示)的概率。
A BL RC D1.甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立,求下列概率: (1) 恰好命中一次,(2) 至少命中一次。
第1章作业答案§1 .8.1:用A,B,C,D表示开关闭合,于是T = AB∪CD,从而,由概率的性质及A,B,C,D的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)422p224-+==pppp-2:(1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38;(2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章随机变量及其分布0-分布和泊松分布§2.211 某程控交换机在一分钟接到用户的呼叫次数X是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率;(3)每分钟最多有1次呼叫的概率;2 设随机变量X有分布律:X 23 , Y~π(X), 试求:p 0.4 0.6(1)P(X=2,Y≤2);(2)P(Y≤2);(3) 已知Y≤2, 求X=2 的概率。
§2.3贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6均匀分布和指数分布2 假设打一次所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。
§2.7正态分布1 随机变量X ~N (3, 4), (1) 求 P(2<X ≤5) , P(- 4<X ≤10), P(|X|>2),P(X>3); (1)确定c ,使得 P(X>c) = P(X<c)。
概率论与数理统计(茆诗松)第二版课后第三章习题参考答案
![概率论与数理统计(茆诗松)第二版课后第三章习题参考答案](https://img.taocdn.com/s3/m/8c2fb08049649b6648d747ff.png)
0x
0
x0
y 1
0
1x
y
1
0.25
0
0.5 1 x
y
1
1
= ⎜⎛ x 2 − 1 x 4 ⎟⎞ = 1 ; ⎝ 2 ⎠0 2
(4)当 x < 0 或 y < 0 时,F (x, y) = P (∅) = 0, 当 0 ≤ x < 1 且 0 ≤ y < 1 时,
0
1x
∫ ∫ ∫ ∫ F(x, y) = P{X ≤ x, Y ≤ y} =
⋅8 12
⋅4 11
=
40 429
,
P{( X1,
X2,
X3)
=
(1, 1,
0)}
=
5 13
⋅4 12
⋅8 11
=
40 429
,
P{( X1,
X2,
X3)
=
(1, 1, 1)}
=
5 13
⋅4 12
⋅3 11
=
5 143
;
(2)
P{( X1,
X2)
=
(0,
0)}
=
8 13
⋅7 12
=
14 39
,
P{( X1,
i = 0, 1, 2, 3, 4, 5; j = 0, L, 5 − i ,
故 (X, Y ) 的联合分布列为
Y X
0 1 2 3 4 5
0
0.00032 0.004 0.02 0.05 0.0625 0.03125
1
0.0024 0.024 0.09 0.15 0.09375
0
2
0.0072 0.054 0.135 0.1125
经济概率统计作业参考答案(第三章)
![经济概率统计作业参考答案(第三章)](https://img.taocdn.com/s3/m/af4cb4370912a21614792934.png)
p{X
k} a , p{Y k} b , (k 1,2 ,3), 且
k
k2
X
与Y
相互独立,则
( D )。
( A) a 1, b 1;
(B) 11a 49 b 1 ; 6 36
(C) a, b 为任意实数 ;
(D) a 6 , b 36 。 11 49
三、计算
1、一盒子中装有 3 个黑球、2 个白球、2 个红球。在其中任意取四球,以 X 表示取到黑球 的个数,以Y 表示取到红球的个数,求( X , Y )的联合分布列。
1 0 x 1
f
X
(x)
0
其他
fY ( y)
f (x, y)dx
当0
y
2
时,
f Y
( y)
11
0 2
dx
1 2
当 y 0 或 y 2 时, fY ( y) 0
1 / 2
f Y
( y)
0
0 y2 其他
5、已知随机变量 X 和 Y 的联合分布为:
(x , y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
答案: F(b, c) F(a, c) , F(, a) F(,0) , F(,b) F(a,b)
2、设二维随机变量的密度函数为
p(x)
4xy
0
,0 x 1, 0 y 1
,
其他
,
则 p(0 X 0.5)
。
答案: 1 4
3、随机变量 (X ,Y ) 的分布率如下表,则, 应满足的条件是
1/ 6
3
1/12 1/ 6
0
2. 二维随机变量( X ,Y )的联合密度函数为:
《概率统计》第三章习题解答
![《概率统计》第三章习题解答](https://img.taocdn.com/s3/m/8ffd7d6e58fafab069dc02e6.png)
1
可知,放回不放回都是
(2)由
0
1
2
3
1
3
可知边缘分布为
7. 设二维随机变量的概率密度为
,求边缘概率密度。
解:
1
1
2
1/2
1/2
1
2
3
1/3
1/3
1/3
1
2
3
4
1/4
1/4
1/4
1/4
13.在第9题中,(1)求条件概率密度 ,特别当=1/2时,的条件概率密度;(2)求条件概率密度,特别写出当=1/3 ,=1/2 时,的条件概率密度;(3)求条件概率。
5. 设随机变量的概率密度为
; (1)确定常数;
(2)求 ;(3)求; (4)求。
解:(1)由 可知;
(2);
(3);
(4)。
6.(1)求第1题中随机变量的边缘分布律;(2)求第2题中的随机变量的边缘分布律。
解:(1)由,
0
1
0
1
。
18.设和是两个相互独立的随机变量,其概率密度分别为:
,求随机变量的概率密度。
解:因为和相互独立,故 ,
则当时,,
当时,显然或,,故 ,
当时,
,
可知的概率密度为: 。
19.某种商品一周的需要量是一个随机变量,其概率密度为: ,
设各周的需要量是相互独立的,试求(1)两周;(2)三周的需要量的概率密度。
解:(1) ,;
设两周的需要量为,当时
,故 。
(2)设为三周需要量,则=,当>0时,
人大概率统计期末复习题-第三章
![人大概率统计期末复习题-第三章](https://img.taocdn.com/s3/m/ed993bd6195f312b3169a583.png)
第3章 随机向量练习题1、设一个袋子中装有3个红色、2个白色、3个蓝色球,从袋中任取两个球,记X 为取到的红球数,Y 为取到的白球数,求(1)(X ,Y )的联合分布;(2)关于X 、Y 的边缘分布律。
(1)2,1,0,,),(282323====--j i C C C C j Y i X P ji j i(2)2、将一枚均匀的硬币连续掷三次,以随机变量X 表示三次中出现正面的次数,随机变量Y 表示三次中出现正面的次数与反面的次数的差的绝对值,求随机向量(X ,Y )的联合分布以及关于X 、Y 的边缘分布。
并判断X 与Y 的独立性。
不独立3、设随机变量X 与Y 相互独立、同分布,P ( X = i ) = 1 / 3,i = 1,2,3。
又设 ξ = max ( X , Y ),η = min ( X , Y ),写出(ξ,η)的联合分布列,并判断 ξ与 η 的独立性。
不独立4、将一枚均匀的骰子掷两次,记X 为掷出的偶数点的次数,Y 为掷出3点或6点的次数。
求(1)(X ,Y )的联合分布;(2)X 与Y 是否相互独立;(3)Z = X - Y 的分布列和分布函数。
(1)(2)相互独立;(3) ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<≤--<=221100112219/89/536/736/10)(z z z z z z z F Z5、设二维离散型随机变量的联合分布为 求(1)X 、Y 的边缘分布;、(2)cov ( X , Y ) ; (3)P ( Y = 1 | X < 2 ) 。
(1)(2)1 / 2 ;(3)4 / 56、某箱装有100件产品,其中一、二和三等品分别为80件、10件和 10件,先从箱中随机抽取一件产品,记 ⎩⎨⎧=其它等品若取到i ,0,1i X (i = 1,2,3),试求:(1)随机变量X 1 与X 2 的联合分布与边缘分布;(2)随机变量X 1 与X 2 的相关系数 21X X ρ;(3)D ( X 1 - X 2 )、D ( X 1 + X 2 ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章作业题
一. 填空:
1、已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率
=>>),(b Y a X P .
2.已知),(Y X 的联合分布函数为),(y x F ,且d c b a <<,,则=≤<≤<),(d Y c b X a P
3. 已知随机变量),(Y X 的联合分布密度函数如下, 则常数=K
=),(y x f ⎩
⎨⎧≤≤≤≤-其它。
,0;0,10),1(x y x x y K 二、选择
1、设随机变量X 和Y 相互独立, 且都服从)1,0(区间上的均匀分布, 则仍服从
均匀分布的随机变量是
)(A Y X Z += )(B Y X Z -= )(C ),(Y X )(D ),(2Y X
2、设二维随机变量(X,Y)取下列数组(-1,0),(-1,1),(0,0),(1,0)的概率依次为3/(4c),
1/(2c),3/(4c),1/c ,其余数组概率为0,则c 的取值为( )
A . 1
B . 2
C . 3
D . 4
三、综合
1.已知随机变量X ,Y 的联合概率分布如下表
(1)写出X 与Y 的边缘概率分布.
(2)Y X ,是否相互独立?为什么?
(3) 写出XY , Y X -的分布
(4) 求1X =的条件下Y 的条件分布
2. 已知随机变量X ,Y 的联合概率密度函数为
⎩⎨⎧>>=+-其它,00,0,6),()
32(y x e y x f y x
(1)求X 与Y 的边缘密度)(x f X 及)(y f Y
(2)判断X 与Y 是否相互独立,为什么?
(3)求概率(1)P X Y +≤,(1,2)P X Y ≤≤
3.设二维随机变量(X,Y )在区域 }||,10|),({x y x y x G ≤≤≤= 上服从
均匀分布。
求:边缘密度函数(),()X Y f x f y .
4.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数 分布,试求Y X Z 23+=的密度函数)(z f Z .
5.设二维随机向量),(Y X 的联合密度函数为
2,01,(,)0,
C x x y x f x y ⎧<<<<=⎨⎩其他, 试求:(1)常数C ;
(2)边际密度函数(),()X Y f x f y ,并讨论X 和Y 的独立性;
(3))2(X Y P < 。