并联机器人原文知识分享
并联机器人原理
并联机器人原理
并联机器人是一种由多个机械臂和连接它们的关节组成的机器人系统。
与传统的串联机器人不同,每个机械臂都可以独立运动,同时协同工
作以完成任务。
这种并联结构为机器人带来了更高的精度、速度和灵
活性。
并联机器人由基座、运动平台、连杆和关节组成。
基座是机器人的固
定部分,通常安装在地面上或其他支撑物上。
运动平台是相对于基座
移动的部分,它支撑着连杆和工具端执行器。
连杆是连接运动平台和
工具端执行器的部分,它们通常由多个轴组成,并且能够扭曲和伸缩
以适应不同的任务需求。
关节是连接连杆和运动平台或工具端执行器
的旋转点,使得整个系统能够实现各种运动。
并联机器人采用了“约束自由度”控制策略,即通过将一个或多个自
由度限制在特定范围内来控制整个系统。
这种控制方式可以减少系统
中不必要的自由度,并提高精度和稳定性。
并联机器人还可以通过使用力传感器实现力控制。
力传感器可以检测
到机器人与工作物件之间的力和扭矩,并将其转换为电信号,以便机
器人系统可以实现精确的力控制和力反馈。
总之,通过并联结构和约束自由度的控制策略,以及使用力传感器实现精确的力控制和反馈,使得并联机器人在工业生产、医疗保健、科学研究等领域具有广泛应用前景。
并联机器人的设计讲义
12.2 并联机构的设计
1. 并联机构的正向设计 并联机构的正向设计是根据并联机构的设计要 求,在并联机构的构型基础上,由运动副设计运动 支链,再由运动支链设计运动支链与定平台和动平 台的连接,形成并联机构,分析所 设计的并联机构是否满足设计要求, 若满足设计要求,则所设计的并联 机构可用,否则,重新设计。
于运输、拆装和维修,这有利于并联机器人的售后服务。 9. 满足操作和控制的要求
所设计的并联机器人要便于操作和控制,尽可能设计智能 控制系统,减轻操作工作量,提高并联机器人的使用水平;要 便于并联机器人的使用者学习操作,降低对操作者的技术和知 识水平的要求。
12.1.2 并联机器人的设计过程
并联机器人的设计过程一般可以分成以下阶段:设计规划、 总体设计、零部件的设计、设计说明书的编写、样机制造和试 验等。
图1-4 3-RPS的3自由度并联机构
12.2 并联机构的设计
2. 并联机构的反向设计 并联机构的设计的反向设计是根据并联机构的 设计要求,由动平台的运动开始,设计动平台与运 动链的连接,并形成并联机构,分析所设计的并联 机构是否满足设计要求,若满足设 计要求,则所设计的并联机构可用, 否则,重新设计。
图12-4 并联机器人的液压驱动系统的基本组成 图1-21 液压缸驱动的六自由度的Stewart平台并联机器人
12.3.1 并联机器人的液压驱动系统的设计
连杆的液压缸的最大驱动力与液压缸的直径、液压油的
压力之间的关系:
ky
f Dim ax
py
Dy2
4
(12-2)
表12-1 不同负载条件下液压油的压力
例12-3 设计垂直可调工作空间的3个自由度的定点转动 的并联机构。
解:类比图12-2所示的3个自由度的定点转动的并联机 构进行设计,将图12-2中的 中心支撑杆改为中心杆移动 副,得所要设计的并联机构, 如图12-3所示。
机器人学-并联机构的基础理论
并联机构的逆解软件
机床尺寸 标准C程序
控制系统界面操作步骤
• 进入控制系统界面后,先进行文件管理操作,完成数控 文件录入;
• 然后进行回零操作,建立机床坐标系; • 接着进行文件操作,将第一步完成的数控程序装入; • 通过单步或连续运行,完成原定机床的运动。 • 完成运动后,进行回零操作,使机床回到初始位置。
2.2 运动学方程建立-正解方程
2.3 速度方程
2.3 速度方程
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
M 3(8 9 1) 9 3
空间可重构并联机构搭建
实际装置RPKM(II)
实际装置RPKM(II)
实际装置RPKM(II)
并联机构的分析和搭建 ——基础理论
1. 并联机构的定义
定义:只要是多自由度,驱动器分配在不同环路上的闭 式多环机构均可称为并联机构(Parallel manipulator; Parallel mechanism; Stewart platform)。 特点: (1)多自由度, (2)闭式,多环机构
并联机构的基本分析方法
1. 一种六自由度并联机构
1.1 机构模型
B3 B4
Y
B2 B
B1 X
B5
B6
T3 T4
T5
y
T2
T1
T
x
T6
1.2 运动学方程建立
动静平台坐标表示
1.2 运动学方程建立-逆解方程
旋转矩阵(欧拉角表示方法)
根据旋转变换,动平台坐标系中动平台各铰链位置矢量在基础坐标系中表示为 运动平台上各铰接点在基础坐标系中坐标为: 支链矢量表示为: 运动学逆解:
并联机构与并联机器人
并联机构与并联机器人的未来展望
拓展应用领域
随着技术的不断发展,并联机器 人有望在更多领域得到应用,如
医疗、航空、深海探测等。
创新性研究
未来将有更多学者和研究团队加入 到并联机器人领域的研究中,推动 该领域的技术创新和进步。
标准化和产业化
随着研究的深入和应用需求的增长, 并联机器人有望实现标准化和产业 化,推动其大规模应用和普及。
生。
并联机构的优化方法01020304
尺寸优化
根据任务需求和性能要求,调 整并联机构的尺寸参数,以达
到更好的性能。
运动学优化
通过调整并联机构的运动学参 数,优化其运动性能,提高执
行效率。
动力学优化
根据并联机构的动态特性,优 化其驱动力和运动轨迹,以实 现更稳定、更快速的运动。
结构优化
通过改进并联机构的结构设计 ,降低重量、减小体积,提高
并联机构与并联机器人
目 录
• 并联机构简介 • 并联机器人的基础知识 • 并联机构的设计与优化 • 并联机器人的控制技术 • 并联机构与并联机器人的研究进展
01 并联机构简介
并联机构的定义
并联机构的定义
并联机构是由至少两个相互独立的运 动链所组成,通过各分支链末端的球 面副或圆柱副相连接,并实现特定运 动规律的一种特殊机构。
并联机构的组成
并联机构通常由动平台、定平台和连 接这两者的运动支链组成。其中,运 动支链是指连接动平台和定平台的所 有运动副元素。
并联机构的特点
承载能力强
由于并联机构具有多个独立的运动链,其承载能力较强,能够承受较 大的负载。
刚度大
由于并联机构的运动支链数量多,其整体刚度较大,能够保证较高的 定位精度。
并联机器人原理
并联机器人原理1. 引言随着科技的不断发展,机器人在各个领域中的应用越来越广泛。
并联机器人作为机器人领域的一个重要分支,在工业自动化、医疗手术、航天等领域中发挥着重要作用。
本文将介绍并联机器人的原理、结构和应用,并从机构设计、运动学分析、动力学模型等方面进行深入探讨。
2. 并联机器人的定义和分类并联机器人是指由两个以上的机器人并联组成的机器人系统。
根据其结构和运动特点的不同,可以将并联机器人分为平台式并联机器人、串联式并联机器人和混联式并联机器人。
2.1 平台式并联机器人平台式并联机器人由一个移动平台和多个执行器组成,执行器通过机械连接装置连接到移动平台和工作台之间。
它具有高精度、高刚度和高灵活性的特点,在精密加工、装配和仿真等应用中得到广泛应用。
2.2 串联式并联机器人串联式并联机器人由多个运动杆件组成,杆件通过运动副连接在一起,形成一个连续链式结构。
串联式并联机器人通过杆件之间的相对运动实现工作台的运动,具有较大的工作空间和自由度,适用于需要较大工作范围和高精度运动的应用。
2.3 混联式并联机器人混联式并联机器人是平台式和串联式并联机器人的结合,既可以实现平台式并联机器人的高刚度和高精度,又能够实现串联式并联机器人的大工作空间和自由度。
混联式并联机器人在飞行器研究、空间站维修等领域具有广泛应用。
3. 并联机器人的机构设计并联机器人的机构设计是实现其运动特性的关键。
机构设计主要包括支撑结构、传动机构和执行机构。
3.1 支撑结构支撑结构是并联机器人的基础,负责支撑整个机器人系统的重量和载荷。
支撑结构应具有足够的刚度和稳定性,以保证机器人在工作过程中的精度和稳定性。
3.2 传动机构传动机构是实现并联机器人运动的关键组成部分,可以通过齿轮传动、皮带传动、链传动等方式实现。
传动机构应具有较高的传动精度和可靠性,以保证机器人的运动精度和稳定性。
3.3 执行机构执行机构是并联机器人的动力来源,可以是液压驱动、电动驱动或气动驱动等。
并联机器人原文知识分享
并联机器人原文Virtual Prototyping of a Parallel Robot actuated by Servo-Pneumatic Drives using ADAMS/ControlsWalter Kuhlbusch, Dr. Rüdiger Neumann, Festo AG & Co., Germany SummaryAdvanced pneumatic drives for servo-pneumatic positioning allow for new generations of handlings and robots. Especially parallel robots actuated by servo-pneumatic drives allow the realization of very fast pick and place tasks in 3-D space. The design of those machines requires a virtual prototyping method called the mechatronic design [ 1]. The most suitable software tools are ADAMS for mechanics and Matlab/Simulink for drives and controllers. To analyze the overall behavior the co-simulation using ADAMS/Controls is applied. The combination of these powerful simulation tools guarantees a fast and effective design of new machines.1. IntroductionFesto is a supplier for pneumatic components and controls in industrial automation.The utilization of pneumatic drives is wide spread in industry when working in open loop control. It’s l imited however, when it comes to multipoint movement or path control. The development has been driven to servo-pneumatic drives that include closed loop control. Festo servo-pneumatic axes are quite accurate, thus they can be employed as drives for sophisticated tasks in robotics. The special advantage of these drives is the low initial cost in comparison to electrical and hydraulic drive systems. Servo-pneumatic driven parallel robots are new systems with high potentials in applications. The dynamical performance meets the increasing requirements to reduce the cycle times.One goal is the creation and optimization of pneumatic driven multi-axes robots. This allows us to support our customers, and of course to create new standard handlings and robots (Fig. 1).The complexity of parallel robots requires the use of virtual prototyping methods.Fig. 1. Prototypes of servo-pneumatic driven multi-axes machinesPreferred applications are fast multipoint positioning tasks in 3-D space. Free programmable stops allow a flexible employment of the machine. The point to point (ptp) accuracy is about 0.5 mm. The continuous path control guarantees collision free movement along a trajectory.1.1. Why parallel robots?The main benefits using parallel instead of serial kinematics is shown in Fig. 2.Fig. 2. Benefits of robots with parallel kinematicsHigh dynamical performance is achieved due to the low moved masses. While in serial robots the first axis has to move all the following axes, the axes of a parallel robot can share the mass of the workpiece. Furthermore serial axes are stressed by torques and bending moments which reduces the stiffness. Due to the closed kinematics the movements of parallel robots are vibration free for which the accuracy is improved. Finally the modular concept allows a cost-effective production of the mechanical parts. On the other hand there is the higher expense related to the control.1.2. Why Pneumatic Drives?The advantages of servo-pneumatic drives are:direct drives→high accelerating powercompact (especially rodless cylinders with integrated guidance)robust and reliablecost-effectiveDirect drives imply a high acceleration power due to the low equivalent mass in relation to the drive force. With pneumatic drives the relationship is particularly favorable. Festo has already built up some system solutions, predominantly parallel robots (see Fig. 1), to demonstrate the technical potential of servo-pneumatics. Which performance can be reached is shown in Fig. 3. This prototype is equipped with an advanced model based controller that makes use of the computed torque method [ 3].Fig. 3. Performance of the Tripod2. Design MethodThe system design, where several engineering disciplines are involved in, requires a holistic approach. This method is the so-called mechatronic design. The components of a mechatronic system are the mechanical supporting structure, the servo drives as well as the control. All these components are mapped into the computer and optimized with respect to the mutual interaction. This procedure can be used to analyze and improve existing systems as well as to create new systems. The two main steps of the mechatronic design are first building models in each discipline, and secondly the analysis and synthesis of the whole system. These steps are done in a cycle for the optimization.The modeling can be carried out in two ways: Either you apply one tool to build up models in all disciplines, but with restrictions. The other way is to use powerful tools in each discipline and to analyze the whole system via co-simulation. In this case you have to consider some specials of the solving method like communication step size or direct feedthrough behavior.2.1. Why Co-Simulation?Co-simulation is used because of the powerful tools, each specialized in its own discipline. ADAMS is an excellent tool for the mechanical part and Matlab/Simulink is the suitable tool for controller development and simulation of pneumatics.The behavior of the mechanical part is modeled at best usingADAMS/View. The advantages of ADAMS are:fast physically modeling of rigid and elastic bodiesextensive features for parameterizationanimation of simulation resultssolving inverse kinematics by “general point motion”visualization of eigenmodes (ADAMS/LINEAR)export of linear models (A,B,C,D)A big advantage is the automatic calculation of the direct and inverse kinematics. The direct kinematics of parallel structures often cannot be solved analytically. Furthermore different kinematics can be compared to each other very easily when you define a trajectory of the end-effector via “general point motion”.Applying these two software tools guarantees a high flexibility regarding the design of new systems. It is very important to analyze the closed loop behavior at an early stage. This makes a big difference between the mechatronic design and the conventional design. Furthermore the visualization of the mechanical system makes the discussion within a team very easy.2.2. RestrictionsA disadvantage is that the model of the mechanics is purely numerically available. However some symbolic code of the mechanical system is needed for the control hardware when the system becomes realized. In general we have to derive the equations of the inverse kinematics, which are used in the feed forward control. For specific robot types a controller with decoupling structure is necessary in order to fulfill the requirements. Then the symbolic code of the dynamics is needed. For this we have to pull up further tools to complete the task.2.3. What has to be analyzed?For the design of new robots it is important to know about the effect on the system stability and accuracy. The main properties that influence stability and accuracy are opposed in Table 1 for different kinematical structures.Table 1: Properties of different kinematical configurationsWith respect to the control the cartesian type is the best one. But the main disadvantage of a serial robot compared with a parallel one is the lower dynamics and the lower stiffness (see Fig. 2).Depending on the requirements with regard to dynamics and accuracy different control approaches must be applied. As mentioned above we prefer to employ a standard controller SPC200 for a single axis. Due to the coupling of the axes the stability of the closed loop system must be checked.3. Model of the TripodThe model of the Tripod consists of three parts: the mechanics, the pneumatic drives, and the controller.3.1. Mechanics (ADAMS)We apply the so-called delta-kinematics which causes a purely translational movement of the tool center point (tcp). An additional rotary drive allows the orientation of the gripper in the horizontal plane. Together with the rotary drive the machine has four degrees of freedom.Fig. 4. Degrees of freedom and structure of the TripodThe tripod is modeled using rigid body parts what is often sufficient for the present type of parallel structure. The upper and lower plates are fixed to ground. The profile tubes are connected to these plates via fixed joints. Eachslider has one translational degree of freedom. Both ends of a rod are connected to the neighbored parts by universal joints. Including the rotary drive, the model verification results in four Gruebler counts and there are no redundant constraints. The model is parameterized in such a way that different kinematical configurations can be generated very easily by means of design variables. The most important parameters are the radiuses of the plates (see Fig. 4) and the distances to each other. For instance the following configurations can be achieved just by variation of these parameters or design variables.Fig. 5. Variation of kinematics by “design variables”3.2. Servo-Pneumatic Drives (Simulink)The models of the servo-pneumatic drives are developed by means of Matlab/Simulink. Depending on the requirements several controller models were developed. It is common to all that they are highly non-linear. Mainly the compressibility of air makes a more complex control system necessary. All controller models including the standard controller SPC200 are available asC-coded s-functions. This allows to use the same code in the simulation as well as on the target hardware.A survey of the control scheme is shown in Fig. 6. For this contribution it is important to know about the interface for the co-simulation. The calculated forces of the servo pneumatics are the inputs to the mechanics. The slider positions are the outputs of the mechanics. Detailed information on the controllers can be found in [ 2] and [ 3].Fig. 6. Control structure4. Analyzing the behavior of the whole systemWhen the modeling is done we can go on with the second step of the mechatronic design. In the following it is assumed that the SPC200 controller always controls the machine. The task is the analysis and synthesis of different parallel kinematics relative to stability, dynamics, and accuracy for a given workspace.Some studies, e.g. concerning the workspace, can be made exclusive using ADAMS. Others such as feedback analysis are carried out by means of co-simulation.The workspace can be determined by varying all drive positions in all combinations. After simulation the end-effector positions are traced using the feature “create tracespline”.Fig. 7. Drive motions for the workspace calculationThe data can be visualized in ADAMS or any other graphics tool. As an example the workspace of the Tripod configuration of Fig. 7 is represented in Fig. 8Fig. 8. Workspace of the Tripod (configuration as in Fig. 7) Measuring the velocity of the end-effector at the same time delivers the gear ratios of all drives over the workspace.To examine the behavior of the closed loop system ADAMS/Controls is used to couple ADAMS and Simulink. Before the model can be exported some inputs and outputs of the plant must be defined by state variables. The inputs of the Tripod are the drive forces. Though the controller makes only use of the drive position some additional signals are defined as outputs: The drive velocities are needed for solving the differential equations of the pressures in the pneumatics model. Furthermore we need the velocity of the tool center point to calculate the non-linear gear ratios. Finally the drive accelerations serve for the calculation of the equivalent moved masses. The whole system is shown in Fig. 9.Fig. 9. Model of the whole systemThe model of the mechanics is embedded in Simulink. ADAMS/Controls makes the interface available by means of s-function.The equivalent moved masses depend on the positions of drives. The non-linearity of the robot grows with the strength of this dependency. As shown in Table 1 with the parallel kinematics there is a medium strong coupling of the dynamics. This coupling is neglected, if we use the standard SPC200 controller. Nevertheless there is an influence on the stability of theclosed loop system. To initialize and parameterize this controller we need the following information from the mechanics model:equivalent moved mass of each drive (depends on slider positions)gravity forces in initial positionCoulomb and viscous frictionThe controller is designed for a single axis with a constant mass. Due to the position dependency of the equivalent moved masses of the robot we have to choose an average value for each drive. Unfortunately with ADAMS there is no easy way to calculate the equivalent moved masses along atrajectory. We tried to apply different methods such as dividing a drive force by its acceleration during a slow motion, but this method yielded not insatisfying results. The best method found is the linearization of the system.However this requires ADAMS/Linear. When we define the drive accelerations as plant outputs in ADAMS/Controls the direct feed through matrix D of the exported linear system delivers the mass matrix in the defined operating point as1)()(-⋅=q q D f MCorresponding to the three degrees of freedom of the rigid body system the size of the mass matrix M(q) is three by three. It depends on the vector of the generalized coordinates of the drives. The non-diagonal elements cause the coupling between the axes. The factor f depends on the units chosen for the inputs and outputs. Whenthe forces are given in [N] and the accelerations are given in [mm/s 2] f is 0.001.With a slider mass of 2 kg and an end-effector mass of 2 kg the massmatrix for the three positions shown in Fig. 10 are:The gravity forces can be calculated very easily by static simulation.Likewise it is easy to model the friction in ADAMS. Nevertheless theparameters can differ very strong from one application to another one.With the parameterized controller the stability should be checked inseveral operating points by means of eigenvalues and the dynamics of the closed loop system can be analyzed by means of frequency responses.Of course with a robust controller you can start with a simulation in time domain. This gives information about the accuracy and system limits. For this we need the references for the drives. For a reference trajectory of the tool center point ADAMS applying the “general point motion” can generate the drive positions.Fig. 10. Solving inverse kinematics by feature "general point motion"In the following the simulation results are presented for a tripod configuration shown in Fig. 10. The workspace of this machine is illustrated in Fig. 8.Fig. 11. Left: Trajectory of the tool center point. Right: Drive references and measures5. ConclusionThe coupling of the software tools ADAMS and Simulink via co-simulation is a powerful method of virtual prototyping. This method enables an efficient design and optimization of servo-pneumatic driven robots. Especially robots with parallel kinematics can be analyzed very fast using ADAMS. Due to the potential of the linear analysis the use of ADAMS/Linear is meaningful. Particularly with controlled systems the linear analysis is required.Literature[ 1] Kuhlbusch, W., Moritz, W., Lückel, J., Toepper, St., and Scharfeld, F.: T RI P LANAR - A New Process-Machine Type Developed by Means of Mechatronic Design. Proceedings of the 3rd International Heinz Nixdorf Symposium on Mechatronics and Advanced Motion Control, Paderborn, Germany, 1999.[ 2] Neumann, R., Göttert, M. Ohmer, M.: Servopneumatik – eine alternative Antriebstechnik für Roboter, Robotik 2002, 19-20. Juni in Ludwigsburg, Germany, 2002, VDI-Bericht Nr. 1679 p. 537-544.[ 3] Neumann, R., Leyser, J., Post, P.: Simulationsgestützte Entwicklung eines servopneumatisch angetriebenen Parallelroboters. TagungsbandSIM2000 – Simulation im Maschinenbau, Dresden, Germany, 2000, p. 519-536.。
并联机器人
并联正文:1.简介本文档是一个并联的详细说明,包括的结构、工作原理、控制系统等方面的内容。
2.结构2.1 机械结构并联的结构由多个关节和连杆组成,其中关节连接主要的动力元件,连杆连接各个关节。
机械结构的设计需要考虑的运动范围、负载能力以及稳定性等因素。
2.2 末端执行器并联的末端执行器通常包括夹爪、工具等,用于完成特定的任务,如抓取、装配等。
3.控制系统并联的控制系统主要包括硬件和软件两个部分。
3.1 硬件硬件部分包括传感器、驱动器和控制器。
传感器用于对的姿态、位置等进行测量,驱动器用于驱动机械结构的关节,控制器则用于运行控制算法并实施控制策略。
3.2 软件软件部分包括运动规划、路径规划等算法的开发与实现。
通过软件控制,可以使在特定的工作空间内完成精确的运动任务。
4.工作原理并联通过控制系统的指令实现工作任务,其工作原理基于运动学和动力学原理。
的工作过程需要考虑运动学约束、静力学约束等因素。
4.1 运动学的运动学描述的位置和姿态之间的关系。
运动学约束主要包括正向运动学和逆向运动学。
4.2 动力学的动力学描述在外部力作用下的运动学特性。
动力学约束主要包括速度和加速度的限制。
5.应用领域并联广泛应用于汽车制造、航空航天、医疗卫生等领域。
的高精度、高效率和精确性使其成为许多工业任务的理想选择。
附件:本文档涉及的附件包括相关设计图纸、算法代码等。
法律名词及注释:1.并联:由多个关节和连杆组成的结构,具有高度精确性和高效率的特点。
2.运动学:描述的位置和姿态之间的关系的科学。
3.动力学:描述在外部力作用下的运动学特性的科学。
并联机器人的设计讲义
并联机器人的设计讲义
一.并联机器人的定义
并联机器人是一种由多个机械臂连接在一起的可移动机器人。
它的特点是机械臂可以独立活动,它们之间的旋转和移动有一个统一的控制器。
它可以用于复杂的加工,如焊接、装配和组装,也可以用于物料搬运、操作、维修和检查。
二.并联机器人的优势
1、操作灵活:并联机器人具有操作灵活的特点,它可以自由组合不同的机械臂,并可根据任务的不同而变换机械臂,可以解决不同空间的工作要求,可以完成不同的任务;
2、可重复性:并联机器人可以完成同一任务的多次重复操作,使操作精度大大提高,而且可以保持一定的精度;
3、可靠性:并联机器人可以通过可靠的控制系统、高精度的传感器和自动化操作系统,保证机器运行的可靠性;
4、安全性:并联机器人可以通过一些保护措施,比如安全光栅等,防止人员受到意外的伤害;
三.并联机器人的设计
1、机械结构设计:并联机器人的机械结构定义了它的工作范围,要求设计师要根据机器人实际的工作空间,进行机械臂和运动系统的精心设计,以便达到机器人的精度和覆盖范围;
2、控制系统设计:并联机器人的控制系统设计是机器人自动化的核心。
并联机构与并联机器人
06
并联机器人未来发展趋势 与挑战
并联机器人技术的前沿动态
新型驱动技术
随着伺服电机、步进电机等驱动 技术的不断发展,并联机器人的 运动控制精度和动态响应性能得 到显著提升。
传感器融合技术
通过集成多种传感器,如视觉、 力矩、位移传感器等,实现并联 机器人的多源信息融合,提高其 感知和决策能力。
人工智能技术
医疗器械
并联机构在医疗器械领域 中也有广泛应用,如手术 机器人、康复机器人等。
航空航天
并联机构在航空航天领域 中也有应用,如飞行模拟 器、航天器姿态调整机构 等。
02
并联机器人的基础知识
并联机器人的定义与特点
定义
并联机器人是一种具有至少两个 自由度的运动链,通过并联机构 实现运动输出的机器人。
特点
评估并联机器人的运动速度和加速度性能。
定位精度与重复定位精度
评估并联机器人的位置精度和重复定位精度 。
负载能力
评估并联机器人能够承受的最大负载重量。
05
并联机器人的控制与编程
并联机器人的控制系统
硬件控制系统
包括控制器、传感器、执行器等硬件设备,用于实现机器人的运动控制和位置 监测。
软件控制系统
通过编写程序或使用图形化编程工具,实现对并联机器人的运动轨迹规划、控 制逻辑设定等功能。
等优点。
运动学特性
并联机构和并联机器人都涉及到运 动学分析,包括位置、速度和加速 度的计算,以及运动轨迹的规划等 。
控制策略
两者都需要采用一定的控制策略来 实现对运动的精确控制,包括位置 控制、速度控制和力控制等。
并联机构与并联机器人的差异
应用领域
智能化程度
并联机构主要应用于机床、机器人、 航空航天等领域,而并联机器人则主 要应用于工业自动化、医疗、农业等 领域。
并联机器人简介介绍
医疗领域
并联机器人在医疗领域可用于 辅助手术、康复训练以及精确 的医疗设备定位等。
科研与教育
并联机器人还可用于科研机构 的实验研究以及教育领域的教
学和培训。
并联机器人的发展历程
初期探索
20世纪70年代,并联机器人概念开始萌芽,研究人员开 始探索其运动学和动力学特性。
技术突破
80年代至90年代,随着计算机技术和控制理论的发展, 并联机器人的设计、分析和控制技术取得了重要突破。
特点
高刚度、高精度、高负载能力、结构紧凑、动态响应快等。由于并联机器人的 这些特点,它们在许多领域都得到了广泛应用。
并联机器人的应用领域
制造业
并联机器人在制造业中用于高 精度装配、焊接、切割、打磨 等作业,提高生产效率和产品
质量。
航空航天
由于并联机器人具有高刚度和 高精度特点,它们在航空航天 领域被用于飞机和卫星的精密 装配与检测。
控制系统
并联机器人的工作原理基于先进 的控制系统,通过计算机或控制 器对各个关节进行精确的协调和
控制。
运动学逆解
在工作过程中,控制系统根据目 标位置和姿态,通过运动学逆解 算法计算出各个关节的需要到达
的位置。
动力学控制
控制系统根据机器人的动力学模 型,通过控制算法实现机器人平 稳、快速的运动,并确保机器人
并联机器人在汽车制造、重型机械等需要承受较大负载的行业中,能够发挥很好 的应用效果。
紧凑的结构设计
空间占用
并联机器人采用紧凑的结构设计,使得其在空间占用上相对 较小,有利于节省生产现场的空间资源。
灵活布局
紧凑的结构设计使得并联机器人能够灵活地适应各种生产布 局,提高生产线的整体效率和灵活性。
并联机器人控制
并联控制正文:1.引言在并联控制领域,如何实现高精度、高速度的控制是一个重要的研究方向。
本文将介绍一种并联控制方法,该方法可以实现多个臂同时进行协同控制,以实现复杂任务的自动化操作。
2.系统结构2.1 硬件配置该并联系统由多个臂组成,并联在一起,共享相同的基座。
每个臂由关节驱动器、力传感器、位置传感器等组成。
2.2 控制系统架构控制系统由中央控制单元、关节控制器、通信模块和用户界面组成。
中央控制单元用于协调多个臂的运动,关节控制器用于控制每个臂的关节运动,通信模块用于实现之间的数据传输,用户界面用于人机交互。
3.运动规划算法3.1 逆运动学逆运动学算法用于根据臂的末端位置和姿态,计算出每个关节的角度。
常用的逆运动学算法有解析解法和数值解法。
3.2 路径规划路径规划算法用于臂的运动轨迹,使其尽量满足特定的约束条件,如保持一定的速度、避开障碍物等。
常用的路径规划算法有最短路径算法、光滑路径算法等。
4.运动控制算法4.1 PID控制PID控制算法是一种经典的反馈控制算法,通过根据误差信号来调整臂的控制信号,使其向目标位置靠近,并保持在稳定状态。
4.2 力/力矩控制力/力矩控制算法是一种基于末端的力和力矩传感器的反馈控制算法,通过调整臂的关节力矩,使其保持力和力矩的平衡,以实现对外力的反馈控制。
5.系统性能评估5.1 运动精度运动精度是衡量控制系统性能的重要指标,可以通过与指定目标的偏差来评估。
5.2 控制速度控制速度是指臂实现运动的速度,可以通过控制指令的响应时间来评估。
6.系统应用案例6.1 自动化装配并联控制系统可以应用于自动化装配生产线,实现产品的高速度、高精度装配。
6.2 医疗手术并联控制系统可以应用于医疗手术中,实现对患者的精细手术操作。
7.附件本文档涉及的附件包括控制软件、逆运动学算法代码、运动规划算法代码等。
附件的详细信息,请参考附件列表。
8.法律名词及注释8.1是指一种能够根据预先设定的程序或自主决策执行任务的自动化机械设备。
六自由度并联机器人简介
六自由度并联简介六自由度并联简介该文档旨在提供关于六自由度并联的详细介绍和相关信息,以便读者更好地了解和理解这一领域的知识。
一、概述1.1 的定义1.2 的分类1.2.1 工业1.2.2 服务1.2.3 医疗1.2.4 农业二、并联简介2.1 并联的定义2.2 并联的结构2.2.1 底座2.2.2 运动段2.2.3 驱动机构2.2.4 传感器和控制系统三、六自由度并联原理3.1 运动学原理3.1.1 正运动学3.1.2 逆运动学3.2 动力学原理3.2.1 驱动力矩3.2.2 负载力矩3.2.3 平衡性能四、应用领域4.1 工业自动化4.1.1 组装4.1.2 搬运4.1.3 焊接4.1.4 机器视觉4.2 医疗行业4.2.1 手术4.2.2 康复辅助4.2.3 精确注射4.3 其他领域应用附件:1.技术规格表2.示意图和示范视频3.相关研究论文和文献列表法律名词及注释:1.:根据国际标准ISO 8373.2012,被定义为“可编程的多关节执行机构,具有多输入和多输出功能,并且可以执行人或者人的代理人指定的任务。
”2.自由度:指并联运动系统中能够独立变动的自由度数量,代表了运动的灵活性和自由度。
3.底座:并联的机械结构中支撑运动段的基础部分,提供稳定的支撑和固定工作环境的功能。
4.运动段:并联的机械结构中负责实现任务的活动部分,由多个节段组成,可以沿多个轴线进行相对运动。
5.驱动机构:并联中用来提供力和扭矩的装置,用以产生运动段所需的力矩和推力。
6.传感器和控制系统:并联中嵌入的用于感知环境和控制执行机构的设备,用来实现的自主控制和智能化任务执行。
并联机器人的设计讲义
并联机器人的设计讲义并联机器人是一种由多个自由度机械臂通过并联机构连接并协同运动的机器人系统。
它通过将多个自由度机械臂的末端连接在同一平面上或在三维空间内,实现更高自由度的运动灵活性和操作精度。
本文将介绍并联机器人的设计讲义。
一、机器人整体结构设计1.机器人基座和支撑结构:机器人的基座是机器人的主要支撑结构,需要具备足够的稳定性和刚度。
基座采用高强度材料制造,并结合有限元分析进行优化设计;2.并联机构设计:并联机构是机器人的核心构件,用于连接多个自由度机械臂。
设计并联机构时需要考虑运动灵活性和刚度之间的平衡,以及机构的可制造性;3.自由度机械臂设计:自由度机械臂是并联机器人的执行器,用于完成各种操作任务。
机械臂的设计需要考虑负载能力、工作范围和操作精度等因素;4.控制系统设计:机器人的控制系统包括传感器、控制算法和驱动器等。
根据任务需求选择合适的传感器和控制算法,并设计相应的驱动系统。
二、运动学建模与分析1.机器人的运动学建模:通过建立机器人的联动关系和几何条件,得到机器人各个运动部件之间的运动学方程;2.运动学分析:利用运动学方程分析机器人的位置、速度和加速度等运动特性,包括正逆运动学分析和运动学仿真。
三、动力学建模与分析1.动力学建模:通过建立机器人的动力学方程,研究机器人在执行任务过程中的力矩、力和加速度等动力学特性;2.动力学分析:利用动力学方程分析机器人的受力、运动规律和运动过程中的惯性力等特性;四、控制系统设计1.模型驱动控制:根据机器人的动力学和运动学模型,设计相应的控制算法,实现对机器人的运动控制;2.传感器选择和数据采集:根据任务需求选择合适的传感器,如力传感器、位置传感器等,并设计数据采集系统;3.控制器设计:设计合适的控制器来实现对机器人的高精度控制,并选择合适的驱动器来驱动机器人的各个关节;4.控制算法优化:根据实际应用需求,对控制算法进行优化和改进,提高机器人的运动控制性能。
三自由度并联机器人
三自由度并联机器人三自由度并联机器人步骤一:介绍三自由度并联机器人的概念首先,我们需要明确三自由度并联机器人的概念。
三自由度并联机器人是指具有三个运动轴的机器人系统,每个轴都可以运动。
这种机器人系统通常由三个平行连杆组成,每个连杆都可以绕相应的轴进行旋转或平移运动。
步骤二:解释三自由度并联机器人的工作原理三自由度并联机器人的工作原理可以通过以下步骤来解释。
首先,机器人系统的每个连杆都与一个电机相连,电机可以通过控制系统进行控制。
当电机转动时,连杆也会随之运动。
其次,机器人系统的末端执行器可以根据操作需求进行安装,例如夹持工具、传感器等。
最后,通过控制系统的指令,可以控制机器人系统的每个轴的运动,从而实现所需的操作任务。
步骤三:探讨三自由度并联机器人的应用领域三自由度并联机器人在许多领域都有广泛的应用。
例如,在工业生产中,它可以用于精确装配、焊接、喷涂等操作。
在医疗领域,它可以用于手术辅助、病人康复训练等任务。
在事领域,它可以用于侦查、拆弹等危险任务。
此外,三自由度并联机器人还可以用于空间探索、科学研究等领域。
步骤四:分析三自由度并联机器人的优势和挑战三自由度并联机器人具有许多优势。
首先,它可以实现多轴并联,提高机器人系统的稳定性和精度。
其次,由于每个轴都可以控制,机器人系统具有较高的灵活性和适应性。
此外,三自由度并联机器人还具有较小的体积和较低的能耗,适用于空间有限的环境。
然而,三自由度并联机器人也面临一些挑战。
首先,由于每个轴都需要单独控制,控制系统的复杂度较高。
其次,由于机器人系统的运动轨迹相对复杂,需要进行精确的运动规划和控制。
此外,机器人系统的结构较为复杂,对于设计和维护人员的要求较高。
步骤五:展望三自由度并联机器人的未来发展三自由度并联机器人在未来有着广阔的发展前景。
随着控制技术和传感技术的不断进步,机器人系统的运动控制和精度将得到进一步提高。
此外,随着人工智能技术的发展,三自由度并联机器人将能够更好地适应复杂的工作环境和任务需求。
delta并联机器人
delta并联机器人简介Delta并联机器人是一种具有高速度和高精度的机器人系统,广泛应用于工业生产线上的自动化操作。
该机器人系统通过多个可移动的杆件连接到一个中央平台,从而形成一个三角形结构。
Delta并联机器人通常由三个活动臂构成,每个臂都有自己的电机驱动和传感器。
工作原理Delta并联机器人的工作原理主要基于先进的运动控制技术和高精度传感器。
每个臂上的电机驱动器通过控制杆件的长度和角度来实现机器人的运动。
三个活动臂通过同步运动将末端执行器移动到所需的位置和方向。
传感器可以监测机器人的位置和姿态,从而实现精确的操作和控制。
应用领域Delta并联机器人在许多不同的领域都有广泛的应用。
以下是一些主要的应用领域:1. 生产线自动化Delta并联机器人在制造业中广泛用于自动化生产线上。
它们可以完成各种任务,包括装配、包装和物料搬运。
由于其高速度和高精度,它们能够提高生产效率并减少人力成本。
2. 食品加工在食品加工领域,Delta并联机器人可以执行各种复杂的任务,如食品分拣、包装和搅拌。
由于其卓越的运动控制性能,它们能够确保产品的质量和一致性。
3. 医疗Delta并联机器人在医疗领域中也有广泛的应用。
它们可以用于手术助手、药品分发和实验室操作等任务。
由于其高精度和可靠性,它们可以提供更安全和准确的医疗服务。
4. 物流和仓储在物流和仓储领域,Delta并联机器人可以执行物料的搬运、分拣和堆垛等任务。
它们可以在狭小的空间中自由移动,并且能够提高处理效率和减少错误。
优势和挑战优势Delta并联机器人具有以下优势:•高速度和高精度:Delta并联机器人的运动控制性能非常出色,能够以极高的速度和精度执行任务。
•灵活性:Delta并联机器人的设计使其能够在有限的空间内自由移动,适应不同的工作环境和需求。
•高负载能力:Delta并联机器人能够处理较大的工作负载,使其适用于各种不同的应用场景。
挑战尽管Delta并联机器人具有许多优势,但它们也面临一些挑战:•高成本:Delta并联机器人的制造和维护成本较高,使其在某些领域可能不太具备竞争力。
并联机器人的工作原理
并联机器人的工作原理并联机器人是一种具有多个执行机构的机器人系统,其工作原理主要依赖于并联结构的特点和控制算法的设计。
在并联机器人中,多个执行机构同时作用于同一个工作端,以实现高精度、高速度的运动控制。
本文将从并联机器人的结构特点、工作原理和应用领域等方面进行详细介绍。
首先,我们来看一下并联机器人的结构特点。
与串联机器人不同,串联机器人的执行机构是依次连接的,而并联机器人的执行机构是并列连接的。
这种结构特点使得并联机器人在运动过程中具有更高的刚度和精度,能够承受更大的负载和实现更复杂的运动轨迹。
同时,由于多个执行机构同时作用于工作端,使得并联机器人具有更高的速度和加速度,能够更快地完成任务。
其次,我们来介绍一下并联机器人的工作原理。
在并联机器人中,通常会采用一种称为并联驱动的控制方法。
该方法通过对多个执行机构的力和位置进行协调控制,实现对工作端的精确控制。
在运动控制方面,通常会采用先进的运动规划算法和轨迹跟踪控制算法,以确保并联机器人能够实现高精度、高速度的运动。
此外,还需要对并联机器人的传感器系统进行精确校准,以确保对工作环境的感知和反馈能够准确可靠。
最后,我们来谈一下并联机器人的应用领域。
由于其高精度、高速度的特点,使得并联机器人在许多领域具有广泛的应用前景。
例如,在精密加工领域,可以利用并联机器人实现对微小零件的加工和组装;在医疗领域,可以利用并联机器人进行微创手术和精准治疗;在航天领域,可以利用并联机器人进行航天器件的装配和维护等。
可以预见,随着技术的不断进步,并联机器人将在更多领域展现出其巨大的应用潜力。
总之,并联机器人作为一种新型的机器人系统,具有独特的结构特点和工作原理,其在工业生产、医疗健康、航天航空等领域都有着广阔的应用前景。
相信随着技术的不断发展,并联机器人将会发挥越来越重要的作用,为人类社会的发展和进步做出更大的贡献。
并联机器人综述
并联综述并联综述1.简介1.1 背景并联是指由多个机械臂以并联的方式连接在一起,通过共享载荷、合作操作的一种系统。
其具有高刚性、高精度、高承载能力等特点,被广泛应用于工业自动化领域。
1.2 目的本文旨在介绍并联的基本概念、结构组成、工作原理以及应用领域,以便读者能够全面了解并联的特点和优势。
2.结构组成2.1 机械臂并联的核心部件是机械臂,通常由多个关节组成。
每个关节都装有驱动器和传感器,用于控制机械臂的运动和感知周围环境。
2.2 连杆和连杆驱动系统机械臂之间通过连杆连接,连杆驱动系统用于控制连杆的运动,从而实现机械臂的协同运动。
2.3 控制系统控制系统是并联的大脑,通过控制算法和传感器反馈信号,实现对机械臂的精确控制。
3.工作原理3.1 平台运动并联的机械臂通过连杆和关节传递力和运动,实现平台的运动。
平台的运动可以是平移或旋转,取决于机械臂的结构。
3.2 协作操作通过控制系统的协调控制,多个机械臂能够实现协作操作。
例如,可以通过分担负荷的方式,提高的承载能力;或者通过协同动作,完成复杂的任务。
4.应用领域4.1 制造业并联在制造业中被广泛应用于装配、焊接、喷涂等工序,能够提高生产效率和产品质量。
4.2 医疗领域并联在医疗领域中被用于手术操作,具有高精度、稳定性好的优点,减轻了医生的劳动强度。
4.3 物流领域并联在物流领域中能够完成货物的搬运、分拣等工作,提高了物流效率。
4.4 其他领域并联还可以应用于航空航天、冶金、矿山等领域,发挥更多的作用。
5.附件本文档涉及的附件详见附件部分。
6.法律名词及注释6.1 并联:由多个机械臂以并联的方式连接在一起,通过共享载荷、合作操作的一种系统。
6.2 关节:机械臂上的可转动连接部件,用于实现机械臂的运动。
6.3 传感器:用于感知机械臂周围环境的装置,能够提供位置、力量、力矩等信息。
并联机器人背景介绍
并联背景介绍并联背景介绍一、引言在现代制造业中,已经成为重要的工具和装备。
随着技术的不断发展,的功能日益增强,也越来越多地用于处理复杂的任务。
并联作为一种新型,具有很大的潜力和前景。
本文将介绍并联的背景和相关信息。
二、并联的定义并联,也被称为并联机械手,是一种由多个连接在一起的运动装置组成的。
每个连接点都有一个自由度,使得能够执行复杂的运动和操作。
并联一般由基座、连接点、末端执行器等组成。
三、并联的优势1、高刚性:并联结构使得具有较高的刚性,能够完成更精确的任务。
2、高稳定性:由于并联的连接点都能够自由运动,使得在执行任务时更为稳定。
3、高精度:并联的各个连接点均配备传感器,能够实时感知环境,提供更高的定位精度。
4、多功能:并联具有多个自由度,能够同时执行多种任务,提高工作效率。
四、并联的应用领域1、制造业:并联广泛应用于汽车制造、电子产品组装等领域,能够提高生产效率和产品质量。
2、医疗领域:并联用于手术操作,能够提高手术精度和减少手术风险。
3、建筑领域:并联可用于高空作业、搬运重物等任务,提高施工效率和安全性。
4、食品行业:并联可用于食品包装、烹饪等任务,能够实现自动化生产。
五、并联的发展趋势1、更高的运动速度和精度:随着传感器和控制技术的不断进步,未来的并联将具有更高的运动速度和精度。
2、更智能化的控制系统:技术的发展将使得并联具备更强的自主学习和决策能力。
3、更广泛的应用领域:并联将进一步应用于更多领域,如农业、航天等。
六、附件本文档涉及附件如下:1、并联的示意图2、并联在制造业中的应用案例研究七、法律名词及注释1、:根据《技术标准定义》(GB/T 37607-2016)的规定,是一种能够通过计算机编程和自动化设备控制实现复杂任务的机械设备。
2、自由度:执行任务时能够自由运动的方向和程度,表示的运动自由度的数量。
并联机器人背景介绍教学提纲
并联机器人
工作空间大
工作空间小
有累计误差
无累计误差,精度高
承载能力较弱
承载能力强
位置求解,正解容易,反解难 位置求解,正解难,反解容易
起步早,研究成熟
刚开始起步
Part One
1.4并联机构分类
➢ 2 自由度并联机构。 ➢ 3 自由度并联机构。 ➢ 4 自由度并联机构。 ➢ 5 自由度并联机构。 ➢ 6 自由度并联机构。(如Stewart机构、双Delta嵌套机构)
Part One
二自由度并联机器人
操作末端 的
运动特性
➢ 平移并联机器人 ➢ 两转动并联机器人 ➢ 一平动一转动并联机器人 ➢ 球面并联机器人。
Part One
二自由度平移并联机器人
结构 布置 方式
平面结构
平面结构的二自由度平移 并联机器人常常采用平行四边 形结构作为被动支链,利用平 行四边形结构的纯平动特点来 实现二自由度平移运动。
1985年delta并联机构
Part One
1.2并联机器人结构组成
并联机器人组成:一个固定基座、一个具有n自由度的 末端执行器以及不少于两条独立的运动链。
必备的要素: ①末端执行器必须具有运动自由度; ②这种末端执行器通过几个相互关联的运
动链或分支与机架相联接; ③每个分支或运动链由惟一的移动副或转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并联机器人原文Virtual Prototyping of a Parallel Robot actuated by Servo-Pneumatic Drives using ADAMS/ControlsWalter Kuhlbusch, Dr. Rüdiger Neumann, Festo AG & Co., Germany SummaryAdvanced pneumatic drives for servo-pneumatic positioning allow for new generations of handlings and robots. Especially parallel robots actuated by servo-pneumatic drives allow the realization of very fast pick and place tasks in 3-D space. The design of those machines requires a virtual prototyping method called the mechatronic design [ 1]. The most suitable software tools are ADAMS for mechanics and Matlab/Simulink for drives and controllers. To analyze the overall behavior the co-simulation using ADAMS/Controls is applied. The combination of these powerful simulation tools guarantees a fast and effective design of new machines.1. IntroductionFesto is a supplier for pneumatic components and controls in industrial automation.The utilization of pneumatic drives is wide spread in industry when working in open loop control. It’s l imited however, when it comes to multipoint movement or path control. The development has been driven to servo-pneumatic drives that include closed loop control. Festo servo-pneumatic axes are quite accurate, thus they can be employed as drives for sophisticated tasks in robotics. The special advantage of these drives is the low initial cost in comparison to electrical and hydraulic drive systems. Servo-pneumatic driven parallel robots are new systems with high potentials in applications. The dynamical performance meets the increasing requirements to reduce the cycle times.One goal is the creation and optimization of pneumatic driven multi-axes robots. This allows us to support our customers, and of course to create new standard handlings and robots (Fig. 1).The complexity of parallel robots requires the use of virtual prototyping methods.Fig. 1. Prototypes of servo-pneumatic driven multi-axes machinesPreferred applications are fast multipoint positioning tasks in 3-D space. Free programmable stops allow a flexible employment of the machine. The point to point (ptp) accuracy is about 0.5 mm. The continuous path control guarantees collision free movement along a trajectory.1.1. Why parallel robots?The main benefits using parallel instead of serial kinematics is shown in Fig. 2.Fig. 2. Benefits of robots with parallel kinematicsHigh dynamical performance is achieved due to the low moved masses. While in serial robots the first axis has to move all the following axes, the axes of a parallel robot can share the mass of the workpiece. Furthermore serial axes are stressed by torques and bending moments which reduces the stiffness. Due to the closed kinematics the movements of parallel robots are vibration free for which the accuracy is improved. Finally the modular concept allows a cost-effective production of the mechanical parts. On the other hand there is the higher expense related to the control.1.2. Why Pneumatic Drives?The advantages of servo-pneumatic drives are:direct drives→high accelerating powercompact (especially rodless cylinders with integrated guidance)robust and reliablecost-effectiveDirect drives imply a high acceleration power due to the low equivalent mass in relation to the drive force. With pneumatic drives the relationship is particularly favorable. Festo has already built up some system solutions, predominantly parallel robots (see Fig. 1), to demonstrate the technical potential of servo-pneumatics. Which performance can be reached is shown in Fig. 3. This prototype is equipped with an advanced model based controller that makes use of the computed torque method [ 3].Fig. 3. Performance of the Tripod2. Design MethodThe system design, where several engineering disciplines are involved in, requires a holistic approach. This method is the so-called mechatronic design. The components of a mechatronic system are the mechanical supporting structure, the servo drives as well as the control. All these components are mapped into the computer and optimized with respect to the mutual interaction. This procedure can be used to analyze and improve existing systems as well as to create new systems. The two main steps of the mechatronic design are first building models in each discipline, and secondly the analysis and synthesis of the whole system. These steps are done in a cycle for the optimization.The modeling can be carried out in two ways: Either you apply one tool to build up models in all disciplines, but with restrictions. The other way is to use powerful tools in each discipline and to analyze the whole system via co-simulation. In this case you have to consider some specials of the solving method like communication step size or direct feedthrough behavior.2.1. Why Co-Simulation?Co-simulation is used because of the powerful tools, each specialized in its own discipline. ADAMS is an excellent tool for the mechanical part and Matlab/Simulink is the suitable tool for controller development and simulation of pneumatics.The behavior of the mechanical part is modeled at best usingADAMS/View. The advantages of ADAMS are:fast physically modeling of rigid and elastic bodiesextensive features for parameterizationanimation of simulation resultssolving inverse kinematics by “general point motion”visualization of eigenmodes (ADAMS/LINEAR)export of linear models (A,B,C,D)A big advantage is the automatic calculation of the direct and inverse kinematics. The direct kinematics of parallel structures often cannot be solved analytically. Furthermore different kinematics can be compared to each other very easily when you define a trajectory of the end-effector via “general point motion”.Applying these two software tools guarantees a high flexibility regarding the design of new systems. It is very important to analyze the closed loop behavior at an early stage. This makes a big difference between the mechatronic design and the conventional design. Furthermore the visualization of the mechanical system makes the discussion within a team very easy.2.2. RestrictionsA disadvantage is that the model of the mechanics is purely numerically available. However some symbolic code of the mechanical system is needed for the control hardware when the system becomes realized. In general we have to derive the equations of the inverse kinematics, which are used in the feed forward control. For specific robot types a controller with decoupling structure is necessary in order to fulfill the requirements. Then the symbolic code of the dynamics is needed. For this we have to pull up further tools to complete the task.2.3. What has to be analyzed?For the design of new robots it is important to know about the effect on the system stability and accuracy. The main properties that influence stability and accuracy are opposed in Table 1 for different kinematical structures.Table 1: Properties of different kinematical configurationsWith respect to the control the cartesian type is the best one. But the main disadvantage of a serial robot compared with a parallel one is the lower dynamics and the lower stiffness (see Fig. 2).Depending on the requirements with regard to dynamics and accuracy different control approaches must be applied. As mentioned above we prefer to employ a standard controller SPC200 for a single axis. Due to the coupling of the axes the stability of the closed loop system must be checked.3. Model of the TripodThe model of the Tripod consists of three parts: the mechanics, the pneumatic drives, and the controller.3.1. Mechanics (ADAMS)We apply the so-called delta-kinematics which causes a purely translational movement of the tool center point (tcp). An additional rotary drive allows the orientation of the gripper in the horizontal plane. Together with the rotary drive the machine has four degrees of freedom.Fig. 4. Degrees of freedom and structure of the TripodThe tripod is modeled using rigid body parts what is often sufficient for the present type of parallel structure. The upper and lower plates are fixed to ground. The profile tubes are connected to these plates via fixed joints. Eachslider has one translational degree of freedom. Both ends of a rod are connected to the neighbored parts by universal joints. Including the rotary drive, the model verification results in four Gruebler counts and there are no redundant constraints. The model is parameterized in such a way that different kinematical configurations can be generated very easily by means of design variables. The most important parameters are the radiuses of the plates (see Fig. 4) and the distances to each other. For instance the following configurations can be achieved just by variation of these parameters or design variables.Fig. 5. Variation of kinematics by “design variables”3.2. Servo-Pneumatic Drives (Simulink)The models of the servo-pneumatic drives are developed by means of Matlab/Simulink. Depending on the requirements several controller models were developed. It is common to all that they are highly non-linear. Mainly the compressibility of air makes a more complex control system necessary. All controller models including the standard controller SPC200 are available asC-coded s-functions. This allows to use the same code in the simulation as well as on the target hardware.A survey of the control scheme is shown in Fig. 6. For this contribution it is important to know about the interface for the co-simulation. The calculated forces of the servo pneumatics are the inputs to the mechanics. The slider positions are the outputs of the mechanics. Detailed information on the controllers can be found in [ 2] and [ 3].Fig. 6. Control structure4. Analyzing the behavior of the whole systemWhen the modeling is done we can go on with the second step of the mechatronic design. In the following it is assumed that the SPC200 controller always controls the machine. The task is the analysis and synthesis of different parallel kinematics relative to stability, dynamics, and accuracy for a given workspace.Some studies, e.g. concerning the workspace, can be made exclusive using ADAMS. Others such as feedback analysis are carried out by means of co-simulation.The workspace can be determined by varying all drive positions in all combinations. After simulation the end-effector positions are traced using the feature “create tracespline”.Fig. 7. Drive motions for the workspace calculationThe data can be visualized in ADAMS or any other graphics tool. As an example the workspace of the Tripod configuration of Fig. 7 is represented in Fig. 8Fig. 8. Workspace of the Tripod (configuration as in Fig. 7) Measuring the velocity of the end-effector at the same time delivers the gear ratios of all drives over the workspace.To examine the behavior of the closed loop system ADAMS/Controls is used to couple ADAMS and Simulink. Before the model can be exported some inputs and outputs of the plant must be defined by state variables. The inputs of the Tripod are the drive forces. Though the controller makes only use of the drive position some additional signals are defined as outputs: The drive velocities are needed for solving the differential equations of the pressures in the pneumatics model. Furthermore we need the velocity of the tool center point to calculate the non-linear gear ratios. Finally the drive accelerations serve for the calculation of the equivalent moved masses. The whole system is shown in Fig. 9.Fig. 9. Model of the whole systemThe model of the mechanics is embedded in Simulink. ADAMS/Controls makes the interface available by means of s-function.The equivalent moved masses depend on the positions of drives. The non-linearity of the robot grows with the strength of this dependency. As shown in Table 1 with the parallel kinematics there is a medium strong coupling of the dynamics. This coupling is neglected, if we use the standard SPC200 controller. Nevertheless there is an influence on the stability of theclosed loop system. To initialize and parameterize this controller we need the following information from the mechanics model:equivalent moved mass of each drive (depends on slider positions)gravity forces in initial positionCoulomb and viscous frictionThe controller is designed for a single axis with a constant mass. Due to the position dependency of the equivalent moved masses of the robot we have to choose an average value for each drive. Unfortunately with ADAMS there is no easy way to calculate the equivalent moved masses along atrajectory. We tried to apply different methods such as dividing a drive force by its acceleration during a slow motion, but this method yielded not insatisfying results. The best method found is the linearization of the system.However this requires ADAMS/Linear. When we define the drive accelerations as plant outputs in ADAMS/Controls the direct feed through matrix D of the exported linear system delivers the mass matrix in the defined operating point as1)()(-⋅=q q D f MCorresponding to the three degrees of freedom of the rigid body system the size of the mass matrix M(q) is three by three. It depends on the vector of the generalized coordinates of the drives. The non-diagonal elements cause the coupling between the axes. The factor f depends on the units chosen for the inputs and outputs. Whenthe forces are given in [N] and the accelerations are given in [mm/s 2] f is 0.001.With a slider mass of 2 kg and an end-effector mass of 2 kg the massmatrix for the three positions shown in Fig. 10 are:The gravity forces can be calculated very easily by static simulation.Likewise it is easy to model the friction in ADAMS. Nevertheless theparameters can differ very strong from one application to another one.With the parameterized controller the stability should be checked inseveral operating points by means of eigenvalues and the dynamics of the closed loop system can be analyzed by means of frequency responses.Of course with a robust controller you can start with a simulation in time domain. This gives information about the accuracy and system limits. For this we need the references for the drives. For a reference trajectory of the tool center point ADAMS applying the “general point motion” can generate the drive positions.Fig. 10. Solving inverse kinematics by feature "general point motion"In the following the simulation results are presented for a tripod configuration shown in Fig. 10. The workspace of this machine is illustrated in Fig. 8.Fig. 11. Left: Trajectory of the tool center point. Right: Drive references and measures5. ConclusionThe coupling of the software tools ADAMS and Simulink via co-simulation is a powerful method of virtual prototyping. This method enables an efficient design and optimization of servo-pneumatic driven robots. Especially robots with parallel kinematics can be analyzed very fast using ADAMS. Due to the potential of the linear analysis the use of ADAMS/Linear is meaningful. Particularly with controlled systems the linear analysis is required.Literature[ 1] Kuhlbusch, W., Moritz, W., Lückel, J., Toepper, St., and Scharfeld, F.: T RI P LANAR - A New Process-Machine Type Developed by Means of Mechatronic Design. Proceedings of the 3rd International Heinz Nixdorf Symposium on Mechatronics and Advanced Motion Control, Paderborn, Germany, 1999.[ 2] Neumann, R., Göttert, M. Ohmer, M.: Servopneumatik – eine alternative Antriebstechnik für Roboter, Robotik 2002, 19-20. Juni in Ludwigsburg, Germany, 2002, VDI-Bericht Nr. 1679 p. 537-544.[ 3] Neumann, R., Leyser, J., Post, P.: Simulationsgestützte Entwicklung eines servopneumatisch angetriebenen Parallelroboters. TagungsbandSIM2000 – Simulation im Maschinenbau, Dresden, Germany, 2000, p. 519-536.。