二氧化碳驱油机理
CO2驱油机理研究综述
![CO2驱油机理研究综述](https://img.taocdn.com/s3/m/03fc477af01dc281e53af054.png)
CO2驱油机理研究综述第一章概述1.1 CO2驱国外发展概况注入二氧化碳用于提高石油采油率已有30多年的历史。
二氧化碳驱油作为一项日趋成熟的采油技术已受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。
90年代的CO2驱技术日趋成熟,根据1994年油气杂志的统计结果,全世界有137个商业性的气体混相驱项目,其中55﹪采用的是烃类气体,42﹪采用的是CO2,其他气体混相驱仅占3﹪。
目前,国外采用二氧化碳驱油的主要国家有:美国、俄罗斯、匈牙利、加拿大、法国、德国等。
其中美国有十个产油区的292个油田适用CO2驱,一般提高采收率7﹪~15﹪,在西德克萨斯州,CO2驱最主要是EOR方法,一般可提高采收率30﹪左右。
1.1.1国外CO2驱项目情况在国外,注二氧化碳()技术主要用于后期的高含水油藏、非均质油藏以及不适合热采的重质油藏。
推广二氧化碳驱油的主要制约因素是天然的二氧化碳资源、二氧化碳的输送及二氧化碳向生产井的突进问题以及油井及设备腐蚀、安全和环境问题等。
为解决以上问题,提出了就注提高原油采收率技术,这种技术是向地层中注入反应溶液,使其在油藏条件下充分反应而释放出气体,溶解于原油之中,降低原油粘度,膨胀原油体积,从而达到提高原油采收率的目的。
美国是CO2驱发展最快的国家。
自20世纪80年代以来,美国CO2驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。
美国目前正在实施的CO2混相驱项目有64个。
最大的也是最早使用CO2驱的是始于1972 年的SACROC 油田。
其余半数以上的大型气驱方案是于1984~1986年间开始实施的,目前其增产油量仍呈继续上升的趋势。
大部分油田驱替方案中,注入的CO :体积约占烃类空隙体积的30 %,提高采收率的幅度为7 %~22%。
1.1.2小油田CO2混相驱的应用与研究过去,CO2混相驱一般是大油田提高原油采收率的方法。
大油田由于生育储量多,剩余开采期长,经济效益好,而小油田CO2驱一般不具有这些优点。
CO2混相驱和非混相驱的驱油机理
![CO2混相驱和非混相驱的驱油机理](https://img.taocdn.com/s3/m/c531cc68f5335a8102d22029.png)
谢谢Biblioteka 四、CO2混相驱和非混相驱技术应用
1、CO2混相驱对开采下面几类油藏具有更重要的意义 (1)水驱效果差的低渗透油藏;
(2)水驱完全枯竭的砂岩油藏;
(3)接近开采经济极限深层、气质油藏; (4)利用CO2重力稳定混相驱开采多盐丘油藏。
四、CO2混相驱和非混相驱技术应用
(1)可用CO2来恢复枯竭油藏的压力。 特别是对于低渗透油藏,在不能以经济速度注水或驱 替溶剂段塞来提高油藏的压力时,采用注CO2就可能办到, 因为低渗透性油层对注入CO2这类低粘度流体的阻力很 小。 (2)重力稳定非混相驱替。用于开采高倾角、垂向渗透率高 的油藏。 (3)重油CO2驱,可以改善重油的流度,从而改善水驱效 率。 (4)应用CO2驱开采高粘度原油
三、CO2非混相驱驱油机理
(1)降低原油粘度 CO2溶于原油后,降低了原油粘度,试验表明,原油粘度 越高,粘度降低程度越大。40℃时,CO2溶于沥青可以大大 降低沥青的粘度。温度较高(大于120℃)时,因CO2溶解度 降低,降粘作用反而变差。在同一温度条件下,压力升高 时,CO2溶解度升高,降粘作用随之提高,但是,压力过高,若压 力超过饱和压力时,粘度反而上升。原油粘度降低时,原油 流动能力增加,从而提高了原油产量。
CO2混相驱和非混相驱的驱油机理
CO2混相驱和非混相驱的驱油机理
一、CO2驱研究背景及相关概念 二、CO2混相驱驱油机理 三、CO2非混相驱驱油机理 四、CO2混相驱和非混相驱技术应用 五、CO2混相驱和非混相驱应用优点
一、CO2驱研究背景及相关概念
1、CO2驱研究背景 我国低渗、特低渗油藏投入开发后暴露出许多矛盾, 如自然产能低、地层能量不足、地层压力下降快等,而注 水补充能量因油藏地质条件的限制受到很大制约,因此采 收率均较低。从国外EOR技术的发展趋势看,气驱特别是 CO2混相驱将是提高我国低渗透油藏采收率最有前景的方 法。
二氧化碳驱油技术
![二氧化碳驱油技术](https://img.taocdn.com/s3/m/761cffa6760bf78a6529647d27284b73f24236c7.png)
目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。
对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。
这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。
该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。
一、二氧化碳驱油技术二氧化碳驱油,是一种把二氧化碳注入油层中以提高油田采收率的技术。
标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。
当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。
这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。
如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。
萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。
二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。
在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。
超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。
于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。
应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP是确定气驱最佳工作压力的基础。
一般情况下,因为混相驱油比非混相驱油能采出更多的原油,所以希望在等于或略高于MMP下进行气驱。
如果压力远高于MMP,就容易造成地层破裂,无法保障生产过程的安全性,其结果是不仅不能大幅度提高原油产量,还会降低经济效益。
二氧化碳气驱强化采油(CO2-EOR)的原理
![二氧化碳气驱强化采油(CO2-EOR)的原理](https://img.taocdn.com/s3/m/3961b3fe941ea76e58fa049b.png)
CO2与原油混相后,不仅能萃取和汽化原油中轻质烃,而且还能形成CO2和轻质烃混合的油带(oil banking)。油带移动是最有效的驱油过程,可使采收率达到90%以上。
(6) 分子扩散作用
非混相CO2驱油机理主要建立在CO2溶于油引起油特性改变的基础上。为了最大限度地降低油的粘度和增加油的体积,以便获得最佳驱油效率,必须在油藏温度和压力条件下,要有足够的时间使CO2饱和原油。但是,地层基岩是复杂的,注入的CO2也很难与油藏中原油完全混合好。而多数情况下,CO2是通过分子的缓慢扩散作用溶于原油的。
(7) 降低界面张力
残余油饱和度随着油水界面张力的减小而降低;多数油藏的油水界面张力为10~20mN/m,要想使残余油饱和度趋向于零,必须使油水界面张力降低到0.001mN/m或更低。界面张力降到0.04mN/m以下,采收率便会明显地提高。CO2驱油的主要作用是使原油中轻质烃萃取和汽化,大量的烃与CO2混合,大大降低了油水界面张力,也大大降低了残余油饱和度,从而提高了原油采收率。
二氧化碳气驱强化采油(CO2-EOR)的原理
在二次采油结束时,由于毛细作用,不少原油残留在岩石缝隙间,而不能流向生产井,不论用水或烃类气体驱油都是一种非均相驱,油与水(或气体)均不能相溶形成一相,而是在两相之间形成界面。必须具有足够大的驱动力才能将原油从岩石缝隙间挤出,否则一部分原油就停留下来。如果能注入一种同油相混溶的物质,即与原油形成均匀的一相,孔隙中滞留油的毛细作用力就会降低和消失,原油就能被驱向生产井。设法提高原油采收率的关键是找到一种能与原油完全相溶的合适的溶剂,从50年代开始进行这方面的探索与研究,曾经使用丙烷等轻组分烃类化合物,它可以与原油完全混溶,但成本较高。油田现场生产的天然气也可作为混相驱,但经济上也不合算。后来又对非烃类物质进行了研究,其中之一是CO2,它能通过逐级提取原油中的轻组分与原油达到完全互溶。
二氧化碳在油井中的应用
![二氧化碳在油井中的应用](https://img.taocdn.com/s3/m/aa0c163ca7c30c22590102020740be1e650ecc1c.png)
二氧化碳在油井中的应用引言:二氧化碳是一种常见的气体,它在油井中有着广泛的应用。
二氧化碳的化学性质稳定,易于获取和使用,因此它被广泛应用于油井开采和增产过程中。
本文将详细介绍二氧化碳在油井中的应用,包括二氧化碳驱油、二氧化碳压裂和二氧化碳注入。
一、二氧化碳驱油二氧化碳驱油是指通过注入二氧化碳气体来推动原油向油井井口移动的一种增产方式。
二氧化碳在地下的高压下,能够渗入油层中,与原油发生物理、化学反应,降低原油的粘度和表面张力,提高了原油的流动性。
此外,二氧化碳的气体膨胀性能也能够推动原油向油井井口移动。
通过二氧化碳驱油技术,可以有效地提高油井的采收率,延长油田的寿命。
二、二氧化碳压裂二氧化碳压裂是指在油井开采过程中,通过注入高压二氧化碳气体来破裂油层,并将原油从裂缝中释放出来的一种技术。
二氧化碳具有良好的渗透性和膨胀性能,可以在地下形成高压环境,使原油从油层中迅速释放出来。
与传统的水力压裂相比,二氧化碳压裂能够更好地保持油层的渗透性,提高原油的产量。
三、二氧化碳注入二氧化碳注入是指将二氧化碳气体注入到油井中的一种增产技术。
通过注入二氧化碳气体,可以改变油藏的物理性质,增加油层的压力,促使原油从油层中流出。
此外,二氧化碳还具有溶解原油的能力,可以提高原油的提取率。
二氧化碳注入技术在油井增产中具有广泛应用,能够有效地提高油井的产量和采收率。
四、二氧化碳的优势和挑战二氧化碳在油井中的应用具有以下几个优势。
首先,二氧化碳是一种环境友好的气体,与地球大气层中的二氧化碳没有任何区别,不会对环境造成污染。
其次,二氧化碳的获取和使用成本相对较低,适用于各种油田开采条件。
此外,二氧化碳的应用范围广泛,不仅可以用于常规油田开采,还可以用于页岩气、煤层气等非常规能源的开发。
然而,二氧化碳在油井中的应用也面临一些挑战。
首先,二氧化碳的获取和输送需要一定的成本和技术支持。
其次,二氧化碳的注入量和压力需要精确控制,否则可能会导致油井产量下降或油井堵塞。
CO2混相驱和非混相驱的驱油机理
![CO2混相驱和非混相驱的驱油机理](https://img.taocdn.com/s3/m/1aa448907e21af45b207a8d9.png)
第八页,编辑于星期三:五点 五十四分。
二、CO2混相驱驱油机理
第十二页,编辑于星期三:五点 五十四分。
三、CO2非混相驱驱油机理
(2)改善原油与水的流度比 大量的CO2溶于原油和水,将使原油和水碳酸化。原油
碳酸化后,其粘度随之降低。一般地,二氧化碳溶于水后,可 使水粘度增加20% -30%,水流度增加2-3倍,同时随着原油 流度的降低,油水流度比和油水界面张力将进一步减小,使油 更易于流动。 (3)膨胀作用
CO2溶于原油中可使原油体积膨胀,原油体积膨胀的大 小,不但取决于原油分子量的大小,而且也取决CO2的溶解 量。
第十三页,编辑于星期三:五点 五十四分。
三、CO2非混相驱驱油机理
(4)溶解气驱作用 由于CO2在原油中的溶解度较大,在注人过程中,一部分
CO2溶于原油,随着注人压力上升,溶解的CO2量越来越多, 当油藏停止注CO2时, 随着生产的进行,油藏压力降低,油藏 原油中的CO2就会从原油中分离出来,为溶解气驱提供能量 ,形成类似于天然类型的溶解气驱。 (5)分子扩散作用
地层基岩是复杂的,注入CO2也很难与油藏中原油完全混 合好。多数情况 下,通过分子的缓慢扩散作用溶于原油的。
第十四页,编辑于星期三:五点 五十四分。
三、CO2非混相驱驱油机理
(6)提高渗透率和酸化解堵作用 二氧化碳-水的混合物略带酸性并与地层基质相应地发
生反应。在页岩中,由于pH值降低,碳酸稳定了粘土,生成的 碳酸氢盐很容易溶于水,它可以导致碳酸盐的渗透率提高,尤 其是井筒周围的大量水和二氧化碳通过碳酸岩时圈。另外, 二氧化碳-水混合物由于酸化作用可 以在一定程度上解除 储层无机垢堵塞,疏通油流通道,恢复单井能。
最新CO2驱油机理研究综述汇总
![最新CO2驱油机理研究综述汇总](https://img.taocdn.com/s3/m/c20e48b41eb91a37f0115c21.png)
C02驱油机理研究综述C02驱油机理研究综述第一章概述1.1 C02驱国外发展概况注入二氧化碳用于提高石油采油率已有30多年的历史。
二氧化碳驱油作为一项曰趋成熟的采油技术已受到世界各国的广泛关注’据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。
90年代的C02驱技术曰趋成熟,根据1994年油气杂志的统计结果,全世界有137个商业性的气体混相驱项目,其中55%采用的是姪类气体,42% 采用的是C02,其他气体混相驱仅占3%。
目前,国外采用二氧化碳驱油的主要国家有:美国、俄罗斯、匈牙利、加拿大、法国、德国等。
其中美国有十个产油区的292个油田适用C02驱,一般提高采收率7%~15%,在西德克萨斯州,C02驱最主要是E0R方法,一般可提高采收率30%左右。
1.1.1国外CO2驱项目情况在国外,注二氧化碳(coj技术主要用于后期的高含水油藏、非均质油藏以及不适合热采的重质油藏。
推广二氧化碳驱油的主要制约因素是天然的二氧化碳资源、二氧化碳的输送及二氧化碳向生产井的突进问题以及油井及设备腐蚀、安全和环境问题等。
为解决以上问题,提出了就注0提高原油采收率技术,这种技术是向地层中注入反应溶液,使其在油藏条件下充分反应而释放出g 气体,g溶解于原油之中,降低原油粘度,膨胀原油体积,从而达到提高原油采收率的目的。
美国是C02驱发展最快的国家。
自20世纪80年代以来,美国C02驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。
美国目前正在实施的C02混相驱项目有64个。
最大的也是最早使用C02驱的是始于1972 年的SACROC油田。
其余半数以上的大型气驱方案是于1984 ~ 1986年间开始实施的,目前其増产油量仍呈继续上升的趋势。
大部分油田驱替方案中•注入的CO :体积约占姪类空隙体积的30 %.提高采收率的幅度为7 %〜22%O1.1. 2小油田C02混相驱的应用与研究过去,C02混相驱一般是大油田提高原油采收率的方法。
二氧化碳驱油原理
![二氧化碳驱油原理](https://img.taocdn.com/s3/m/3cf67db28762caaedd33d4b6.png)
第一章 二氧化碳驱油机理第一节 驱油机理2CO 是一种在油和水中溶解度都很高的气体,当它大量溶解于原油中时,可以是原油体积膨胀,粘度下降,还可降低油水间的界面张力;2CO 溶于水后形成的探索还可以起到酸化作用。
它不受井深、温度、压力、地层水矿化度等条件的影响,由于以上各种作用和广泛的使用条件,注2CO 提高采收率的应用十分广泛。
人们通过大量的室内和现场试验,都证明了2CO 是一种有效的驱油剂,并相继提出了许多注入方案。
包括:连续注2CO 气体;注碳酸水法;注2CO 气体或液体段塞后紧接着注水;注2CO 气体或液体段塞后交替注水和2CO 气体(WAG 法);同时注2CO 气体和水。
连续注入2CO 驱替油层时,由于不利的流度比及密度差,宏观波及系数很低,2CO 用量比较大,实施起来不够经济,用廉价的顶替液驱动2CO 段塞在经济上更有吸引力。
用碳酸水驱油实质是利用注入的水和2CO 溶液与地层油接触后,从其中扩散出来的2CO 来驱油,但此扩散过程较慢,与注入纯2CO 段塞相比达到的采收率比较低。
注2CO 段塞的工艺包括;注2CO 段塞后注水、注段塞后交替注水和注2CO 气体,前一种方法是水驱动2CO 段塞驱扫描整个油层,尾随的水不混相地驱替2CO ,在油层中留下一个残余的2CO 饱和度,后一种方法,其目的在于降低2CO 的流度,提高油层的波及系数。
提出的另外一种工艺是通过双注水系统同时注水和2CO (见下图),但是这种工艺的施工和完井的成本高,经济风险更大。
沃纳(Warner1977)和费耶尔斯(Fayers )等人在模拟研究中证明,W AG 注入法要比连续或单段塞注入法优越。
沃纳的研究结果还表明,连续注入2CO 可采出潜在剩余油量的20%;注入2CO 段塞可采出25%;而W AG 法可采出注水后地下原油的38%;同时注入气与水可采出47%的原油,但此法仍存在着严重的操作问题。
由此看来,W AG 法仍然是最经济可行的2CO 驱工艺,但它不适合于低渗透砂岩,因为在这种砂岩中,由于水的流度很低,变换注入方式可能造成注入速度严重降低。
二氧化碳驱油原理
![二氧化碳驱油原理](https://img.taocdn.com/s3/m/6a2e896b3c1ec5da50e27067.png)
第一章 二氧化碳驱油机理第一节 驱油机理2CO 是一种在油和水中溶解度都很高的气体,当它大量溶解于原油中时,可以是原油体积膨胀,粘度下降,还可降低油水间的界面张力;2CO 溶于水后形成的探索还可以起到酸化作用。
它不受井深、温度、压力、地层水矿化度等条件的影响,由于以上各种作用和广泛的使用条件,注2CO 提高采收率的应用十分广泛。
人们通过大量的室内和现场试验,都证明了2CO 是一种有效的驱油剂,并相继提出了许多注入方案。
包括:连续注2CO 气体;注碳酸水法;注2CO 气体或液体段塞后紧接着注水;注2CO 气体或液体段塞后交替注水和2CO 气体(W AG 法);同时注2CO 气体和水。
连续注入2CO 驱替油层时,由于不利的流度比及密度差,宏观波及系数很低,2CO 用量比较大,实施起来不够经济,用廉价的顶替液驱动2CO 段塞在经济上更有吸引力。
用碳酸水驱油实质是利用注入的水和2CO 溶液与地层油接触后,从其中扩散出来的2CO 来驱油,但此扩散过程较慢,与注入纯2CO 段塞相比达到的采收率比较低。
注2CO 段塞的工艺包括;注2CO 段塞后注水、注段塞后交替注水和注2CO 气体,前一种方法是水驱动2CO 段塞驱扫描整个油层,尾随的水不混相地驱替2CO ,在油层中留下一个残余的2CO 饱和度,后一种方法,其目的在于降低2CO 的流度,提高油层的波及系数。
提出的另外一种工艺是通过双注水系统同时注水和2CO (见下图),但是这种工艺的施工和完井的成本高,经济风险更大。
沃纳(Warner1977)和费耶尔斯(Fayers )等人在模拟研究中证明,W AG 注入法要比连续或单段塞注入法优越。
沃纳的研究结果还表明,连续注入2CO 可采出潜在剩余油量的20%;注入2CO 段塞可采出25%;而WAG 法可采出注水后地下原油的38%;同时注入气与水可采出47%的原油,但此法仍存在着严重的操作问题。
由此看来,W AG 法仍然是最经济可行的2CO 驱工艺,但它不适合于低渗透砂岩,因为在这种砂岩中,由于水的流度很低,变换注入方式可能造成注入速度严重降低。
二氧化碳驱油机理
![二氧化碳驱油机理](https://img.taocdn.com/s3/m/023dca81cc22bcd126ff0ce0.png)
图2-1 原油粘度降低与二氧化碳饱和压力的关系(50℃) μo--原油粘度; μm—溶有二氧化碳的原油粘度
(2 )改善原油与水的流度比 二氧化碳溶于原油和水,使其碳酸化。原油碳酸化后,其粘度随之降低,同 时也降低了水的流度,改善了油与水流度比,扩大了波及体积。 (3) 膨胀作用 二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量, 还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,使驱油 效率升高,提高原油采收率。原油的密度越高,相对分子质量越小,原油的膨胀 系数越大[1]。。图2-2为原油的膨胀系数与二氧化碳物质的量分数关系。从图2-2 可以看到,原油中二氧化碳物质的量分数越大,原油的膨胀系数越大。
长25年以上。
2、国内CO2驱研究及应用概况
CO2吞吐:
国内部分油田(吉林、胜利等)也陆续实施了许 多CO2吞吐项目。 滨南采油厂在一些油井进行CO2吞吐后,原油产量 大幅提高。经测算,投入产出比为1:4。证实CO2吞吐 作为单井增产措施,效果显著。
关于实施CO2驱几个问题的讨论
1. 实施CO2驱的开发时机的选择 据对国外CO2驱项目的统计,以前的大部分项目选在含 水率为60—70% 时开始实施CO2驱。近年来的研究与应用证 明, CO 2 驱在注水开发晚期的油田实施仍有很好的效果。 例如美国的Postle油田就是注水油田开发晚期实施CO2驱提 高采收率的一个成功例子。 Postle 油田发现于 1958 年, 1970 年产量达到高峰为 3498m3/d。注CO2前平均产油量仅318m3/d,含水高达98%。 1996年实施注CO2,采用水气交替注入方式。至2000年产量 达到1590m3/d,预计提高采收率10%—14%。
关于实施CO2驱几个问题的讨论
二氧化碳驱油技术研究现状与发展趋势
![二氧化碳驱油技术研究现状与发展趋势](https://img.taocdn.com/s3/m/eba44f69783e0912a2162a9e.png)
二氧化碳驱油技术研究现状与发展趋势随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。
寻找有效而廉价的采油新技术一直是专家们不断探索的问题。
针对目前世界上大部分油田采用注水开发面临着需要进一步提高采收率和水资源缺乏的问题国外近年来大力开展了二氧化碳驱油提高采收率(EOR)技术的研发和应用。
这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。
该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率(一)二氧化碳驱油技术机理1、降粘作用二氧化碳与原油有很好的互溶性,能显著降低原油粘度,可降低到原粘度的1/10左右。
原油初始粘度越高,降低后的粘度差越大,粘度降低后原油流动能力增大,提高原油产量。
2、改善原油与水的流度比二氧化碳溶于原油和水,使其碳酸化。
原油碳酸化后,其粘度随之降低,同时也降低了水的流度,改善了油与水流度比,扩大了波及体积。
3、膨胀作用二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。
4、萃取和汽化原油中的轻烃在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。
二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。
5、混相效应混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。
二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能形成二氧化碳和轻质烃混合的油带。
油带移动是最有效的驱油过程,可使采收率达到90%以上。
6、分子扩散作用多数情况下,二氧化碳是通过分子的缓慢扩散作用溶于原油。
分子的扩散过程很缓慢,特别是水相将油相与二氧化碳气相隔开时,水相阻碍了二氧化碳分子向油相中的扩散并且完全抑制了轻质烃从油相释放到二氧化碳中,因此,必须有足够的时间,使二氧化碳分子充分扩散到油相中。
液态二氧化碳注入工艺及工艺流程
![液态二氧化碳注入工艺及工艺流程](https://img.taocdn.com/s3/m/8600a12ca200a6c30c22590102020740be1ecdc8.png)
液态二氧化碳注入工艺及工艺流程为了有效的减少二氧化碳排向大气,将二氧化碳作为气驱的一种注入到地下,作为驱替液用来提高原油的采收率,设计最佳的注入的工艺流程,更好地完成二氧化碳埋存驱油的任务。
对埋存工艺技术进行优化,发挥高效注入设备的优势,提高注入的质量,保证工艺顺利实施,获得最佳的埋存驱油目的。
标签:液相注入;埋存驱油;工艺流程一、二氧化碳驱油机理1.提高地层压力:CO2具有较强的膨胀能力和扩散速度,可快速提高地层能量,增强驱动力。
2.降低原油粘度:CO2很容易溶于原油中,其溶于原油后可降低原油粘度,提高油相渗透率。
CO2-原油体系实现混相后,原油粘度可降低2/3。
3.提高驱油效率:CO2溶于原油后不仅可以降低原油粘度,还可以降低甚至消除界面张力。
油藏中随着地层压力逐步升高,CO2与原油相间传质作用增强,当地层压力达到最小混相压力时可以实现混相(混相驱),相间界面消失,驱油效率大幅度提高。
当地层压力未达到最小混相压力时(非混相驱),CO2驱通过溶解、膨胀和降粘作用提高驱油效率。
通过室内实验分析评价,与常规水驱对比,CO2混相驱提高驱油效率可达到30%,CO2非混相驱和近混相驱提高驱油效率可达到5-15%。
4.扩大波及体积:CO2在油藏中具有较低粘度和较强的渗流能力,可以驱替微小孔隙中的原油。
在驱替过程中CO2通过组分交换和溶解的方式降低原油粘度,提高原油在微细孔喉的流动能力,扩大波及体积。
二、液相二氧化碳注入工艺1、气源:利用天然气井分离出的管输来的二氧化碳气体。
2、注入相态:液态。
3、输送计量方式:采用气体中、低压计量。
4、管线材质:脱水前采用不锈钢材质,脱水后采用碳钢5、液体增压方式:三柱塞泵压缩注入。
6、气体脱水方式:变温吸附低压压脱水。
7、液体增压等级:压力等级为25MPa三、液相二氧化碳注入工艺流程将天然气采气厂分离来的气相二氧化碳,通过增压压缩机增压到2.0-3.0 MPa 的纯CO2,通过液化装置将气体液化,液化温度达到-28度,最终通过三柱塞注入泵增压到25 Mpa,为站外注入井提供液态CO2。
二氧化碳驱油
![二氧化碳驱油](https://img.taocdn.com/s3/m/df757dcb8bd63186bcebbcba.png)
二氧化碳溶于原油中可使原油体积膨胀,原油 体积膨胀的大小,不但取决于原油分子量的大小,而 且也取决于二氧化碳的溶解量。一般,二氧化碳在原 油中 溶解 可使其 体积 增加4 0~1 0%。 这种膨 胀作 用 对驱油非常重要:①水驱后留在油层中的残余油与 膨胀系数成反比,即膨胀越大,油层中残留的油量就 越少;②溶解二氧化碳的油滴将水挤出孔隙空间,使 水湿系统形成一种排水而不是吸水过程,泄油的相 对渗透率曲线高于它们的自动吸油相对渗透率曲 线,形成一种在任何给定饱和度条件下都有利的油
关键词:二氧化碳;驱油机理;影响因素;应用前景 中图分类号:TE357.45 文献标识码:A 文章编号:1006- - 7981( 2014) 02一0034一03
1二氧化碳的驱油机理 1.1二氧化碳驱油机理
注CO:技术的作用机理可分为CO:混相驱和 Co:非混相驱。稀油油藏主要采用C0:混相驱,而稠 油油藏主要采用CO:非混相驱。co:提高采收率的 作用主要有促使原油膨胀、改善油水流度比、溶解气 驱等。CO:驱油是油田三次采油中提高原油采收率 的一项重要手段通过向地层注入CO:气体,降低原 油粘度,达到提高原油采收率的目的。其主要途径 是:溶解气驱;通过原油体积膨胀和粘度降低——降 粘效应的非混相驱;通过混相效应在油藏中析取原 油中的烃。 1.1 .1降粘机 理
CO:驱油提高 采收率的机理主要有 以下几点: 1.2.2.1降低原油粘度。CO。溶于原油后,降低了 原油粘度,原油粘度越高,粘度降低程度越大。原油 粘度降低时,原油流动能力增加,从而提高了原油产 量。 1.2.2.2改善原油与水的流度比。大量的CO:溶于 原油和水,将使原油和水碳酸化。原油碳酸化后,其 粘度 随之降 低,大 庆勘探开 发研究 院在4 5℃和1 2. 7MPa的条件下进行了有关试验,试验表明,CO。在 油田注入水中的溶解度为5%( 质量) ,而在原油中的 溶解度为15%( 质量) ;由于大量CO:溶于原油中,使 原油粘度由9.8mPa·s 降到2.9mPa·s ,使原油体 积增加了17.2%,同时也增加了原油的流度。水碳酸 化后,水的粘度将提高20%以上,同时也降低了水的 流度。因为碳酸化后,油和水的流度趋向靠近,所以 改善了油与水流度比,扩大了波及体积。 1.2.2.3使原油体积膨胀。CO。大量溶于原油中, 可使原油体积膨胀,原油体积膨胀的大小,不但取决 于原油分子量的大小,而且也取决于CO。的溶解量。 cO。溶于原油,使原油体积膨胀,也增加了液体内的 动能,从而提高了驱油效率。 1.2.2.4使原油中轻烃萃取和汽化。当压力超过一 定值时,CO:混合物能使原油中不同组分的轻质烃 萃取和汽化,降低原油相对密度,从而提高采收率。 萃取和汽化现象是CO:混相驱油的重要机理。在试
CO2驱油后期气窜机理及解决方法解读
![CO2驱油后期气窜机理及解决方法解读](https://img.taocdn.com/s3/m/849eaf521711cc7931b716b6.png)
– CO2驱
待解决问题
3. 在驱油过程中,由于 CO2黏度 1.CO2 在注入油层的过程中,与 2.CO2与原油的最小混相压力 低及油层的非均质性,易出现黏性指 水反应生成的碳酸,对设备、管线、 不仅取决于油藏的温度和 CO2的纯 进及窜流,造成不利的流度比,致使 井筒有较强的腐蚀性,而且腐蚀产物 1.腐蚀作用(如何减缓腐蚀?) 度,而且也取决于原油组分。因此, CO2 过早突破含油带,影响驱油效率。 被注入流体带入地层会堵塞储层孔隙。 加强含杂质的 CO2及可改变原油组 加强油藏地质结构、渗透率、油藏纵 2.最小混相压力较高 如何加强对注入油层过程进行 CO2性 分物质的性能分析,是解决混相压 向非均质性、油藏流体饱和程度和油 能分析、油藏性质的分析以及防腐材 3.窜流严重 力的关键。 藏流体性质的性能分析研究,是解决 料、涂层的研究,是解决腐蚀问题的 CO2 窜流问题的关键。 关键。
向油层中交替注入水气段塞,由于气泡在孔喉之间的贾敏效应使注入 水的渗流阻力增大,降低了水的相对渗透率和流度,从而改善水油流度比, 水气交替注入后,由于水气的流度差异,流体的分布增加了两种 使部分水波及到渗透率较差的区层中,扩大水的波及效率。
2.2稠化泡沫和CO2增稠封窜技术
•
ห้องสมุดไป่ตู้
稠化泡沫的原理就是通过在C02中加入表活剂和聚合物,使其在注入过程中具有泡 沫的流度,通过延缓成胶时间,在油藏深部裂缝介质或者窜流通道中形成凝胶,因此 这种体系具有泡沫与凝胶的双重作用,加入的聚合物可以使泡沫具有很好的稳定性和 良好的注入能力并且稠化泡沫可以有效地抵抗地层流体的驱动,从而有效地防止临界状态
团,二氧化碳在其中的溶解度很低,必须加入大量的助溶剂。
。 C02增稠的方法:其一是在C02气体中加入高分
二氧化碳驱油机理 32页PPT文档
![二氧化碳驱油机理 32页PPT文档](https://img.taocdn.com/s3/m/66c01123f78a6529647d5366.png)
图2-2 原油的膨胀系数与二氧化碳物质的量分数关系
(4) 萃取和汽化原油中的轻烃 在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质 烃,降低原油相对密度,从而提高采收率。二氧化碳首先萃取和汽化 原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。 (5) 混相效应 混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。 二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能 形成二氧化碳和轻质烃混合的油带。油带移动是最有效的驱油过程, 可使采收率达到90%以上。
前言
随着我国经济的发展和人民生活水平的提高,人们对 石油产品的需求量正在不断增加,用传统的气驱采油技术 采油率有限,工作效率不高,因此在当前世界范围内很多 企业都开始使用二氧化碳驱油技术来提高采收率。向油藏 注入二氧化碳气体能有效的降低原油粘度,减小残余油饱 和度,溶解储层中胶质,提高渗透率,在低渗透油藏、高 含水油藏以及深层油藏中都有良好的应用前景,并且注二 氧化碳能够减少空气污染,降低温室效应,有利于环境保 护。我国自60年代以来在大庆、胜利、任丘、江苏等油田 先后开展了二氧化碳驱油实验。由于我国天然的二氧化碳 资源比较缺乏,至今尚未发现较为大型的二氧化碳气藏, 因此这方面的技术起步较晚,但是,随着小型CO2气藏的 发现,CO2驱的作业项目越来越多,而且取得了明显的效 果,并且己经证明对于水驱效果不好的透油藏和小段块油 藏,CO2驱可以取得很好的效果。证明CO2驱具有成功率 高、风险性低、成本低廉、成效显著,可回收重复利用,
CO2混相驱和非混相驱的驱油机理
![CO2混相驱和非混相驱的驱油机理](https://img.taocdn.com/s3/m/2dafaf97bdeb19e8b8f67c1cfad6195f312be8da.png)
CO2混相驱和非混相驱的驱油机理姓名:学号:学院:专业:指导教师:2022年4月12日co2驱是把co2注入油层,依靠co2的膨胀、降粘等机理来提高原油采收率的技术。
随着人们对温室效应认识,将co2注入地层不仅能够提高原油采收率,还可以起到封存co2的作用,是三次采油方法中最具有潜力的采油技术。
co2混相驱我国低渗透、特低渗透油藏开发后,暴露出天然产能低、地层能量不足、地层压力快速下降等诸多矛盾。
受油藏地质条件的限制,注水补充能量受到很大限制,采收率较低。
从国外三次采油技术的发展趋势来看,气驱尤其是CO2混相驱将是我国提高低渗透油藏采收率最有前景的方法。
1.二氧化碳的基本性质在标准条件下,也即在0.1mpa压力、273.2k(绝对温度)下二氧化碳是气体状态,气态二氧化碳密度d=0.08-0.1千克/立方米,气态二氧化碳粘度为0.02~0.08毫帕秒,液态二氧化碳密度d=0.5-0.9千克/立方米,液态二氧化碳粘度为0.05-0.1毫帕秒,但在高压低温条件下液态与气态二氧化碳的密度相近,为0.6-0.8吨/立方米。
压力和温度可以明显地控制二氧化碳的相态。
当温度超过临界温度时,压力对二氧化碳的相态几乎没有影响,即二氧化碳在任何压力下都呈现气体状态。
因此,在地层温度较高的油层中采用二氧化碳驱油。
二氧化碳通常处于气态,与注入压力和地层压力无关。
二氧化碳在水中溶解性质要比气体烃类好得多,地层条件下在水中溶解度为30-60立方米/立方米,而质量比浓度可以达到3-5%,其水中溶解度受压力、温度、地层水矿化度的影响,二氧化碳在水中溶解度随压力增加而增加,随温度增加而降低,随地层水矿化度增加而降低。
二氧化碳溶解在水中形成“碳酸水”,这会增加水的粘度。
地层中存在二氧化碳,但泥岩膨胀减弱。
二氧化碳在油中溶解度远高于在水中的溶解度,大约是水中溶解度的4-10倍,当二氧化碳水溶液与原油接触时,由于其与油、水溶解度的差异,二氧化碳能够从水中转移到油中,在转移过程中水中二氧化碳与油相界面张力很低,驱替过程很类似于混相驱。
注CO2提高原油采收率
![注CO2提高原油采收率](https://img.taocdn.com/s3/m/ed911e0a7cd184254b35358f.png)
注CO2提高原油采收率1.CO2提高原油采收率机理将CO2作为油藏提高采收率的驱油剂已研究多年,在油田开发后期,注入CO2,能使原油膨胀,降低原油粘度,减少残余油饱和度,从而提高原油采收率,增加原油产量。
CO2能够提高原油采收率的原因有:1)CO2溶于原油能使原油体积膨胀,从而促使充满油的空隙体积也增大,这为油在空隙介质中提供了条件。
若随后底层注水,还可使油藏中的残余油量减少。
2)CO2溶于原油可使原油粘度降低,促使原油流动性提高,其结果是用少量的驱油剂就可达到一定的驱油效率。
3)CO2溶于原油能使毛细管的吸渗作用得到改善,从而使油层扫油范围扩大,使水、油的流动性保持平衡。
4)CO2溶于水使水的粘度有所增加,当注入粘度较高的水时,由于水的流动性降低,从而使水油粘度比例随着油的流动性增大而减少。
5)CO2水溶液能与岩石的碳酸岩成分发生反应,并使其溶解,从而提高储集层的渗透率性能,使注入井的吸收能力增强。
6)CO2溶于水可降低油水界面的表面张力,从而提高驱油效率。
7) CO2可促使原油中的轻质烃类(C2~C3)被抽提出来,从而使残余油饱和度明显降低。
在不同原油的成分、温度和压力条件下,二氧化碳具有无限制地与原油混相的能力,实际上可以达到很好的驱油目的。
8) CO2在油水中的扩散系数较高,其扩散作用可使二氧化碳本身重新分配并使相系统平衡状态稳定。
9)注入碳酸水,可大大降低残余油饱和度,因为在含水带内的碳酸水前缘,能形成和保持二氧化碳气游离带。
2.注CO2提高原油采收率研究现状及进展注CO2提高原油采收率的研究主要做以下四项工作:(1)流体相态研究;(2)最小混相压力的确定;(3)岩心驱替试验;。
经过大量调研国内外的文献发现在实验和理论方面有一些新的进展。
1)流体相态研究相态对于混相驱替过程是相当重要的,相态研究是研究混相驱替方式、驱替机理的重要依据。
常规的相态测试时通过PVT仪进行的。
主要包括恒组成膨胀试验,定容衰竭试验(CVD),多级脱气实验(DLT)和分离实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳驱油机理
二氧化碳驱油是一种采油技术,它通过注入二氧化碳变成气态,
并形成一定的压力,将原本无法开采的原油储层内的油驱出,从而实
现采油的目的。
首先,二氧化碳驱油的作用机制与压裂采油和注水采油有所不同。
虽然它们都是通过施加压力来促使油从储层中流出,但是二氧化碳驱
油具有独特的优点,比如在不破坏储层结构的情况下,能够从中取出
更多的油。
具体来说,二氧化碳驱油所利用的工作原理是驱替机制和溶解机制。
驱替机制是指,通过注入二氧化碳来取代原本存在于储层中的天
然气,使得储层内的压力继续保持,从而促使原本被禁锢的油逐渐流出。
而溶解机制则是指,二氧化碳本身具有溶解油的特性,在与原油
混合时能够有效地将油中的一些关键化合物溶解掉,从而使得原本无
法开采的油开始流动。
此外,二氧化碳驱油的另一个作用机制是物理机制。
它能够扩大
储层的有效面积,增加油与储层的接触面积,从而更轻易地将油从储
层中取出。
同时,它也能够降低原油粘度,使得油更容易从储层内流出。
总的来说,二氧化碳驱油能够比其他采油技术更有效地提高原油采油率,具有化学反应没有过程和液介质符合储层中环境条件等显著优势。
随着油价的不断上涨和油田的老化,越来越多的石油公司开始尝试利用二氧化碳采油技术来提高采油率和延长油田寿命。