光伏组件功率测试异常

合集下载

光伏组件测试

光伏组件测试

1.1.1组件电性能测试1 组件测试仪校准:开始测试前使用相应的标准板校准测试仪;之后连续工作四小时(或更换待测产品型号)校准测试仪一次。

2 标准板选用:测试单晶硅组件使用单晶硅标准板;测试多晶硅组件使用多晶硅标准板。

测试120W以上(包括120W)组件:使用160W标准板校准测试;测试50~120W(包括50W)组件:使用80W标准板校准测试;测试30~50W(包括30W)组件:使用30W标准板校准测试;测试30W以下组件:使用15W标准板校准测试。

3 短路电流校准允许误差:±3%。

4 每次校准后填写《组件测试仪校准记录》。

2 组件的测试:1太阳模拟器光强均匀度测试:①太阳模拟器光强均匀度≤3%;②每周一、四校正测试一次。

2 太阳模拟器光强稳定性测试:①太阳模拟器光强稳定性≤1%;②每天测试前校正测试一次。

3电池组件测试前,需在测试室内静止放置24小时以上,然后进行测试。

.4 测试环境温度湿度:①温度:25±3℃;②湿度:20~80%;③测试室保证门窗关闭,无尘。

3组件重复测试精度:<±1%。

12.4组件电性能参数:12.4.1国内组件:①三十六片串接:工作电压:≥16.0V;开路电压: ≥19.8V。

②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。

③六十片串接:工作电压:≥28.0V;开路电压: ≥34.0V。

④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。

⑤功率误差:±3%。

12.4.2国外组件:①三十六片串接:工作电压:≥16.8V;开路电压: ≥20.5V。

②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。

③六十片串接:工作电压:≥27.4V;开路电压: ≥34.0V。

④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。

⑤功率误差2.0 仪器/工具/材料2.1 所需原、辅材料:1.外观检查合格的组件2.2 设备、工装及工具:1.组件测试仪;2.标准组件;3.合格印章3.0 准备工作3.1 工作时必须穿工作衣,鞋;做好工艺卫生,用抹布清洗工作台3.2 按《太阳能模拟器操作规范》开启并设置好组件测试仪;每班次开始生产测试前必须用标准组件样品校准测试设备,然后每工作2小时校准一次,保证标准件温度和被测组件温度之差≤1℃3.3测试环境要求:3.3.1温度和被测试组件温度均为T=25±2℃,测试环境相对密封,不受太阳光等光线的影响。

光伏系统常见故障处理-江苏固德威电源科技有限公司电子版本

光伏系统常见故障处理-江苏固德威电源科技有限公司电子版本
© copy right reserved by GoodWe
注意事项
注意事项: 每 路MPPT 的每路直流输入的组件 数量应该一致, 例如:PV1中的a=b=c
PV2中的d=e=f
© copy right reserved by GoodWe
AC 端子安装
火线接到AC端子对应的L处,零线接到N处,地线接到PE处;接线完成之后,需 要用万用表测量对应的电压,线电压应该在380V左右,相电压应该在220V左右 。
返回
Fac Failure
原因:电网频率超安规范围 Error Code:03/04/12
检测方法 1:确保AC端已连接上电 2:查看机器屏幕上显示的Fac是多少,如果超范围,可以通过更改安规或者校正 工具更改上下限 3:偶尔出现Fac报错,是因为电网波动导致频率超范围
© copy right reserved by GoodWe
原因:输出电流传感器故障 Error Code:31 检测方法 1:重新插拔控制板 2:升级软件 3:更换控制板 4:更换机器
© copy right reserved by GoodWe
返回
GFCI Failure
原因:漏电流检测设备故障 Error Code:28/32 检测方法 1:升级软件到最新版本 2:更换控制板
© copy right reserved by GoodWe
返回
Relay-check failure
原因:输出继电器不良 Error Code:07
检测方法 1:机器上电(DC侧和AC侧),机器读秒期间,听继电器是否有闭合断开的声音 2:打开机器上盖,检查控制板的排线是否有松动,或者重新插拔下控制板测试 3:用万用表检测继电器是否短路

太阳能光伏电池组件性能测试及相关参数分析

太阳能光伏电池组件性能测试及相关参数分析

太阳能光伏电池组件性能测试及相关参数分析近年来,光伏电池组件技术在全球迅速发展,太阳能光伏电池组件的市场需求也逐步增加。

然而,光伏电池组件的性能在实际使用中是非常重要的,因此需要进行科学的测试和分析来评估其性能和可靠性。

一、太阳能光伏电池组件性能测试1.电性能测试太阳能光伏电池组件的电性能测试是评估其性能的关键。

其主要测试项目包括:(1)标称最大功率点(Maximum Power Point,MPP)太阳能光伏电池组件的MPP是其工作点,即在该点时,其输出功率为最大。

测定MPP是光伏电池组件电性能测试中最重要的部分。

(2)开路电压(Open Circuit Voltage,OCV)在没有任何负载情况下,太阳能光伏电池组件的输出电压即为OCV。

(3)短路电流(Short Circuit Current,SCC)在电路中设有负载短接,电流即为SCC。

(4)填充因子(Fill Factor,FF)填充因子是指组件输出电流与电压的乘积与最大功率点处的乘积之比。

2.光电性能测试太阳能光伏电池组件的光电性能测试主要是测量其在不同光强下的输出电流和电压。

其主要测试项目包括:(1)光伏转换效率(Photovoltaic Conversion Efficiency,PCE)光伏转换效率是太阳能光伏电池组件的性能指标之一,其公式为PCE=(输出功率/入射光的总辐照度)×100%。

(2)光伏响应谱(Responsivity Spectrum,RS)光伏响应谱是指在不同波长下光伏电池组件的输出电流的比值。

通过光伏响应谱的测量,可以评估光伏电池组件在不同波长下的响应情况。

3.热性能测试太阳能光伏电池组件的热性能也是非常重要的。

其主要测试项目包括:(1)零点漂移(Zero Drift)零点漂移是指在不同温度下,光伏电池组件的输出电流的偏移。

通过测试零点漂移,可以评估光伏电池组件在不同温度下的输出电流的稳定性。

(2)温度系数(Temperature Coefficient)温度系数是指在不同温度下光伏电池组件的输出功率和电流的变化。

光伏组件lid测试原理

光伏组件lid测试原理

光伏组件lid测试原理光伏组件LID(testing)即Light Induced Degradation,是指太阳能电池在初始照射和加速照射之后,会出现严重的功率损失。

这种现象的出现是由于太阳能电池中的氧、钠等掺杂物在光照下形成了复合态,进而导致流经它们的电荷的移动受到限制,以至于太阳能电池的发电效果下降。

LID测试可以检测电池板在高温、高湿度环境下的变化情况,帮助开发人员提前发现潜在问题,维护太阳能电池的长期稳定性并确保其电池组件的高效发电。

LID测试工作原理有以下几个步骤:1.样品准备:准备待测试的太阳能电池板和测试设备。

采集太阳能电池板和标准电池的型号和批号,说明待测试的电池板是新鲜的。

2.测试样品暗电流:在太阳能电池板的正负极之间加上足够的电压,在黑暗中测量样品的暗电流,通常使用1-23毫安左右的电流密度进行测试。

3.加速照射测试:将太阳能电池板置于特定的气氛环境中,在一定的温度和湿度下对其进行加速照射。

通常使用阳光模拟器对样品进行1000w/m2的照射,照射时间为48-72小时。

4.二次测量:在加速试验之后,再次测量被测样品的暗电流。

如果样品受到光诱导性退化影响,则第二次测量的暗电流将要比第一次测量高得多。

5.数据清洗和处理:将收集到的数据进行归一化处理,以比较各批次太阳能电池板之间的差异。

如果测试结果没有达到标准要求,则需要对太阳能电池板进行重新评估和测试。

LID测试是一项有用的测试技术,可以帮助工程师及时发现太阳能电池板中存在的问题,以便于对电池板进行保养和修理工作。

因此,此测试技术对太阳能电池的可持续性发展和应用具有重要意义。

光伏组件质量问题及预防措施汇总

光伏组件质量问题及预防措施汇总

光伏组件质量问题及预防措施汇总光伏组件较为常见的质量问题汇总,很多质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。

1、蜗牛纹1.蜗牛纹的出现是一个综合的过程,EVA胶膜中的助剂、电池片表面银浆构成、电池片的隐裂以及体系中水份的催化等因素都会对蜗牛纹的形成起促进作用,而蜗牛纹现象的出现也不是必然,而是有它偶然的引发因素。

EVA胶膜配方中包含交联剂,抗氧剂,偶联剂等助剂,其中交联剂一般采用过氧化物来引发EVA 树脂的交联,由于过氧化物属于活性较高的引发剂,如果在经过层压后交联剂还有较多残留的话,将会对蜗牛纹的产生有引发和加速作用。

2.EVA胶膜使用助剂都有纯度的指标,一般来说纯度要求要在99.5%以上。

助剂中的杂质主要是合成中的副产物以及合成中的助剂残留,以小分子状态存在,沸点较高,无法通过层压抽真空的方法从体系中排除,所以助剂如果纯度不高,那么这些杂质也将会影响EVA胶膜的稳定性,可能会造成蜗牛纹的出现。

组件影响:1.纹路一般都伴随着电池片的隐裂出现。

2.电池片表面被氧化。

3.影响了组件外观。

预防措施:1.VA胶膜使用符合纯度指标的助剂。

2.安装过程中对组件的轻拿轻放有足够认识。

3.EVA脱层1.交联度不合格.(如层压机温度低,层压时间短等)造成。

2.EVA、玻璃、背板等原材料表面有异物造成。

3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层。

4.助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层。

组件影响:1.脱层面积较小时影响组件大功率失效。

当脱层面积较大时直接导致组件失效报废。

预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。

2.加强原材料供应商的改善及原材检验。

3.加强制程过程中成品外观检验。

4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm。

光伏组件的加工工艺及不良分析

光伏组件的加工工艺及不良分析

光伏组件的加工工艺及不良分析IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】光伏组件的加工工艺及不良分析光伏组件加工工艺是太阳能光伏产业链的重要组成部分,通过将一片一片薄薄的太阳能电池片封装,使其可在恶劣的户外环境下可靠运行。

当前主流光伏组件的加工工艺采用的封装形式是EVA胶膜封装,它由电池片检测、电池片单焊、电池片串焊、组件层叠、组件层压、安装边框和安装接线盒、成品测试和包装入库等多道工序构成。

各道工序环环相扣,因此,各道工序工艺水平高低都直接影响产品的质量和档次。

一、光伏组件加工工艺第1道工序为电池片检测。

作为光伏组件加工环节的主要原材料——电池片的性能直接决定光伏组件质量好坏,因此,除对它的外观、色差和电阻率检测外,还要测试电池在特定光照、温度条件下的输出电流、输出电压和稳定耐用性等参数,它的测试主要通过专业仪器和设备完成。

第2道工序为电池片单片焊接。

焊接时,左手捏压焊带一端约1/3处,将焊带平放在电池片的主栅线上,焊带的另一端接触到电池片上的栅线上;右手拿烙铁,从左至右用力均匀地沿焊带轻轻压焊.焊接时,烙铁头的起始点应在单片左边处,焊接中烙铁头的平面应始终紧贴焊带.焊接应牢固、无毛刺、无虚焊及锡渣,表面光滑美观。

第3道工序为电池片的串焊,操作工艺为:将规定数量已焊好的电池片,背面向上排在模板上,用一只手轻压住2块电池片,使其贴在加热模板上,相互紧靠,依照规定间距(2士)将后一电池片引出的焊锡条用烙铁压焊在前一电池片的背电极上。

在焊接时要求焊锡条焊接平整,外观平直,无凸起焊锡疙瘩,无虚焊现象,第4道工序为层叠.将钢化玻璃抬到叠层工作台上,钢化玻璃的绒面朝上,在钢化玻璃上平铺一层EVA.EVA在钢化玻璃四边的余量≥5mm;注意要将EVA的光面朝向钢化玻璃绒面,在EVA上放好符合组件板型的定位模板,电池串分别与头、尾端模板对应,根据模板上所标识的正负极符号,将电池串正确摆放在EVA上,电池串的减反射膜面朝下。

IEC 61215 测试项目及失效案例介绍

IEC 61215 测试项目及失效案例介绍

16
IEC 61215测试项目及常见失效-10.4 温度系数的测量
测定的温度系数,仅在测试中所用的辐照度下有效。 要求: 模拟器等级:B级或更好,E=1000W/ ㎡ ±2%,要求测试温度范围至少30 ℃以 上,一般为20-60 ℃。将测试数据使用最小二乘法拟合。 Isc短路电流温度系数
8
7.5
电流(A)
测试要求:参考标准IEC 60904 模拟器等级:B级或更好; 温度:25℃-50℃,温度测试精度为±1℃,重复性为±0.5℃ ; 辐照度:700W/m2-1100 W/m2; 组件放置 :垂直于入射光; 参考器件:如果使用B级模拟器,标准光伏器件应为标准光伏组件,该组件应采 用与测试样品同样技术制造(有相同光谱相应)并且同样尺寸大小; 重复性:Pmax ≤ ±1%。 数据修正:使用 温度系数进行修正(估算),为了减少修正幅度,应努力使最 大功率的测量尽可能在相同工作条件下进行(如环境试验前后功率对比),即 对一个特定组件应在尽量相同的温度和辐照度下进行最大功率的测量。
所以必须通过可靠性测试确认组件承受持续热斑加热效应的能力。
29
IEC 61215测试项目及常见失效- 10.9 热斑耐久试验
10
IEC 61215测试项目及常见失效-10.1 外观检查
常见失效:
11
IEC 61215测试项目及常见失效-10.1 外观检查
热循环
湿热
湿热
湿热
12
IEC 61215测试项目及常见失效-10.1 外观检查
toyo背板与First F406 EVA兼容性测试
13
IEC 61215测试项目及常见失效-10.2 最大功率确定
7
y = 0.003x + 6.682 R² = 0.968

光伏电站运维常见故障及解决方法

光伏电站运维常见故障及解决方法

常见的故障及解决方法国内投资光伏电站的人士越来越多,光伏电站出现故障的事件也是层出不穷,有感于此,下面广东太阳库技术人员分享光伏电站日常运行中可能会出现的常见故障以及解决方法,以便为项目开发人员或业主提供参考。

1.1、故障现象:逆变器屏幕没有显示故障分析:没有直流输入,逆变器LCD是由直流供电的。

可能原因:(1)组件电压不够。

逆变器工作电压是100V到500V,低于100V 时,逆变器不工作。

组件电压和太阳能辐照度有关。

(2)PV输入端子接反,PV端子有正负两极,要互相对应,不能和别的组串接反。

(3)直流开关没有合上。

(4)组件串联时,某一个接头没有接好。

(5)有一组件短路,造成其它组串也不能工作。

解决办法:用万用表电压档测量逆变器直流输入电压。

电压正常时,总电压是各组件电压之和。

如果没有电压,依次检测直流开关,接线端子,电缆接头,组件等是否正常。

如果有多路组件,要分开单独接入测试。

如果逆变器是使用一段时间,没有发现原因,则是逆变器硬件电路发生故障,请联系我公司售后。

1.2、故障现象:逆变器不并网。

故障分析:逆变器和电网没有连接。

可能原因:(1)交流开关没有合上。

(2)逆变器交流输出端子没有接上(3)接线时,把逆变器输出接线端子上排松动了。

解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是否断开。

1.3、PV过压:故障分析:直流电压过高报警可能原因:组件串联数量过多,造成电压超过逆变器的电压。

解决办法:因为组件的温度特性,温度越低,电压越高。

单相组串式逆变器输入电压范围是100-500V,建议组串后电压在350-400V 之间,三相组串式逆变器输入电压范围是250-800V,建议组串后电压在600-650V之间。

在这个电压区间,逆变器效率较高,早晚辐照度低时也可发电,但又不至于电压超出逆变器电压上限,引起报警而停机。

光伏组件的检验测试(终检)

光伏组件的检验测试(终检)

光伏组件的检验测试(终检)一、终检的内容按照国家标准《地面用晶体硅光伏组件设计鉴定与定型》(GB/T9535-1998)、《海上用太阳电池组件总规范》(GB/T14008-1992)的规定,光伏组件需要检验测试的基本项目有:1.电性能测试;2.电绝缘性能测试;3.热循环实验;4.湿热-湿冷实验;5.机械载荷实验;6.冰雹实验;7.老化实验。

二、光伏组件的电性能参数1.光伏组件的输出特性光伏组件的性能主要是它的“电流-电压”特性,即光伏组件的输出特性。

它能够反应出组件的光电转换能力。

反应光伏组件(在一定的光照条件下)的输出电压、输出电流和输出功率的关系的曲线,称为输出特性曲线,也就是“电流-电压”特性曲线,也可以表示为I-V 特性曲线。

在光伏组件的I-V 特性曲线上,有三个具有重要意义的点:开路电压、开路电流和峰值功率。

2.光伏组件的电性能参数光伏组件的电性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。

⑴ 短路电流(SC I ):当将光伏组件的正负极短路,使0U =时,此时的电流就是组件的短路电流,短路电流的单位是A (安培),短路电流随着光强的变化而变化。

⑵ 开路电压(OC U ):当光伏组件的正负极不接负载时,组件正负极间的电压就是开路电压,开路电压的单位是V (伏特)。

光伏组件的开路电压随电池片串联数量的增减而变化,36片电池片串联的组件开路电压为21V 左右。

⑶ 峰值电流(m I ):峰值电流也叫最大工作电流或最佳工作电流,是指光伏组件输出最大功率时的工作电流。

⑷ 峰值电压(m U ):峰值电压也叫最大工作电压或最佳工作电压,是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位也是V (伏特)。

组件的峰值电压随电池片串联数量的增减而变化,如36片电池片串联的组件峰值电压为17~17.5V 。

⑸ 峰值功率(m P ):峰值功率也叫最大输出功率或最佳输出功率,是指光伏组件在正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:m=Im m P U ⨯。

光伏组件最大功率的测量不确定度评定

光伏组件最大功率的测量不确定度评定

光伏组件最大功率的测量不确定度评定王金玉;胡涛;袁明翰;徐正元【摘要】讨论分析了影响光伏组件在标准测试条件下最大功率的测量不确定度因素,并计算出被测光伏组件的最大功率的相对扩展不确定度.根据评定结果可知,太阳模拟器的辐照不均匀度、标准太阳电池校准值的不确定度及被测光伏组件温度测量的精度是测量不确定度的主要来源,可以通过降低这3个方面的测量不确定度来提高光伏组件最大功率测试的准确度.【期刊名称】《太阳能》【年(卷),期】2016(000)008【总页数】4页(P46-48,32)【关键词】测量不确定度;光伏组件;太阳模拟器【作者】王金玉;胡涛;袁明翰;徐正元【作者单位】中国电子科技集团公司第十八研究所;中国电子科技集团公司第十八研究所;中国电子科技集团公司第十八研究所;中国电子科技集团公司第十八研究所【正文语种】中文如何准确测量光伏组件在标准测试条件[1]下的最大功率,是光伏检测单位和组件生产厂家一直以来最为关注的问题之一,最大功率测试的准确度直接关系到生产厂家和客户的经济利益,对于工艺改进同样也起着至关重要的作用。

光伏组件在标准测试条件下的最大功率测试的准确度可采用测量不确定度来表述。

测量不确定度是目前国际上普遍接受的定量描述测量结果质量的一个参数[2],测量不确定度越小,测量结果的质量越高;测量不确定度越大,测量结果的质量越差。

从严格意义上讲,在测量结果的报告中,均应给出相应的测量不确定度。

测量不确定度用于表征合理赋予被测量之值的分散性,是与测量结果相联系的参数。

通常有两类:用对一列测量数据进行统计分析的方法获得的不确定度分量,称为A 类不确定度分量;用不同于对测量数据进行统计分析的方法获得的不确定度分量,称为B类不确定度分量,是基于以往的实验结果、经验或其他信息来评估的。

在实际测量过程中,多数情况下,被测量Y不能直接测得,是由n个其他量X1,X2,…,Xn通过函数f来确定的[3]:式(1)表示的函数关系称为测量过程数学模型。

光伏组件故障分析报告

光伏组件故障分析报告

光伏组件故障分析报告1 引言1.1 光伏组件概述光伏组件,又称太阳能电池板,是光伏发电系统中的核心部件,其作用是将太阳光能转化为电能。

光伏组件主要由硅电池片、玻璃、EVA胶膜、背板、边框等部分组成。

在过去的几十年里,随着光伏技术的不断发展和成熟,光伏组件的转换效率得到了显著提高,成本也在逐渐降低,光伏发电已成为全球新能源的重要组成部分。

我国光伏产业经过多年的发展,已形成了从硅料生产、电池片制造、组件组装到系统集成的完整产业链。

然而,在光伏组件的长期运行过程中,各种故障问题也逐渐凸显出来,对光伏发电系统的稳定性和发电效率产生了影响。

1.2 故障分析的目的和意义对光伏组件进行故障分析,旨在找出故障产生的原因,为故障诊断、防范和维护提供依据。

故障分析的目的和意义如下:1.提高光伏发电系统的稳定性和可靠性,降低故障率。

2.延长光伏组件的使用寿命,降低运维成本。

3.提高光伏发电效率,增加发电收益。

4.为光伏组件的设计、制造和安装提供改进方向。

通过对光伏组件故障的深入分析,有助于推动我国光伏产业的健康发展,提高光伏发电在能源结构中的比重,为实现能源转型和可持续发展贡献力量。

2 光伏组件故障类型及原因2.1 故障类型光伏组件的故障类型多样,主要包括以下几种:1.电池片损坏:电池片是光伏组件的核心部分,其损坏主要包括隐裂、破片、电极脱落等。

2.电路问题:如接线盒内部接线松动、接触不良,或电缆老化导致电阻增大等。

3.封装材料老化:长期受紫外线、温度变化等影响,EVA胶膜、背板等材料会出现老化、变色、龟裂等现象。

4.热斑效应:由于电池片自身或外部阴影导致局部温度升高,影响组件性能。

5.PID效应(潜在诱导性降解):由于组件长期在湿度较大环境下工作,导致电池片出现性能下降。

2.2 故障原因光伏组件故障的原因可以分为以下几类:1.内在因素:–电池片质量:电池片在生产过程中可能存在微裂纹、掺杂不均等问题。

–组件设计:设计不合理,如电池片间距过小,可能导致热膨胀时电池片相互挤压。

光伏电站设备常见故障分析与维护课件

光伏电站设备常见故障分析与维护课件


逆变器模块风扇、风机故障 逆变器故障告警,频繁启停,液晶显示 屏告警逆变器过温,功率自动降低。
原因分析 1、地区常年风沙较大,逆变器室门常年紧闭不严,被吸 进模块后着附在模块元器件上,模块长期运行后元器件热 量无法散发,导致模块故障; 2、 沙子中带有一些金属性物质,风沙被吸进模块后吸 附在模块上,导致模块精密元器件造成静电后损坏; 3、光伏发电因天气变化具有瞬时性,逆变器功率电流变 化较大,导致引起过流、过、欠压等模块故障; 4、光伏发电是由好多块电池组件串联,再经并联后接入 逆变器,较多电缆预埋在地下,电缆因绝缘破损导致接地, 逆变器模块检测故障退出;
采取的措施 1、对汇流箱内保险盒接线端子进出线螺丝重新进行紧 固,对即将烧损的保险盒进行更换; 2、对不合格的保险盒、卡座松动的保险盒进行更换; 3、定期对汇流箱内保险盒进行红外温度测量,加强巡 视; 4、选取质量合格,且能够耐受达到额定直流电压的保 险盒及保险。 5、保障监控系统完好,使汇流箱运行状态正常; 6、对无通讯的汇流箱进行定期巡视检查。

热斑效应击穿故障 光伏组件的核心组成部分是电池,一 般说来,每个组件所用太阳电池的电特性 要基本一致,否则将在电性能不好或被遮 挡的电池(问题电池)上产生所谓热斑效 应。
原因分析: 1、太阳电池热斑的形成主要由两个内在因 素构成,分别与内阻和太阳电池自身暗电流大小 有关。有个别坏电池的混入,电极焊片虚焊、电 池由裂纹演变为破碎、个别电池特性变坏、电池 局部收到阴影遮挡等; 2、 由于局部阴影的存在,太阳电池组件中 某些电池单片的电流、电压发生了变化。其结果 使电池组件局部电流与电压之积增大,从而在这 些电池组件上产生了局部的温升。
采取的措施 1、制定铜连接处的扭力标准; 2、对大电流连接的铜牌加监测点,当异常时能够可 靠地报错,及时反映问题; 3、对逆变器进行巡检,并用扭力扳手按规定的扭力 进行螺丝紧固; 4、对逆变器直流开关统一更换为带温度过热保护的 直流开关; 5、平时加强监视逆变器逆变器运行情况; 6、利用夜间逆变器停机时段对其进行清扫检查及隐 患排查。

太阳能电池和光伏组件检测及标准

太阳能电池和光伏组件检测及标准

太阳能电池和光伏组件检测及标准下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!太阳能电池和光伏组件是太阳能发电系统中最重要的组成部分,其性能的稳定性和可靠性对整个系统的发电效率和寿命起着至关重要的作用。

光伏组件功率衰减原因分析

光伏组件功率衰减原因分析

光伏组件衰减原因分析光伏组件是太阳能发电的关键元件,光伏组件功率衰减是指随着光照时间的增加,组件输出功率不断呈下降趋势的现象。

组件功率衰减直接关系到组件的发电效率。

国内组件的功率衰减与国外最好的组件相比,仍存在一定差距,因此研究组件功率衰减非常有必要。

组件功率衰减包括组件初始光致衰减、组件材料老化衰减及外界环境或破坏性因素导致的组件功率衰减。

外界环境导致功率衰减主要由光伏电站运营不当造成,可通过加强光伏电站的维护进行改善或避免;破坏性因素导致的组件功率衰减是由于组件明显的质量问题所致,在组件生产和电站安装过程对质量进行严格检验把控,可减少此类功率衰减的现象。

本文主要研究组件初始光致衰减及材料老化衰减。

1、组件初始光致衰减分析1.1、组件初始光致衰减原理分析组件初始光致衰减(LID)是指光伏组件在刚开始使用的几天其输出功率发生大幅下降,之后趋于稳定的现象。

普遍认为的衰减机理为硼氧复合导致,即由p型(掺硼)晶体硅片制作而成的光伏组件经过光照,其硅片中的硼、氧产生复合体,从而降低了其少子寿命。

在光照或注入电流条件下,硅片中掺入的硼、氧越多,则生成复合体越多,少子寿命越低,组件功率衰减幅度就越大。

1.2、组件初始光致衰减的实验分析本研究采用对比实验的办法,在背板、EVA、玻璃和封装工艺等条件完全一致情况下,采用两组电池片(一组经初始光照,另一组未经初始光照),分别将其编号为I和II。

同时,生产出的所有组件经质量全检及电致发光(EL)检测,确保质量完全正常。

实验过程条件确保完全一致,采用同一台太阳能模拟仪测量光伏组件I-V曲线。

分别取I和II光伏组件各3组进行试验,记录其在STC状态下的功率输出值。

随后,将I和II光伏组件放置于辐照总量为60kWh/m2(根据IEC61215的室外暴晒试验要求)的同一地点进行暴晒试验,分别记录其功率,结果见表1。

由表1可知,I组光伏组件整体功率衰减明显较II组低。

因此,可推测光伏组件的初始光致衰减主要取决于电池的初始光致衰减。

光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析

光伏组件常见质量问题现象及分析光伏组件常见质量问题现象及分析⽹状隐裂原因1.电池⽚在焊接或搬运过程中受外⼒造成.2.电池⽚在低温下没有经过预热在短时间内突然受到⾼温后出现膨胀造成隐裂现象影响:1.⽹状隐裂会影响组件功率衰减.2.⽹状隐裂长时间出现碎⽚,出现热斑等直接影响组件性能预防措施:1.在⽣产过程中避免电池⽚过于受到外⼒碰撞.2.在焊接过程中电池⽚要提前保温(⼿焊)烙铁温度要符合要求.3.EL测试要严格要求检验.⽹状隐裂EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.EVA原材料成分(例如⼄烯和醋酸⼄烯)不均导致不能在正常温度下溶解造成脱层4. 助焊剂⽤量过多,在外界长时间遇到⾼温出现延主栅线脱层组件影响:1.脱层⾯积较⼩时影响组件⼤功率失效。

当脱层⾯积较⼤时直接导致组件失效报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。

2.加强原材料供应商的改善及原材检验.3. 加强制程过程中成品外观检验4.严格控制助焊剂⽤量,尽量不超过主栅线两侧0.3mm硅胶不良导致分层&电池⽚交叉隐裂纹原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.边框打胶有缝隙,⾬⽔进⼊缝隙内后组件长时间⼯作中发热导致组件边缘脱层4.电池⽚或组件受外⼒造成隐裂组件影响:1.分层会导致组件内部进⽔使组件内部短路造成组件报废2.交叉隐裂会造成纹碎⽚使电池失效,组件功率衰减直接影响组件性能预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。

2.加强原材料供应商的改善及原材检验.3. 加强制程过程中成品外观检验4.总装打胶严格要求操作⼿法,硅胶需要完全密封5. 抬放组件时避免受外⼒碰撞组件烧坏原因1.汇流条与焊带接触⾯积较⼩或虚焊出现电阻加⼤发热造成组件烧毁组件影响:1.短时间内对组件⽆影响,组件在外界发电系统上长时间⼯作会被烧坏最终导致报废预防措施:1.在汇流条焊接和组件修复⼯序需要严格按照作业指导书要求进⾏焊接,避免在焊接过程中出现焊接⾯积过⼩.2.焊接完成后需要⽬视⼀下是否焊接ok.3.严格控制焊接烙铁问题在管控范围内(375±15)和焊接时间2-3s组件接线盒起⽕原因1.引线在卡槽内没有被卡紧出现打⽕起⽕.2.引线和接线盒焊点焊接⾯积过⼩出现电阻过⼤造成着⽕.3.引线过长接触接线盒塑胶件长时间受热会造成起⽕组件影响:1.起⽕直接造成组件报废,严重可能⼀起⽕灾.预防措施:1.严格按照sop作业将引出线完全插⼊卡槽内2.引出线和接线盒焊点焊接⾯积⾄少⼤于20平⽅毫⽶.3.严格控制引出线长度符合图纸要求,按照sop作业.避免引出线接触接线盒塑胶件.电池裂⽚原因1.焊接过程中操作不当造成裂⽚2.⼈员抬放时⼿法不正确造成组件裂⽚3.层压机故障出现组件类⽚组件影响:1.裂⽚部分失效影响组件功率衰减,2.单⽚电池⽚功率衰减或完全失效影响组件功率衰减预防措施:1.汇流条焊接和返⼯区域严格按照sop⼿法进⾏操作2.⼈员抬放组件时严格按照⼯艺要求⼿法进⾏抬放组件.3.确保层压机定期的保养.每做过设备的配件更换都要严格做好⾸件确认ok后在⽣产.4.EL测试严格把关检验,禁⽌不良漏失.电池助焊剂⽤量过多原因1.焊接机调整助焊剂喷射量过⼤造成2.⼈员在返修时涂抹助焊剂过多导致组件影响:1.影响组件主栅线位置EVA脱层,2.组件在发电系统上长时间后出现闪电纹⿊斑,影响组件功率衰减使组件寿命减少或造成报废预防措施:1.调整焊接机助焊剂喷射量.定时检查.2.返修区域在更换电池⽚时请使⽤指定的助焊笔,禁⽌⽤⼤头⽑刷涂抹助焊剂虚焊、过焊原因1.焊接温度过多或助焊剂涂抹过少或速度过快会导致虚焊2.焊接温度过⾼或焊接时间过长会导致过焊现象.组件影响:1.虚焊在短时间出现焊带与电池⽚脱层,影响组件功率衰减或失效,2.过焊导致电池⽚内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废预防措施:1.确保焊接机温度、助焊剂喷射量和焊接时间的参数设定. 并要定期检查,2.返修区域要确保烙铁的温度、焊接时间和使⽤正确的助焊笔涂抹助焊剂.3.加强EL检验⼒度,避免不良漏失下⼀⼯序.焊带偏移或焊接后翘曲破⽚原因1.焊接机定位出现异常会造成焊带偏移现象2.电池⽚原材主栅线偏移会造成焊接后焊带与主栅线偏移3.温度过⾼焊带弯曲硬度过⼤导致焊接完后电池⽚弯曲组件影响:1.偏移会导致焊带与电池⾯积接触减少,出现脱层或影响功率衰减2.过焊导致电池⽚内部电极被损坏,直接影响组件功率衰减降低组件寿命或造成报废3.焊接后弯曲造成电池⽚碎⽚预防措施:1.定期检查焊接机的定位系统.2.加强电池⽚和焊带原材料的来料检验,组件钢化玻璃爆和接线盒导线断裂原因1.组件在搬运过程中受到严重外⼒碰撞造成玻璃爆破2.玻璃原材有杂质出现原材⾃爆.3.导线没有按照规定位置放置导致导线背压坏.组件影响:1.玻璃爆破组件直接报废,2.导线损坏导致组件功率失效或出现漏电连电危险事故预防措施:1.组件在抬放过程中要轻拿轻放.避免受外⼒碰撞.2.加强玻璃原材检验测试,3.导线⼀定要严格按照要求盘放.避免零散在组件上⽓泡产⽣原因1.层压机抽真空温度时间过短,温度设定过低或过⾼会出现⽓泡2.内部不⼲净有异物会出现⽓泡.3.上⼿绝缘⼩条尺⼨过⼤或过⼩会导致⽓泡.组件影响:1.组件⽓泡会影响脱层.严重会导致报废预防措施:1.层压机抽真空时间温度参数设定要严格按照⼯艺要求设定.2.焊接和层叠⼯序要注意⼯序5s清洁,3.绝缘⼩条裁切尺⼨严格要求进⾏裁切和检查.⽓泡产⽣原因1.层压机抽真空温度时间过短,温度设定过低或过⾼会出现⽓泡2.内部不⼲净有异物会出现⽓泡.3.上⼿绝缘⼩条尺⼨过⼤或过⼩会导致⽓泡.组件影响:1.组件⽓泡会影响脱层.严重会导致报废预防措施:1.层压机抽真空时间温度参数设定要严格按照⼯艺要求设定.2.焊接和层叠⼯序要注意⼯序5s清洁,3.绝缘⼩条裁切尺⼨严格要求进⾏裁切和检查.EVA脱层原因1.交联度不合格.(如层压机温度低,层压时间短等)造成2.EVA、玻璃、背板等原材料表⾯有异物造成.3.EVA原材料成分(例如⼄烯和醋酸⼄烯)不均导致不能在正常温度下溶解造成脱层组件影响:1.脱层会导致组件内部进⽔使组件内部短路造成组件失效⾄报废预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。

组件工艺流程及常见异常处理

组件工艺流程及常见异常处理

装框胶量要求
7、固化
层压板与铝边框的组装 接线盒与背板粘接 接线盒灌封
要求具有良好的粘 接力和机械强度, 在承受外力作用下 ,具有一定的形变 和位移能力;另外 还要求具有良好的 密封性,阻隔水汽 渗透。
要求具有足够的粘 接力,耐候性强, 长期使用线盒不脱 落。
要求具有良好的流 动性和脱泡性,固 化后,要求绝缘性 好,导热性强。
折弯要求
3、层叠
EVA铺 设 电池串铺设
铺设隔离
焊接
铺设背板
完成
铺设次序示意图
铺设过程示意图
层叠控制点
作业完成 作业过程
作业前
• 温度15-28℃ • 湿度<60RH% • 焊接温度370±10℃
• 串错位≤1mm
• 胶带长度20-30mm • 焊带焊接长度>3/4 • EPE距玻璃3-5mm • 焊接时间1-3s • 焊接拉力>5N
M1
层压控制点
• 佩戴纱手套 • 清洁高温盖布 • 清洁硅胶板 • 组件位臵归正
• 层压温度142±2℃ • 层压压力-15±10Kpa • 充气速率25-40s • 抽真空2min<200Pa •温度点检4小时/次
• A字架数量72P≤15pcs • A字架数量60P≤20pcs •冷却时间单/双层/10/7min • 冷却风机正常工作
电压1000V 升压时间2s 测试时间1s 电阻≥27MΩ 标板温度25±1℃ 组件温度25±2℃ 3A认证 光强1000W/㎡
耐压测试
绝缘测试
接地测试
IV测试
电压3600v 升压时间8s 测试时间1s
电流37.5A 测试时间5s 电阻≤0.1Ω
监控要求

光伏组件的检验测试(终检)

光伏组件的检验测试(终检)

光伏组件的检验测试(终检)一、终检的内容按照国家标准《地面用晶体硅光伏组件设计鉴定与定型》(gb/t9535-1998)、《海上用太阳电池组件总规范》(gb/t14008-1992)的规定,光伏组件需要检验测试的基本项目有:1.电性能测试;2.电绝缘性能测试;3.热循环实验;4.湿热-湿冷实验;5.机械载荷实验;6.冰雹实验;7.老化实验。

二、光伏组件的电性能参数1.光伏组件的输出特性光伏组件的性能主要就是它的“电流-电压”特性,即为光伏组件的输出特性。

它能反应出来组件的光电切换能力。

反应光伏组件(在一定的光照条件下)的输出电压、输出电流和输出功率的关系的曲线,称为输出特性曲线,也就是“电流-电压”特性曲线,也可以表示为i-v特性曲线。

在光伏组件的i-v特性曲线上,存有三个具备关键意义的点:开路电压、开路电流和峰值功率。

2.光伏组件的电性能参数光伏组件的电性能参数主要存有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、充填因子和切换效率等。

⑴短路电流(isc):当将光伏组件的正负极短路,使u?0时,此时的电流就是组件的短路电流,短路电流的单位就是a(安培),短路电流随着反射率的变化而变化。

⑵开路电压(uoc):当光伏组件的正负极不接负载时,组件正负极间的电压就是开路电压,开路电压的单位是v(伏特)。

光伏组件的开路电压随电池片串联数量的增减而变化,36片电池片串联的组件开路电压为21v左右。

⑶峰值电流(im):峰值电流也叫做最小工作电流或最佳工作电流,就是指光伏组件输入最小功率时的工作电流。

⑷峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压,是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位也是v(伏特)。

组件的峰值电压随电池片串联数量的增减而变化,如36片电池片串联的组件峰值电压为17~17.5v。

⑸峰值功率(pm):峰值功率也叫做最小输出功率或最佳输出功率,就是指光伏组件在正常工作或测试条件下的最小输出功率,也就是峰值电流与峰值电压的乘积:pm=im?um。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

报告
-----------关于测试曲线异常1、现象如下图(同一块电池组件):
*注:短路电流的变化情况
图1 装接线盒经过二极管整体测试结果
图2 不经过接线盒测试(夹第三、四根引线)图3 不经过接线盒测试(夹第二、三根引线)
图4 不经过接线盒测试(夹第一、二根引线)
1.2 曲线异常原因分析:
1.2.1 组件内存在碎片或局部裂纹
二极管是反偏并联于电池,当电池有局部裂纹时,则局部的光生载流子就无法通过辅栅到达主栅,使电池的Im减小为Im1.同时如果串联于此电池的其他电池完好无损,依然能有Im通过,但经过此裂纹电池时,就会有(Im-Im1)的电流通过二极管流走,Im1则经过这块问题电池.IV曲线是所有单体电池的iv曲线叠加而成的,那么自然就会行成阶梯.如果没二极管,所有电池将只有Im1,自然也就不存在阶梯了。

1.2.2 二极管正向导通
同上所述二极管是反偏并联于电池,当同一组件内各电池片或串短路电流差别较大时,组件内电流不一致从而导致曲线异常。

备注* a. 如果测试仪采样点越多则此种情况就越明显;
b. 可排除接线盒或二极管原因。

C. 经实验得知同一块组件1-2、2-3、3-4每两串测试得三个短路电流数
据,如果三个短路电流最大值和最小值数据绝对值大于0.1则会出现此
种情况。

相关文档
最新文档