高中物理必修二万有引力与宇宙航行知识点总结归纳完整版
高一物理必修二《万有引力与航天》知识点总结
万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
K T R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝'2r Mm F ∝ 2r MmGF = 2、表达式:221rm m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。
6、推导:2224mM G m R R T π= ⇒ 3224R GMT π= 四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。
六、 双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
必修2第6章万有引力与航天知识点总结
常用要有GMm/r^2=mr(2π/t)^2=(mv^2)/r=(mv2π)/T=mrw^2密度=3g/4πRG(R为该星球的半径)mg=GMm/r^2应用变式求天体质量(以地球质量计算为例①知月球绕地球运动的周期T,半径r由GMm/r^2=mr(2π/t)^2得,M=4(π^2)(r^3)/GT^2②知月球绕地球运动的线速度v和半径r由GMm/r^2=(mv^2)/r,得M=(rv^2)/G③知月球绕地球运动的限速的v和周期T由GMm/r^2=(mv2π)/T得M=(2πvr^2)/TG=(Tv^3)/2πG④知地球的半径r和地球表面的重力加速度g由黄金代换(mg=GMm/r^2)知M=gr^2/G做万有引力的题目也就是简单的天体力学记住公式是最基本的许多题都是套公式的非常简单要拿高分看下面下面说一下需要注意的一. 建立两种模型确定研究对象的物理模型是解题的首要环节,运用万有引力定律也不例外,无论是自然天体(如月球、地球、太阳),还是人造天体(如飞船、卫星、空间站),也不管它多么大,首先应把它们抽象为质点模型。
人造天体直接看作质点;自然天体看作球体,质量则抽象为在其球心。
这样,它们之间的运动抽象为一个质点绕另一质点的匀速圆周运动。
二. 抓住两条思路无论物体所受的重力,还是天体的运动,都跟万有引力存在着直接的因果关系,因此,万有引力定律在这些问题中的应用十分广泛。
但解决问题的基本思路实质上只有两条:思路1:利用万有引力等于重力的关系即思路2:利用万有引力等于向心力的关系即式中a是向心加速度,根据问题的条件可以用来表示。
其实最主要的公式还是一个也就是F=GMm/R^2=mg =mv^2/R=mw^2R=mR4π^2/T^2.[解题过程]万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r^2 (G=6.67×10^-11N*m^2/kg^2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一、二、三宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r 地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径。
新教材 人教版高中物理必修第二册 第七章 万有引力与宇宙航行 知识点考点重点难点提炼汇总
第七章万有引力与宇宙航行7.1行星的运动 ....................................................................................................................... - 1 -7.2万有引力定律 ................................................................................................................... - 6 -7.3万有引力理论的成就...................................................................................................... - 14 -7.4宇宙航行 ......................................................................................................................... - 21 -7.5相对论时空观与牛顿力学的局限性.............................................................................. - 30 -7.1行星的运动一、地心说和日心说开普勒定律1.地心说地球是宇宙的中心,是静止不动的,太阳、月亮以及其他星体都绕地球运动。
2.日心说太阳是静止不动的,地球和其他行星都绕太阳运动。
[注意]古代两种学说都是不完善的,因为不管是地球还是太阳,它们都在不停地运动,并且行星的轨道是椭圆,其运动也不是匀速率的。
鉴于当时人们对自然科学的认识能力,日心学比地心说更进一步。
通用版高中物理必修二第七章万有引力与宇宙航行知识点归纳总结(精华版)
(名师选题)通用版高中物理必修二第七章万有引力与宇宙航行知识点归纳总结(精华版)单选题1、经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是()A.2.9×10−3m/s B.2.9×100m/sC.2.9×104m/s D.2.9×108m/s答案:D经典力学只适用于宏观、低速运动的物体,对微观、高速(接近光速)运动的物体不再适用,故ABC错误,D正确。
故选D。
2、嫦娥四号携带的机器人探测器玉兔二号,在月球表面上做了一系列实验,其中一个实验是将一质量为20g 的小球水平抛出的同时,在同一位置将质量为2g的羽毛由静止释放,下列判断正确的是()A.小球先落到月球表面B.羽毛先落到月球表面C.两者同时落到月球表面D.条件不足,无法确定答案:C由于月球表面没有空气,小球及羽毛运动时都只受月球的引力作用,根据牛顿第二定律知G MmR2=ma a=GMR2其中M为月球质量,R为月球半径,所以,二者的加速度相同,羽毛初速度为零,小球竖直方向的初速度也为零,根据ℎ=12at2可知,二者同时落到月球表面,故C正确,ABD错误。
故选C。
3、2020年我国“北斗”系统实现在全球范围内提供服务.现北斗系统中有一颗地球同步卫星A,离地面的高度为5.6R,某时刻与离地面高度为2.3R的地球空间站B相隔最近。
已知地球半径为R,地球自转周期为24 h,卫星A和空间站B的运行轨道在同一平面内且运行方向相同。
则下列说法正确的是()A .卫星A 和空间站B 所在处的加速度大小之比aA ∶aB =1∶2 B .卫星A 和空间站B 运行的线速度大小之比vA ∶vB =1∶√2C .再经过24小时,卫星A 和空间站B 又相隔最近D .卫星A 想实现和空间站B 对接,只需对卫星A 向后喷气加速即可 答案:B根据万有引力提供向心力G Mm r 2=m v 2r =ma =m 4π2T2r 可得a =GMr 2v =√GM rT =2π√r 3GM由题可知r A =5.6R +R =6.6R r B =2.3R +R =3.3RA .根据a =GM r 2可知,卫星A 和空间站B 所在处的加速度大小之比a A a B =r B 2r A2=(3.3R)2(6.6R)2=14 故A 错误; B .根据v =√GM r可知,卫星A 与空间站B 运行的线速度大小之比v A v B =√r B r A =√3.3R 6.6R =√2故B 正确;C .根据T =2π√r 3GM 可知,卫星A 与空间站B 运行的周期大小之比T A T B =√r A3r B3=√(6.6R)3(3.3R)3=2√2地球自转周期为24 h,地球同步卫星A的周期T A=24h所以空间站B的周期T A=6√2h所以再经过24 h,卫星A和空间站B不会相隔最近,故C错误;D.同步卫星A在高轨道,空间站B在低轨道,卫星A想实现和空间站B对接,只需卫星A制动减速,从高轨道变到低轨道,故D错误。
(word完整版)高一物理必修二第六章《万有引力与航天》知识点总结,推荐文档.docx
万有引力与航天知识点总结一、人类认识天体运动的历史1、 “地心说 ”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、 “日心说 ”的内容及代表人物: 哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:v 近 v 远开普勒第三定律: K — 与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体a 地 3 = a 火 3 a 水 3 =......才可以列比例,太阳系:T 地 2 T 火 2=T 水 2三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
3F m42mmR K①r②F = 4π2K FFF ③r 2T 2T 2r 2FM FMm FG Mmr 2r 2r 22、表达式: F Gm 1m 2r 23、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2 的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量: G=6.67 ×10-11N/m 2/kg 2,牛顿发现万有引力定律后的 100 多年里, 卡文迪许 在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离 。
③一个均匀球体与球外一个质点的万有引力也适用,其中 r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时, 公式也近似的适用, 其中 r 为两物体质心间的距离。
6、推导: GmM4 2R 3GMR 2m2 RT 242T1四、万有引力定律的两个重要推1、在匀球的空腔内任意位置,点受到地壳万有引力的合力零。
2、在匀球体内部距离球心r ,点受到的万有引力就等于半径r 的球体的引力。
五、黄金代若已知星球表面的重力加速度g 和星球半径 R,忽略自的影响,星球物体的万有引力等于物体的重力,有 G Mmmg 所以 MgR2 R2G其中 GM gR2是在有关算中常用到的一个替关系,被称黄金替。
人教版高中物理必修二万有引力与宇宙航行知识点总结归纳完整版
(每日一练)人教版高中物理必修二万有引力与宇宙航行知识点总结归纳完整版单选题1、有一颗绕地球做匀速圆周运动的卫星,一位观测员在北纬38°线对该卫星观测时发现:每天晚上相同时刻该卫星总能出现在天空正上方同一位置,则卫星的轨道必须满足下列哪些条件(已知地球质量为M ,地球自转的周期为T ,地球半径为R ,引力常量为G )( )A .该卫星一定在同步卫星轨道上B .卫星轨道平面与地球在北纬38°线所确定的平面共面C .满足轨道半径r =√GMT 24π2n 23(n =1,2,3…)的全部轨道都可以D .满足轨道半径r =√GMT 24π2n 2(n =1,2,3…)的部分轨道都可以答案:C解析:A. 该卫星总能出现在北纬38°线天空正上方,说明该卫星一定不是同步卫星,不在同步卫星轨道上,A 错误;B. 该卫星的轨道平面必须过地心,不可能与地球在北纬38°线所确定的平面共面,B 错误;CD. 由于每天晚上相同时刻该卫星总能出现在天空正上方同一位置,说明地球转动一周时,卫星可能转动n 周,故卫星的周期可能为T ′=T n (n =1,2,3……)卫星受到的万有引力提供向心力,则有GMm r 2=m 4π2T′2r 解得r =√GMT ′24π23=√GMT 24π2n 23(n =1,2,3……) C 正确,D 错误;故选C 。
2、两颗人造卫星a 、b 绕地球作匀速圆周运动,轨道半径之比为r a :r b =2:1,则a 和b 的运动速率和周期之比分别为( )A .√2:1,√8:1B .√2:1,1:√8C .1:√2,√8:1D .1:√2,1:√8答案:C解析:由合力提供向心力得G Mm r a 2=m v a 2r a =m 4π2T a 2r a G Mm r b 2=m v b 2r b =m 4π2T b 2r b 联立解得v av b =√2,T a T b =√81 故ABD 错误,C 正确。
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版
(每日一练)高中物理必修二万有引力与宇宙航行知识点总结归纳完整版单选题1、以下关于宇宙速度的说法中正确的是( )A .第一宇宙速度是人造地球卫星运行时的最小速度B .对于沿椭圆轨道绕地球运动的卫星,远地点速度一定小于在同高度圆轨道上的运行速度C .对于沿椭圆轨道绕地球运动的卫星,近地点速度一定在7.9km/s 一11.2km/s 之间D .在地球表面发射一颗绕月卫星,发射速度必须大于第二宇宙速度而小于第三宇宙速度答案:B解析:A .根据万有引力提供向心力G Mm r =m v 2r解得v =√GM r可知,第一宇宙速度是人造地球卫星运行时的最大环绕速度,故A 错误;B .对于沿椭圆轨道绕地球运动的卫星,到达远地点时必须要加速才能进入同高度的圆轨道,故远地点速度一定小于在同高度圆轨道上的运行速度,故B 正确;C .对于沿椭圆轨道绕地球运动的卫星,如果近地点在地球表面附近时,则卫星进入地面附近的轨道速度大于7.9km/s 而小于11.2 km/s ,如果其近地点不在地球表面附近,则在近地点的速度要小于7.9km/s ,故C 错误;D .地球表面发射一个卫星并使它绕月球运动,则飞行器仍然在地球的引力范围以内,则在地面的发射速度不能大于第二宇宙速度(11.2km/s ),否则摆脱地球的束缚,故D 错误。
故选B 。
2、下列有关天体运动的说法正确的是( )A .绕太阳运行的行星,轨道半长轴越长,公转的周期就越小B .在月球绕地球运动中,r 3T 2=k 中的T 表示月球自转的周期C .对于任意一个行星,它与太阳的连线在相等的时间内扫过的面积相等D .若地球绕太阳运动的轨道半长轴为a 1,周期为T 1,月球绕地球运动轨道的半长轴为a 2,周期为T 2,则根据开普勒第三定律有:a 13T 12=a 23T 22 答案:C解析:A .由开普勒第三定律可知,绕太阳运行的行星,轨道半长轴越长,公转的周期就越大。
故A 错误;B .由开普勒第三定律可知,在月球绕地球运动中,r 3T 2=k 中的T 表示月球环绕地球的周期。
高中物理必修二重点知识点万有引力与航天
高中物理必修二重点知识点万有引力与航天
高中物理必修二重点知识点万有引力与航天
一、知识点
(一)行星的运动
1地心说、日心说:内容区别、正误判断
2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围
(二)万有引力定律
1万有引力定律:内容、表达式、适用范围
2万有引力定律的科学成就
(1)计算中心天体质量
(2)发现未知天体(海王星、冥王星)
(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)
(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)
二重点考察内容、要求及方式
1地心说、日心说:了解内容及其区别,能够判断其科学性(选择)
2开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)。
高一物理必修2第七章万有引力与航天知识点总结
高中物理必修2第七章万有引力与航天知识点总结(填空版)知识点一 开普勒三定律 1、 开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是________,太阳处在________的一个焦点上2、开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过的________相等开普勒第三定律(周期定律) 所有行星的轨道的半长轴的________跟它的公转周期的_____的比值都相等a 3T 2=k ,k 是一个与行星无关的常量知识点二 万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成 比,与它们之间距离r 的平方成________比.2.表达式:F =G m 1m 2r 2,G 为引力常量G =6.67×10-11________. 3.适用条件(1)公式适用于________间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是________的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到________间的距离. 知识点三 宇宙速度1.第一宇宙速度(1)第一宇宙速度又叫________速度,其数值为________km/s.(2)第一宇宙速度是人造卫星在________附近环绕地球做匀速圆周运动时具有的速度.(3)第一宇宙速度是人造卫星的最小________速度,也是人造卫星的最大________速度.(4)第一宇宙速度的计算方法. 由G MmR 2 =m v 2R 得v =GMR ;由mg =m v 2R 得v =gR . 2.第二宇宙速度使物体挣脱________引力束缚的最小________速度,其数值为________km/s. 3.第三宇宙速度使物体挣脱________引力束缚的最小________速度,其数值为________km/s. 知识点四 两种时空观 1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.3.经典力学的适用范围只适用于低速运动,不适用于________运动;只适用于宏观世界,不适用于________世界.知识点四 万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道上:G MmR 2=mg 1+m ω2R . (2)在两极上:G MmR 2=mg 2.(3)在一般位置:万有引力G MmR 2 等于重力mg 与向心力F 向的矢量和. 越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即 GMmR 2=mg . 知识点五 星球的重力加速度(1)在星球表面附近的重力加速度g (不考虑地球自转): mg =G mMR 2 ,得g =GM R 2.(2)在星球上空距离球心r =R +h 处的重力加速度为g ′: mg ′=GMm (R +h )2 ,得g ′=GM (R +h )2,所以gg ′=(R +h )2R 2.知识点六 万有引力的“两点理解”和“两个推论”(1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′mr 2. 知识点七 天体质量和密度常用的估算方法知识点八 估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R; 计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 知识点九 人造卫星的运行规律(1)一种模型:无论自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看作质点,围绕中心天体(视为静止)做匀速圆周运动.(2)两条思路①万有引力提供向心力,即 G Mmr 2=ma .②天体对其表面的物体的万有引力近似等于重力,即GMm R2=mg 或gR 2=GM (R 、g 分别是天体的半径、表面重力加速度),公式gR 2=GM 应用广泛,被称为“黄金代换”.(3)卫星的运行参量分析知识点十 人造卫星问题的解题技巧(1)灵活选用万有引力产生向心加速度的不同表述形式. G Mm r 2=ma n =m v 2r =m ω2r =m (2πT )2r =m (2πf )2r .(2)绕行卫星或行星在绕行运动的情境下其质量是不可能求出的,无论给出的答案是什么,可以直接排除. 知识点十一 卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种. (2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星.(3)其他轨道:除以上两种轨道外的卫星轨道. 所有卫星的轨道平面一定通过地球的球心. 知识点十二 地球同步卫星的特点(1)轨道平面一定:轨道平面与赤道平面共面. (2)周期一定:与地球自转周期相同,即T =24 h. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:由GMm ()R +h 2=m 4π2T 2(R +h )得地球同步卫星离地面的高度h 3GMT24π2-R≈3.6×107 m.(5)速率一定:v=GMR+h≈3.1×103 m/s.(6)向心加速度一定:由GMm()R+h2=ma n得a n=GM()R+h2=g h=0.23 m/s2.(7)绕行方向一定:运行方向与地球自转方向一致.知识点十三近地卫星、赤道上物体及同步卫星的区别与联系知识点十四 卫星变轨问题1.当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GMr 可知其运行速度比原轨道运行时的小,但重力势能、机械能均增加.2.当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr 可知其运行速度比原轨道运行时的大,但重力势能、机械能均减小.3.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ. 4.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度(注意,不是向心加速度):因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T 2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.知识点十五 双星或多星模型1.双星模型 (1)定义两颗星被一根无形的杆串在一起,共同绕杆上某点做匀速圆周运动,如图所示.(2)特点①两个相等:角速度(周期)相等、向心力大小相等.由于两行星及圆心总是在一条直线上,所以两行星在相等的时间内转过的角度必然相等,故角速度(周期)相等;由于两行星做圆周运动的向心力是二者间的万有引力,故两行星的向心力大小必然相等.②三个反比关系:m 1r 1=m 2r 2;m 1v 1=m 2v 2;m 1a 1=m 2a 2. ③两个重要关系式两颗行星做匀速圆周运动的半径r 1和r 2与两行星间距L 的大小关系r 1+r 2=L ,G m 1m 2L 2=m 1ω2r 1,G m 1m 2L 2=m 2ω2r 2.以上三式联立解得 ω=1L G ()m 1+m 2L,进一步可求出双星的运动周期T =2πL 3G (m 1+m 2),双星的总质量m 1+m 2=4π2L 3T 2G .2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).知识点十六天体的追及相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA-ωB)t′=(2n-1)π(n=1,2,3,…).参考答案知识点一开普勒三定律答案椭圆椭圆面积三次方二次方知识点二万有引力定律答案正反N·m2/kg2 (1)质点(2)两球心间质点知识点三宇宙速度答案(1)环绕7.9(2)地面(3)发射环绕地球发射11.2 太阳发射16.7 (1)运动状态(2)相同不同高速微观。
完整版人教版必修二第六章:万有引力与航天简明实用笔记知识要点
一、行星的运动——开普勒三定律 (察看到的,不是实验定律)(环绕,中心天体可视为不动)1、开普勒第必定律——轨道定律(圆周模型)全部的行星环绕太阳运行的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2、开普勒第二定律——面积定律(v 1r 1 v 2 r 2 )对于任意一个行星而言, 太阳和行星的连线在相等的时间内扫过相等的面积。
依据开普勒第二定律可得,行星在远日点的速率较小,在近期点的速率较大。
3、开普勒第三定律——周期定律(a 3 k )T 2全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
( a 表示椭圆的半长轴, T 代表公转周期, 同一中心天体 k 是定值 r 3GM T2k42)明显 k 是一个与行星自己没关的量,只与中心体有关 。
开普勒第三定律对全部行星都合用。
对于同一颗行星的卫星,也切合这个运动规律。
二、万有引力定律1、定律的推导。
2、定律的内容:自然界中任何两个物体都互相吸引,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
3、定律的公式: F Gm 1m 2(× 10-112/kg 2. )r 24、万有引力定律公式的合用条件:①质点间 (对于相距很远因此可以看作质点的物体)思虑:在公式中,当 r →0 时, →∞能否有意义?F②对平均的球体 ,可以看作是质量会合于球心上的质点,这是一种等效的简化办理方法。
③不是质点也不可以视为质点的 不可以直接 用公式,但可采纳 微积分 的思想间接求!5、万有引力定律说明①引力的方向 ——两质点的连线上。
②为引力常量 G ——在数值上等于两个质量都是1kg 的物体相距 1m 时的互相作用力, 其数值与单位制有关。
在 SI 制中, G = 6.67 × 10-11N · m 2/kg 2,1687 年牛顿宣布规律,而 1798 年英卡文迪许完成实验之时测定。
卡被称为称出地球质量的人 . 精度不高,可取来运算③一致单位 ——在运用万有引力定律计算时,公式中各量的单位须一致使用国际单位制。
高中物理必修二第六章万有引力与航天知识点归纳与重点题型总结
高中物理必修二第六章万有引力与航天 知识点归纳与重点题型总结一、行星的运动1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。
推广:对围绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例.有两个人造地球卫星,它们绕地球运转的轨道半径之比是1:2,则它们绕地球运转的周期之比为。
二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得: 例.设地球的质量为M ,赤道半径R,自转周期T ,则地球赤道上质量为m的物体所受重力的大小为?(式中G 为万有引力恒量)(2)计算重力加速度地球表面附近(h 《R ) 方法:万有引力≈重力 地球上空距离地心r =R+h 处 方法:在质量为M ’,半径为R’的任意天体表面的重力加速度''g 方法:(3)计算天体的质量和密度利用自身表面的重力加速度:利用环绕天体的公转:等等(注:结合 得到中心天体的密度)例.宇航员站在一星球表面上的某高处,以初速度V 0沿水平方向抛出一个小球,经过时间t,球落到星球表面,小球落地时的速度大小为V. 已知该星球的半径为R ,引力常量为G ,求该星球的质量M。
必修二第六章《万有引力与航天》知识点归纳与重点题型总结
高中物理必修二第六章万有引力与航天知识点概括与要点题型总结一、行星的运动1、开普勒行星运动三大定律①第必定律(轨道定律):全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对随意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近期点速度比较快,远日点速度比较慢。
③第三定律(周期定律):全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
a3即:T 2k此中k是只与中心天体的质量相关,与做圆周运动的天体的质量没关。
推行:对环绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例 . 有两个人造地球卫星,它们绕地球运行的轨道半径之比是1: 2,则它们绕地球运行的周期之比为。
二、万有引力定律1、万有引力定律的成立F G Mm①太阳与行星间引力公式r 2②月—地查验③卡文迪许的扭秤实验——测定引力常量 GG 6.67 10 11N2/ kg22、万有引力定律m①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离 r 的二次方成反比。
即:F G m1m2r 2②合用条件(Ⅰ)可当作质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量散布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般状况下,可以为重力和万有引力相等。
忽视地球自转可得:mg G MmR2例 . 设地球的质量为 M ,赤道半径 R ,自转周期 T ,则地球赤道上质量为 m 的物体所受重力的大小为(式中 G 为万有引力恒量)(2)计算重力加快度G Mm地球表面邻近( h 《R ) 方法:万有引力≈重力mgMmR 2地球上空距离地心 r=R+h 处 mg ' G2 方法:( R h)在质量为 M ’,半径为 R ’的随意天体表面的重力加快度g ' ' 方法:mg''G M ' ' mR '' 2(3)计算天体的质量和密度Mm利用自己表面的重力加快度:GR 2mgMm v 2 24 2利用环绕天体的公转:G r 2m m rm 2 r 等等rT(注:联合 M4 R 3 获得中心天体的密度)3例 . 宇航员站在一星球表面上的某高处,以初速度 V 0 沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R ,引力常量为G ,求该星球的质量 M 。
必修二物理万有引力与航天知识点
必修二物理万有引力与航天知识点
1. 万有引力定律:任何两个物体之间存在着一个互相吸引的力,这个力与两个物体的质量成正比,与它们之间的距离的平方成反比。
2. 地球引力:地球对物体施加的引力称为地球引力,地球引力可以近似看作物体的重力,其大小由物体的质量和地球的质量以及它们之间的距离决定。
3. 行星运动:行星围绕太阳运动的轨道是椭圆形的,太阳位于椭圆的一个焦点上。
根据开普勒定律,行星与太阳之间的连线在相等的时间内扫过相等的面积。
4. 航天知识:航天是指人类在大气层外的空间进行探索和活动的行为。
航天技术包括火箭发射、卫星定位、航天飞行器的设计和制造等方面。
5. 地球自转和公转:地球自转是指地球绕自身中心轴旋转一周的运动,导致了地球的昼夜变化。
地球公转是指地球围绕太阳运动的轨道,完成一年的时间。
6. 卫星运行:人造卫星绕地球运行,可以用于通信、气象观测、科学研究等领域。
卫星的轨道有不同类型,如地球同步轨道、极地轨道等。
7. 火箭原理:火箭利用燃料的燃烧产生的庞大的排气冲击力,通过排气速度差产生反作用力,从而推动火箭向前运动。
8. 重力势能和动能:物体在重力场中具有重力势能,当物体从一个高处移动到另一个低处时,它的重力势能减小,同时动能增加。
9. 卫星通信:卫星通信利用卫星将信号从发送者传送到接收者,通过卫星的广覆盖范围和高速传输能力,实现长距离通信。
10. 空间站:空间站是人类在太空中建造的长期居住和科学研究设施。
它们提供生活、工作和研究的空间,同时也作为航天员进行航天任务的基地。
高中物理必修二《万有引力与航天》知识点总结
一、开普勒行星运动定律〔1〕、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,〔2〕、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,〔3〕、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、2、公式:F=Gr2m1m2,其中G=6.67某10-11 N·m2/kg2,称为引力常量、3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、三、万有引力定律的应用1、解决天体(卫星)运动问题的根本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.(2)在地球外表或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.(1)假设天体的半径R,那么天体的密度ρ=VM=πR34=GT2R33πr3(2)假设天体的卫星环绕天体外表运动,其轨道半径r等于天体半径R,那么天体密度ρ=GT23π可见,只要测出卫星环绕天体外表运动的周期,就可求得天体的密度、3、人造卫星(1)研究人造卫星的根本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、(2)卫星的线速度、角速度、周期与半径的关系①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大(3)人造卫星的'超重与失重①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下但凡与重力有关的力学现象都会停止发生、(4)三种宇宙速度①第一宇宙速度(环绕速度)v1=7.9 km/.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、假设7.9 km/≤v<11.2 km/,物体绕地球运行、②第二宇宙速度(脱离速度)v2=11.2 km/.这是物体挣脱地球引力束缚的最小发射速度、假设11.2 km/≤v<16.7 km/,物体绕太阳运行、③第三宇宙速度(逃逸速度)v3=16.7 km/这是物体挣脱太阳引力束缚的最小发射速度、假设v≥16.7 km/,物体将脱离太阳系在宇宙空间运行、题型:1、求星球外表的重力加速度在星球外表处万有引力等于或近似等于重力,那么:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体外表重力加速度的关系为:g2g1=R12R22·M2M1.2、求某高度处的重力加速度假设设离星球外表高h处的重力加速度为gh,那么:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.3、近地卫星与同步卫星(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/2是所有卫星的最大加速度、(2)地球同步卫星的五个“一定”①周期一定T=24 h. ②距离地球外表的高度(h)一定③线速度(v)一定④角速度(ω)一定⑤向心加速度(a)一定。
必修二万有引力与航天知识点总结完整版
必修二万有引力与航天知识点总结完整版第六章万有引力与航天知识点总结一、万有引力定律:万有引力定律指出,自然界中任何两个物体都会相互吸引,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间的距离r的二次方成反比。
公式为F=G*m1*m2/r^2,其中G=6.67×10^-11 N·m^2/kg^2.适用条件有两种情况:可看成质点的两物体间,r为两个物体质心间的距离;质量分布均匀的两球体间,r为两个球体球心间的距离。
运用方面,万有引力与重力有关系,重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
二、重力和地球的万有引力:地球对其表面物体的万有引力产生两个效果:物体随地球自转的向心力和重力。
其中,向心力很小,由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。
重力约等于万有引力,在赤道处,F=F向+mg,所以mg=F-F向=GMm/(2-Rω^2)自^2/R,因地球自转角速度很小,所以可以忽略地球自转。
地球表面的物体所受到的向心力f的大小不超过重力的0.35%,因此在计算中可以认为万有引力和重力大小相等。
但是,如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。
在地球的同一纬度处,g随物体离地面高度的增大而减小,即g'=(Gm1/(R+h)^2)。
强调的是,g=G·M/R不仅适用于地球表面,还适用于其他星球表面。
绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。
即:G·M·m/R=m·a向=mg,所以g=a向=G·M/R^2.三、人类认识天体运动的历史:人类认识天体运动的历史可以分为“地心说”和“日心说”两个阶段。
XXX(XXX、XXX)代表了“地心说”,而XXX (XXX被烧死、XXX)则代表了“XXX说”。
高中物理人教版必修2第五章万有引力与航天知识点总结
第五章 万有引力与航天知识点总结1、开普勒行星运动三大定律① 第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
② 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③ 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
理解:(1)k 是与太阳质量有关而与行星无关的常量.(2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2=k ′,比值k ′是由行星的质量所决定的另一常量,与卫星无关. 2、万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,叫做引力常量。
(3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 3、万有引力定律的应用基本思路: 一是把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供;二是在地球表面或地面附近的物体所受的重力等于地球对物体的引力.(1)把行星(或卫星)绕中心天体看做匀速圆周运动,万有引力充当向心力(=n F F 引)G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma 向 r 增大 2Mm G r=22222n n v m v r mr mr T T GMma a rωωπ⇒=⇒=⎛⎫⇒=⎪⎝⎭⇒=32a k T =V 减小ω减小T 增大a n 减小(2)天体对其表面的物体的万有引力近似等于重力,即2MmGmg R=或2gR GM =(R 、g 分别是天体的半径、表面重力加速度),公式2gR GM =应用广泛,称“黄金代换”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
千里之行,始于足下。
高中物理必修二万有引力与宇宙航行知识点总
结归纳完整版
引力与宇宙航行是高中物理必修2的重要内容之一,涉及到引力定律、行
星运动、卫星运动、宇宙探索等知识点。
在学习这些内容时,我们需要掌握以
下几个重点知识。
第一,引力定律。
牛顿引力定律是描述两个物体之间相互作用的力的大小
与方向的关系。
它的数学表达式为F=G*m1*m2/r^2,其中F表示两物体之间的
引力,m1和m2分别表示两物体的质量,r表示两物体之间的距离,G为万有引
力常量。
第二,行星运动。
行星围绕太阳运动的规律可以利用开普勒定律来描述。
开普勒第一定律,也称作椭圆轨道定律,指出行星绕太阳的轨道是一个椭圆。
开普勒第二定律,也称作面积速度定律,指出行星在同一时间内扫过的面积相等。
开普勒第三定律,也称作调和定律,指出行星公转周期的平方与半长轴的
立方成正比。
第三,卫星运动。
卫星围绕地球运动的规律也可以利用开普勒定律来描述。
卫星的轨道一般为近似圆形,其运动速度与高度成正比。
卫星的速度分为正轨
道速度和逃逸速度两种,前者用于保持卫星绕地球做圆周运动,后者用于使卫
星摆脱地球引力束缚。
第四,宇宙探索。
人类对宇宙的探索主要依靠航天器和火箭。
卫星是用于
研究地球和宇宙的重要工具,包括地球观测卫星、太阳观测卫星、星际探测器等。
火箭是宇宙运载工具,可以将航天器送入太空。
火箭原理是利用燃料的燃
烧产生大量的气体推动火箭飞行,同时利用牛顿第三定律。
第1页/共2页
锲而不舍,金石可镂。
除了上述知识点,我们还需要掌握一些相关的数学计算方法。
例如,通过
引力定律计算两物体之间的引力大小;通过开普勒定律计算行星公转周期等等。
在学习过程中,我们还需要注意一些常见的误区。
例如,引力是所有物体
之间都存在的,而不仅仅是行星或卫星之间;行星绕太阳运动的轨道并非完全
是椭圆,而是近似椭圆等。
通过对引力与宇宙航行的学习,我们可以更加深入地了解宇宙的构成和演
化过程,为未来的宇宙探索提供基础知识和理论支撑。
同时,这些知识也可以
帮助我们更好地理解地球和自然现象,具有广泛的应用价值。