六年级分数除法总结知识点
六年级数学上册第3课分数除法必备知识点
六年级数学上册3 分数除法必备知识点一、分数除法的意义分数除法实际上是“分数的除法运算是分数乘法的逆运算”。
即,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1.分数除以整数:分母不变,如果分子是整数的倍数,则用分子除以整数,商写在分子上。
分子不是整数的倍数时,这个除法可以写成“分数乘以这个整数的倒数”。
2.一个数除以分数:等于这个数乘以分数的倒数。
三、分数除法的简便运算1.约分:在计算过程中,能约分的要约分,以提高计算效率。
2.利用倒数:将除法转化为乘法,利用乘法的交换律、结合律进行简便运算。
四、分数除法的应用1.解决实际问题:分数除法常用于解决涉及比例、分率等问题的实际应用,如工程问题、行程问题等。
2.比较大小:通过分数除法,可以比较两个分数(或小数)的大小。
五、典型题型与解题技巧1.基本题型:分数除以整数整数除以分数分数除以分数2.解题技巧:明确除法的意义,将其转化为乘法。
确定计算顺序,先约分后计算。
检查结果,确保答案的准确性。
六、注意事项1.除数不能为0:与整数除法相同,分数除法中除数(或分数的分母)不能为0。
2.结果的化简:计算后得到的分数结果需要化简到最简形式。
3.理解题意:在应用分数除法解决实际问题时,要准确理解题意,确定正确的数学模型。
七、示例1.计算2÷4:3方法一:23÷4=23×14=212=16。
方法二:23÷4=23×4=212=16。
2.计算5÷34:方法:5÷34=5×43=203=623。
通过以上知识点的学习和练习,你可以掌握分数除法的基本概念和计算方法,并能够运用它来解决实际问题。
六年级分数除法知识点
六年级分数除法知识点
在学习分数的除法时,六年级学生通常需要掌握以下几个知识点:
一、分数间的除法
1. 定义:分数的除法是将一个分数的分母和一个分数的分子分别相乘,将其乘积得到的结果是一个新的分数。
2. 计算:先将两个分数的分子(分母)相乘,再将乘积作为新分数的分子(分母),就得到了这两个分数相除的结果。
3. 例题:求$\frac{2}{3} \div \frac{3}{4}$
解答:$\frac{2}{3} \div \frac{3}{4} = \frac{2 \times 4}{3 \times 3} =
\frac{8}{9}$
二、数值和分数的除法
1. 定义:将数值和分数的相除,即将分子相乘,将乘积作为新分数的
分子,分母则将数值乘以分母作为新分数的分母,便可得到这两者的
除结果。
2. 计算:由定义可知,计算和数值相乘可以将分数转换为一般分数表
达式;而计算数值和分数相除,可以将数值转换为分数表达式,便于
进行计算。
3. 例题:求$3\div \frac{1}{2}$
解答:$3\div \frac{1}{2} = \frac{3 \times 2}{1 \times 2} = \frac{6}{2} =
3$
三、分数的倒数
1. 定义:将一个分数的分子和分母调换,得到一个新的分数,这就叫做原分数的倒数(inverse)。
2. 运算:倒数运算与除法运算的关系:除法的倒数等于相乘,乘法的倒数等于相除。
3. 例题:求$\frac{9}{12}$的倒数
解答:$\frac{9}{12}$的倒数 $= \frac{12}{9}$。
小学数学六年级上册《分数除法》归纳总结知识点
二、分数除法一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=23(比值通常用分数表示,也可以用小数或整数表示)∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
分数除法知识点总结
分数除法1、分数除法的意义(1)乘法:因数 * 因数 = 积 ; 除法:积 / 一个因数 = 另一个因数(2)分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另 一个因数的运算。
例如: 3/4 ÷ 4/5 表示已知两个因数的积是 3/4 和其中一个因数是 4/5, 求另一个因数 的运算。
2、分数除法的计算法则除以一个不为 0 的数,等于乘这个数的倒数。
先约分再计算。
只有在乘号的两边或 连乘时才能约分。
注: 0 不能做除数。
例如: 1 2 1 3 3 2 3 2 2 43、规律(分数除法比较大小时)(1)一个数(零除外)除以比 1 小的数(0 除外) ,商就大于这个数;5 ÷ > 56 5 3 37 ÷ < 5 6 5 3 3 ÷ = 0 ÷ 5/6 = 0 14、混合运算(1) 运算顺序: 先乘除后加减, 有括号的先算括号里面的。
只有加减法或只有乘除法从 左往右依此计算。
(2)运算定律:加法:加法交换律 a+b=b+a 加法结合律 a+b+c=a+(b+c) 减法:减法的性质 a-b-c=a- (b+c)乘法:乘法交换律 ab=ba 乘法结合律 abc=a(bc) 乘法分配律 a(b+c)=ab+ac 或 a(b-c)=ab-ac除法: a ÷b÷c=a×(b+c)(3)注意:先观察,看清运算符号,思考能否用运算定律使计算变简便;不能用运算定律,按照运算顺序计算;计算时看清运算符号,按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束,认真验算。
5、分数除法应用题1.观察题目中有没有分率,发现分率先找关键句。
(关键句是指含有分率的句子)÷ = × = (3)任何数除以 1 都得任何数; 0 除以任何数都得0。
3 35 5 (2)一个数(零除外)除以比 1 大的数,商就小于这个数;2.找单位“1”(单位“1”是指要平均分的量,一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例如:一批煤,运走 3/5,正好是 6 吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤× 3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有 X 吨3/5X=6X=6÷3/5X=6×5/3X=10例如:一批煤,运走 3/5,剩下 6 吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤× 3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有 X 吨X— 3/5X=62/5X=6X=6÷2/5X=6×5/2X=156、比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项= 比值(后向不能为 0)C.求比值:前项÷后项 = 比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系比前项比号后项比值比的基本性质除法被除数除号除数商商不变性质分数分子分数线分母分数值分数基本性质E.比的基本性质:比的前项和后项都乘或除以相同的数( 0 除外),比值不变,这叫做比的基本性质。
六年级数学上册分数除法知识点
六年级数学上册分数除法知识点一、分数除法的意义分数除法是分数乘法的逆运算。
已知两个因数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1. 甲数除以乙数(0 除外),等于甲数乘乙数的倒数。
2. 分数除法的结果要化成最简分数。
三、分数混合运算1. 分数混合运算的顺序与整数混合运算的顺序相同。
- 先乘除,后加减。
- 有括号的先算括号里面的。
2. 整数的运算定律对于分数同样适用。
- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 乘法交换律:a×b = b×a- 乘法结合律:(a×b)×c = a×(b×c)- 乘法分配律:(a + b)×c = a×c + b×c四、“已知一个数的几分之几是多少,求这个数”的问题1. 解题方法:用方程解,设这个数为 x,根据数量关系式列方程解答。
2. 数量关系式:单位“1”的量×几分之几 = 已知量五、“比一个数多(或少)几分之几的数是多少”的问题1. 解题方法:先求出多(或少)的部分,再用单位“1”的量加(或减)。
2. 也可以先求出这个数是单位“1”的几分之几,再用单位“1”的量乘这个分率。
六、工程问题1. 把工作总量看作单位“1”。
2. 工作效率 = 工作总量÷工作时间3. 工作时间 = 工作总量÷工作效率工作总量 = 工作效率×工作时间例如:一项工程,甲单独做需要 5 天完成,乙单独做需要 6 天完成,甲的工作效率是 1÷5 = 1/5,乙的工作效率是 1÷6 = 1/6,甲乙合作需要的时间是 1÷(1/5 + 1/6)= 30/11(天)。
分数除法六年级知识点总结
分数除法六年级知识点总结分数是六年级数学中的重要概念之一,而分数除法更是在学习阶段中必不可少的一部分。
下面对分数除法的相关知识点进行总结,帮助同学们更好地理解和掌握这个概念。
1. 分数的除法定义分数的除法是指将一个分数除以另一个分数,其结果仍然是一个分数。
例如,1/2÷1/4=2,表示1/2被1/4除等于2。
2. 分数除法的原则在进行分数除法运算时,有以下几个原则需要遵守:a. 除以一个数等于乘以这个数的倒数:a/b÷c/d = a/b × d/c。
b. 分数除法的结果也是一个分数。
3. 分数除法的步骤进行分数除法运算时,可以按照以下步骤进行:a. 将除法转化为乘法:将除法变为分数相乘的形式。
即a/b÷c/d 转化为 a/b × d/c。
b. 化简分数:将分数化简到最简形式。
如果分子和分母有公因数,可以进行约简操作。
c. 乘法运算:对分数进行乘法运算。
分子与分子相乘,分母与分母相乘。
d. 化简结果:将乘法得到的结果化简到最简形式。
4. 分数除法的例题讲解例题1:计算1/2÷1/3。
解答:按照分数除法的步骤,将除法转化为乘法:1/2÷1/3 = 1/2 × 3/1 = 3/2。
结果3/2是一个真分数,可以进一步化简得到1 1/2。
例题2:计算3/4÷2/5。
解答:按照分数除法的步骤,将除法转化为乘法:3/4÷2/5 = 3/4 × 5/2 = 15/8。
结果15/8是一个假分数,可以进一步化简得到1 7/8。
例题3:计算2/5÷4/3。
解答:按照分数除法的步骤,将除法转化为乘法:2/5÷4/3 =2/5 × 3/4 = 6/20。
结果6/20可以进一步化简得到3/10。
5. 注意事项在进行分数除法运算时,需要注意以下几点:a. 分母不能为零:分母为零的分数是没有意义的,因此在进行分数除法运算时,要确保除数的分母不为零。
小学数学重难点:六年级数学分数除法知识点、例题及练习题
小学数学重难点:六年级数学分数除法知识点、例题及练习题分数除法知识点(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)求带分数的倒数:把带分数化为假分数,再求倒数。
(4)求小数的倒数:把小数化为分数,再求倒数。
3、因为1×1=1,1的倒数是1;因为找不到与0相乘得1的数0没有倒数。
4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[ ] ”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:① 求多几分之几:大数÷小数– 1② 求少几分之几:1 - 小数÷大数或①求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数(四)比和比的应用1、比的意义:两个数相除又叫做两个数的比。
六年级数学第三单元《分数除法》知识点
六年级数学第三单元《分数除法》知识点六年级数学第三单元《分数除法》知识点一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数除数=被除数除数的倒数。
例3==3=3=52、除法转化成乘法时,被除数一定不能变,变成,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:ab=c当b1时,c②除以小于1的数,商大于被除数:ab=c当b1时,c(ab0)③除以等于1的数,商等于被除数:ab=c当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(ab)c=acbc四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20==1220==0.612∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的`比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
(完整版)六年级数学上册第三单元分数除法知识点总结
六年级数学上册第三单元分数除法知识点总结1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0) 。
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。
把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
6、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
乘法:因数×因数=积除法:积÷一个因数=另一个因数7、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
8、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
9、分数除法解决问题(不知单位“1”的量(用除法)找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面。
10、解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程用 X×分率=具体量(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量(3)看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量÷ (1-分率)= 单位“1”的量;(比多):具体量÷ (1+分率)= 单位“1”的量(4)求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
【小学数学】六年级上册数学《分数除法》知识点
【小学数学】六年级上册数学《分数除法》知识点1、分数除法的意义乘法:因数×因数 = 积; 除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同;表示已知两个因数的积和其中一个因数;求另一个因数的运算。
例:3/4÷4/5表示已知两个因数的积是3/4和其中一个因数是4/5;求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数;等于乘这个数的倒数。
先约分在计算。
只有在乘号的两边或连乘时才能约分如:12133 23224÷=⨯=注:0不能做除数。
3、规律(分数除法比较大小时)3/5÷5/6>3/5一个数(零除外)除以比1小的数(0除外);商就大于这个数;3/5÷7/6<3/5一个数(零除外)除以比1大的数;商就小于这个数;3/5÷1=3/5任何数除以1都得任何数0÷3/5=00除以任何数都得04、混合运算:1.运算顺序:先乘除后加减;有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
2.运算定律:加法:加法交换律 a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质 a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac 除法:a÷b÷c=a×(b+c)3.注意:先观察;看清运算符号;思考能否用运算定律使计算变简便;不能用运算定律;按照运算顺序计算;计算时看清运算符号;按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束;认真验算。
5、分数除法应用题a. 1.观察题目中有没有分率;发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量;一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例:一批煤;运走3/5;正好是6吨;这批煤有多少吨?“3/5”是分率;找单位“1”;根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道;用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例:一批煤;运走3/5;剩下6吨;这批煤有多少吨?“3/5”是分率;找单位“1”;根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道;用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156.比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系基本性质。
六年级数学上册:分数除法知识点归纳
六年级数学上册:分数除法知识点归纳
一、分数除法的概念
分数除法是指将一个分数除以另一个分数,得到一个新的分数或一个整数的运算方法。
二、分数除法的运算规则
1. 同分母的分数相除,只需将分子相除,分母保持不变。
2. 不同分母的分数相除,需要先化为同分母,再按同分母的情况处理。
3. 除以一个真分数,可以先求它的倒数,再乘以被除数。
三、分数除法的解题步骤
1. 如果分数中有括号,先计算括号内的分数除法。
2. 按照运算规则进行分数除法运算。
3. 根据需要进行分数化简或转化。
四、注意事项
1. 在计算分数除法时,要注意约分和化简。
2. 在解决问题中,可以将分数转化为小数进行运算,最后再将小数转化为分数表示。
五、实例演练
例1:计算 2/3 ÷ 4/5。
解:根据运算规则,同分母的分数相除,只需将分子相除,分母保持不变。
所以,2/3 ÷ 4/5 = (2 ÷ 4) / (3 ÷ 5) = 1/2 ÷ 3/5 = 5/6。
例2:计算 5/8 ÷ 2。
解:根据运算规则,除以一个整数,可以先求它的倒数,再乘以被除数。
所以,5/8 ÷ 2 = 5/8 × 1/2 = 5/16。
六、总结
分数除法是数字运算中的一种重要运算方式,掌握分数除法的概念、运算规则和解题步骤,能够帮助我们解决与分数除法相关的数学问题。
数学六年级上册分数除法知识点
数学六年级上册分数除法知识点数学六年级上册分数除法知识点1一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的`倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c,当b>1时,c②除以小于1的数,商大于被除数:a÷b=c,当b<1时,c>a。
(a≠0,b ≠0)③除以等于1的数,商等于被除数:a÷b=c,当b=1时,c=a。
三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c六年级数学常考考点比和比例比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。
几何初步知识圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。
数学倍数和因数知识点认识自然数和整数,联系乘法认识倍数与因数。
像0,1,2,3,4,5,6,…这样的数是自然数。
像—3,—2,—1,0,1,2,3,…这样的数是整数。
我们只在自然数(零除外)范围内研究倍数和因数。
人教版六年级上册数学《分数除法》知识点+练习解析
《分数除法》知识点1.分数除法计算(1)分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
(2)一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数。
除以1,商等于被除数。
除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算知识点一:分数除加、除减的运算顺序例:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法例:÷÷分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
填空练习1()()()()()。
考查目的:进一步强化对倒数概念的理解,熟练掌握求一个数的倒数的方法。
答案:,,,1,。
解析:引导学生通过审题明确意图,先找出最简单的共同结果“1”。
该题分别考查了求分数、整数、小数的倒数,1的倒数,以及用代数式表示互为倒数的关系等知识。
2既可以表示已知两个因数的积是(),其中一个因数是(),求另一个因数的运算;还可以表示已知一个数的是(),求这个数。
考查目的:对分数除法意义的理解。
答案:5,;,5。
解析:将除法的意义和解决问题的数量关系有机地结合在一起,对于加深理解、深化知识间的联系具有重要作用。
六年级上册《分数除法》知识点总结
第三单元《分数除法》知识点汇总一、倒数的认识1.乘积是1的两个数互为倒数。
和 互为倒数,就是指: 的倒数是 , 的倒数是 。
2.怎样找一个数的倒数?(分子分母交换位置。
)3.1的倒数是1,0没有倒数。
4.只要两个数的乘积是1,那么这两个数就互为倒数,与这两个数是分数、小数还是整数无关。
二、分数除法1.分数除法的计算方法:除以一个不等于0的数,等于乘上这个数的倒数。
计算方法要点:①被除数不变。
②除号变乘号。
③除数变成它的倒数。
2.除法算式中商与被除数的大小关系的判断方法:除以一个大于1的数,得到的商比被除数小。
除以一个小于1的数,得到的商比被除数大。
例如: < >三、分数的混合运算分数的混合运算顺序与整数混合运算的顺序相同。
1.有小括号的要先算小括号里面的。
2.既有乘除又有加减,要先算乘除,再算加减。
3.只有乘除或只有加减,要按照从左到右的顺序计算。
四、分数除法的解决问题1.已知一个数的几分之几是多少,求这个数。
833883383883376÷763221÷21①用除法计算。
(对应的量÷对应的分率=单位“1”)②根据题意找到等量关系,列出方程。
2.已知比一个数多(或少)几分之几的数是多少,求这个数。
①用除法计算。
(对应的量÷对应的分率=单位“1”)注意:算式的量和分率必须相互对应的。
②根据题意找到等量关系,列出方程。
3.已知两个数的和(差),其中一个量是另一个量的几分之几,求这两个量。
解决方法:根据题意找到等量关系,列出方程。
注意:通常设单位“1”为x。
4.用抽象的单位“1”解决问题。
(参考教材42~43页)备注:本单元的解决问题是难点,要注重引导学生理清数量关系,鼓励学生列方程解决问题。
分数除法知识点总结(最新)
分数除法知识点总结一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c(a≠0)②除以小于1的数,商大于被除数:a÷b=c当ba(a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的'形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
分数除法知识点总结
分数除法1、分数除法的意义(1)乘法:因数 * 因数 = 积;除法:积 / 一个因数 = 另一个因数(2)分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:3/4 4/5 表示已知两个因数的积是3/4和其中一个因数是4/5,求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数,等于乘这个数的倒数。
先约分再计算。
只有在乘号的两边或连乘时才能约分。
注:0不能做除数。
例如:3、规律(分数除法比较大小时)(1)一个数(零除外)除以比1小的数(0除外),商就大于这个数;(2)一个数(零除外)除以比1大的数,商就小于这个数;(3)任何数除以1都得任何数;0除以任何数都得0。
0 ÷ 5/6 = 04、混合运算(1)运算顺序:先乘除后加减,有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
(2)运算定律:加法:加法交换律a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac除法:a÷b÷c=a×(b+c)(3)注意:先观察,看清运算符号,思考能否用运算定律使计算变简便;不能用运算定律,按照运算顺序计算;计算时看清运算符号,按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束,认真验算。
5、分数除法应用题1.观察题目中有没有分率,发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量,一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例如:一批煤,运走3/5,正好是6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例如:一批煤,运走3/5,剩下6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156、比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系基本性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级分数除法总结知识点分数除法是六年级数学中的重要内容,它涉及到了分数的运算和理解。
本文将对六年级分数除法的知识点进行总结,以帮助同学们更好地掌握这一概念。
一、分数的基本概念
在进行分数除法之前,我们首先需要了解一些基本概念:
1. 分数:分数是由分子和分母组成的数,分子表示被分成的份数,分母表示整体被分成的总份数。
2. 真分数和假分数:如果分子小于分母,那么这个分数就是真分数;否则,就是假分数。
3. 分数的约分和通分:约分是指将分子和分母的公因数约去,使其成为最简分数;通分是指将分母不同的分数转化为分母相同的分数,便于比较和计算。
二、分数除法的运算规则
1. 除以一个整数:将被除数的分子除以整数,分母保持不变,得到的商即为所求结果。
例如:3/4 ÷ 2 = 3/4 × 1/2 = 3/8
2. 除以一个分数:将被除数乘以一个倒数,即将除数的分子和分母互换位置,然后按照乘法运算规则进行计算。
例如:3/4 ÷ 1/2 = 3/4 × 2/1 = 6/4 = 3/2
3. 除法的循环性:如果除数是有限小数,我们可以将其转化为分数再进行计算;如果除数是无限循环小数,我们可以将其转化为带分数或假分数进行计算。
例如:1 ÷ 0.3 = 10/3
1 ÷ 0.333... = 3/0.9 = 3 1/9
三、分数除法应用举例
1. 分数除以整数的应用:常见的问题涉及到将一份食物平均分给若干人,需要计算每人所得的食物量。
例如:一块蛋糕分给3个人,每个人得到了1/4块,这相当于1/4 ÷ 3 = 1/12 块蛋糕。
2. 分数除以分数的应用:在现实生活中,又出现了许多将物品进行再分配的情境。
例如:一袋土豆重3/4千克,小明要将这袋土豆平均分给2个朋友,每个朋友将得到多少千克土豆?答案是3/4 ÷ 2 = 3/4 × 1/2 = 3/8 千克土豆。
3. 分数除法的多步运算:有时候我们需要进行多步分数除法的计算,可以按照顺序逐步计算。
例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8
四、常见错误及解决方法
在进行分数除法时,同学们容易犯错,以下是一些常见的错误及解决方法:
1. 忘记将分数转化为最简形式:分数可以约分,需要将结果约分至最简形式。
2. 错误地对除数和被除数进行运算:在除法中,需注意除数和被除数的位置,除数在前,被除数在后。
3. 混淆乘法和除法:乘法和除法的运算规则不同,需注意分清运算符号。
4. 对于无限循环小数,错误地进行转化:对无限循环小数的转化需要准确掌握,避免因转化错误而产生错误答案。
通过对六年级分数除法的知识点进行总结,我们可以更好地掌握这一概念,并且能够灵活应用于实际问题的解决中。
在分数除法的计算过程中,同学们要留意各种运算规则,并且避免常见的
错误。
只有通过不断地练习和理解,我们才能够提高自己的分数除法水平,并且在解决实际问题时更加得心应手。