小学数学整数乘除简便运算
小学数学简便运算和巧算
小学数学简便运算和巧算一、数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算。
(一)其方法有:一:利用运算定律、性质或法则。
(1) 加法:交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法:利用运算定律、性质或法则。
交换律,a×b=b×a, 结合律,(a×b)×c=a×(b×c),分配率,(a+b)×c=a×c+b×c, (a-b)×c=a×c-b×c.(4)除法运算性质:a÷(b×c)=a÷b÷c, a÷(b÷c)=a÷b×c, a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,。
后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)=400+200=600(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:657-263-257=657-257-263=400-263=147.(运用减法性质,相当加法交换律。
)例3:195-(95+24)=195-95-24=100-24=76 (运用减法性质)例4; 150-(100-42)=150-100+42=50+42=92. (同上)例5:(0.75+125)×8=0.75×8+125×8=6+1000=1006. (运用乘法分配律))例6:( 125-0.25)×8=125×8-0.25×8=1000-2=998. (同上)例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。
小升初数学简便运算例解
在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”; 19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
四年级整数除法的简便运算最全整理
整数除法的简便运算一、除法性质1、同扩同缩商不变: A ÷ B =(A×C)÷(B×C)A ÷B =(A÷C)÷(B÷C)例题1、用简便方法计算(1)21000÷125 (2)110÷5 (3)44000÷125 (4)47700÷900练习1、用简便方法计算(1)130÷ 25 (2)230÷ 5 (3)7100÷125 (4)310÷125二、除法性质2、连续除以两个数等于除以这两个数的成绩: A ÷ B ÷ C = A ÷ ( B × C ) 例题2、用简便方法计算(1)37500÷4÷25 (2)61000÷125÷8 (3) 31000÷8÷125 (4)630÷18÷5练习2、用简便方法计算(1)300÷25÷4 (2)6500÷8÷125 (3)960÷8÷4 (5)35200÷25÷4三、除法性质3、除法分配律: (A±B)÷C=A÷C±B÷C除法分配律逆运算:A÷C±B÷C=(A±B)÷C例题3、用简便方法计算(1)1615÷18+185÷18 (2)1875÷18 - 75÷18 (3)(99+88)÷11练习3、用简便方法计算(1)1576÷35+1924÷35 (2)76÷14 +63÷14 + 29÷14(3)158÷3-8÷3 (4) 35÷6+45÷6+67÷6+33÷6四、除法性质4、括号前是除号,去掉括号要变号: A ÷ ( B ÷ C ) = A ÷ B × CA ÷ (B ×C ) = A ÷ B÷ C 例题4、用简便方法计算(1)39÷(13÷3)(2) 36÷(12÷8)(3)108÷(36÷5)(1)178÷(178×4) (2)125÷(125×4)(3)76÷(76×2)练习4、用简便方法计算(1)72÷(24÷13)(2) 3366÷(33÷8)(3)54÷(27÷5)五、除法性质5、括号前是乘号,去掉括号不要变号 A × ( B ÷ C ) = A × B ÷ C 例题5、用简便方法计算(1)72×(43÷24)(2) 3366×(8÷33)(3)54×(75÷27)练习5、用简便方法计算(1)140×(11÷4)(2) 3366×(80÷11)(3)54×(25÷9)六、除法性质6、乘除混合:带着符号搬家例题6、用简便方法计算(1)503÷26×94×26÷94 (2) 327÷468×559÷327×468÷559(3)(88×32×96)÷(16×44×32)(4)(64×75×81)÷(32×25×27)练习6、用简便方法计算(1)(17×25×42)÷(5×7×34)(2)(91×48×75)÷(25×13×16)1、(1)108÷25 (2) 56÷7÷2 (3) 306÷5 (4) 12000÷1252、(1)314÷(314×8)(2) 39÷13 + 91÷13 (3)(6-2×2)÷23、(1)(156×43×68)÷(52×43×34)(2)176÷8 - 16÷84、(1)12÷7+14÷7+15÷7+32÷7+11÷7 (2)32000÷125÷85、(1)17÷8+19÷8+21÷8+23÷8 (2) 1000000÷64÷5÷25÷1256、(105×117×57×85)÷(17×19×3×5×7×9×11×13×15)1、(1)31000÷8÷125 (2)37500÷4÷25 (3)61000÷125÷82、(1)25÷13+14÷13 (2) 13÷9+5÷9 (3)31÷5+32÷5+33÷5+34÷53、(1)187÷12-63÷12-52÷12 (2)(12+24+36+48)÷6 (3)21÷5-6÷54、(1)562×397÷(281×397) (2) 45000÷(25×90) (3)5600÷(1400÷4)5、(1) 540÷(9×20)(2)4500÷(25×90)(3)5600÷(700÷4)6、(1)360×40÷60 (2)99×88÷33÷22 (3)27×8÷9 (4)1320×500÷250 (1)35×222÷111 (2)720×25÷90 (3)99×18÷33 (4) 360×40÷60。
整数计算简便运算
整数计算简便运算整数计算是数学运算中的基础操作,它涉及到整数的加减乘除等运算。
在日常生活和工作中,我们经常需要进行整数的计算,而且当数字较大时,手动计算可能会变得十分繁琐。
因此,为了简化整数计算,我们可以使用一些简便的方法和技巧。
1.乘法计算简便方法乘法是一种常见的整数计算,但当乘数或被乘数较大时,手动计算可能会变得十分耗时。
为了简化乘法计算,我们可以使用下面的方法:-分解法:将乘法分解成多个小的乘法。
例如,计算37×16可以分解为(30+7)×16=30×16+7×16=480+112=592-交换律:乘法满足交换律,即a×b=b×a。
因此,如果乘法中的一个数比较容易计算,我们可以交换位置进行计算。
-平方计算:当计算一个整数的平方时,可以使用平方的简便计算方法。
例如,计算57的平方可以先计算50的平方再加上7×2×50加上7的平方,即57×57=2500+700+49=32492.除法计算简便方法除法是另一个常见的整数计算,但有时候除数或被除数较大时,手动计算可能会变得复杂。
为了简化除法计算,我们可以使用下面的方法:-近似法:当除数和被除数较大时,可以使用近似法进行计算。
例如,计算486÷18可以近似为480÷20=24,这样可以快速得到一个近似值。
-分数法:将除法计算转化为分数计算。
例如,计算49÷7可以转化为49/7=7/1,然后进行分数的简单计算。
3.整数加减运算简便方法整数的加减运算比较简单,但当数字较大时,手动计算也可能会变得繁琐。
为了简化整数加减运算,我们可以使用下面的方法:-同号运算:同号的整数相加或相减,只需将它们的绝对值相加或相减,并保持符号不变。
例如,(-8)+(-3)=-11-异号运算:异号的整数相加或相减,只需将它们的绝对值相减,并取绝对值较大的数的符号。
小升初数学简便运算例解
小升初数学简便运算例解在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”; 19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是 5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万,,就把其中的一个数叫做另一个数的“补数”。
(完整版)整数乘除法速算巧算教师版
本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
小学数学简便运算归类复习小学数学中
小学数学简便运算归类复习小学数学中,从一年级到六年级一直贯穿着一个内容,那就是简便运算。
在整数范围、小数范围、分数范围内都做为一个内容重复出现。
而这个内容也正是小学数学中的一个难点,现在把其整理出来,供参考。
同时欢迎留言补充。
一、运用加法结合律进行简算(a+b)+c=a+(b+c) 例1、5.76+13.67+4.24+6.33 =(5.76+4.24)+(13.67+6.33) =10+10 =20 例2、37.24+23.79-17.24 =37.24-17.24+23.79 =20+23.79 =43.79 二、运用乘法结合律进行简算:这种题型往往含特殊数字之间相乘(a×b)×c=a×(b×c) 特殊数字之间相乘:25×4=100 125×8=1000 25×8=200 125×4=500 例3、4×3.78×0.25 =4×0.25×3.78 =1×3.78 =3.78 例4、125×246×0.8 =125×0.8×246 =100×246 =24600 三、利用乘法分配律进行简算: (a+b)×c=a×c+b×c (a-b)×c=a×c-b×c 做这种题,一定不要急着去算,先要分析各数字之间的特殊关系。
也就是先要仔细观察,找到做题的窍门。
例5、(2.5+12.5)×40 =2.5×40+12.5×40 =100+500 =600 例6、3.68×4.79+6.32×4.79 =(3.68+6.32)×4.79 =10×4.79 =47.9 例7. 26.86×25.66-16.86×25.66 =(26.86-16.86) ×25.66 =10×25.66 =256.6 例8、5.7×99+5.7 = 5.7×(99+1) =5.7×100 =570 三、利用加减乘除把数拆分后再利用乘法分配律进行简算:例9、34×9.9 =34×(10-0.1) =34×10-34×0.1 =340-3.4 =336.6 例10、57×101 =57×(100+1) =57×100+57×1 =5757 例11、7.8×1.1 =7.8×(1+0.1) =7.8×1+7.8×0.1 =7.8+0.78 =8.58 例12、25×32 =25×4×8 =100×8 =800 例13、125×0.72 =125×8×0.09 =1000×0.09 =90 例14、87×2/85 =(85+2) ×2/85 =85×2/85+2×2/85 =2+4/85 =2又4/85 四、连减与连除a-b-c=a-(b+c) a÷b÷c=a÷(b×c) 例15、56.5-3.7-6.3 =56.5-(3.7+6.3) =56.5-10 =46.5 例16、32.6÷0.4÷2.5 =32.6÷(0.4×2.5) =32.6÷1 =32.6 五、需要变形才能进行的简便运算:做这一类题,要先观察,找出规律,然后变形后进行简算。
【小学奥数题库系统】---整数乘除法速算巧算学生版
整数乘除法速算与巧算教学目标本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.知识点拨一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如: 4 25 100 , 8 125 1000 , 5 20 10012345679 9 111111111 (去 8 数,重点记忆)711 13 1001 (三个常用质数的乘积,重点记忆)理论依据:乘法交换率: a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴ 商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:a b (a n) (b n) (a m) (b m) m 0 , n 0⑵在连除时,可以交换除数的位置,商不变.即: a b c a c b⑶ 在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如: a b c a c b b c a⑷ 在乘、除混合运算中,去掉或添加括号的规则去括号情形:① 括号前是“×”时,去括号后,括号内的乘、除符号不变.即1 / 5a (b c) a b ca (b c) a b c②括号前是 “÷”时,去括号后,括号内的 “×”变为 “÷”,“÷”变为 “×”.即a (b c) a bc a (b c) a b c添加括号情形: 加括号时,括号前是 “×”时,原符号不变;括号前是 “÷”时,原符号 “×”变为 “÷”,“÷” a b c a (b c)a b c a (b c) 变为 “×”.即a b c a (b c )a b c a (b c)⑸ 两个数之积除以两个数之积,可以分别相除后再相乘.即 (a b) (c d ) (a c) ( b d ) (a d ) (b c) 上面的三个性质都可以推广到多个数的情形.例题精讲一,乘 5、15、 25、 125【例 1】 下面这些题你会算吗?⑴ 125 (408) ⑵ (100 4) 25【巩固】用简便方法计算下面各题.( 1) 125 (80 4) ( 2) (100 8)25【巩固】下面这道题怎样算比较简便呢?看谁算的快!26 25【例 2】 你知道下题怎样快速的计算吗?⑴ 786 5 ⑵ 124 25 ⑶ 96 125 ⑷ 75258 【巩固】运用乘法的运算律大显身手吧,可以记录自己速算的时间啊 .⑴ 17 4 25 ⑵125 19 8 ⑶ 125 72 ⑷ 25 125 16 【巩固】计算: 564 25 125 2009 .【巩固】为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?19 25 64 125【巩固】计算: 173 32 125 25 . 【巩固】计算: 13×25×125×4×8=. 【巩固】请快速计算下面各题. ⑴ 2004 25⑵ 125 792【巩固】 456 2 125 25 5 4 8【例 3】 聪明的你也来试试吧!⑴ 2415 ⑵ 8475 ⑶ 39 75 ⑷ 56 625【巩固】请你简便计算.2 / 5⑴ 536 5 ⑵ 638 15 ⑶ 3225 ⑷ 68 75【巩固】计算: 8 13 125 =【巩固】计算: 125 16 111 9 ____________.【例4】计算: 45000 25 90 =二,乘 9、 99、 999【例5】下面各题怎样算简便呢?⑴ 12 9 ⑵ 12 99 ⑶ 12 999【巩固】相信你能快速的计算下面各题,我们一起来做做吧.⑴ 23 9 ⑵ 33 99 ⑶ 25 9999【巩固】计算: 12345678987654321 9【巩固】算式 12345678987654321 63 值的各位数字之和为。
小学数学简便计算的几种方法
请归纳小学数学简便计算得几种方法1、利用运算定律、性质、法则。
①加法加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c),②减法性质a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a。
③乘法乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:(a+b)×c=a×c+b×c,(a-b)×c=a×c-b×c,④除法性质a÷(b×c)=a÷b÷c,a÷(b÷c)=a÷b×c,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c、⑤与、差、积、商不变得规律与不变:如果a+b=c,那么(a+d)+(b-d)=c,差不变:如果a-b=c,那么(a+d)-(b+d)=c,积不变:如果a×b=c,那么(a×d)×(b÷d)=c,商不变:如果a÷b=c,那么(a×d)÷(b×d)=c,(a÷d)÷(b÷d)=c、2、拆数法、凑整法。
3、利用基准数法。
4、等差数列求与。
例1:87+44+56=?分析:运用加法结合律,先将44与56凑整,再计算。
解:87+44+56=87+(44+56)=87+100=187例2:63+18+19=?分析:将63拆分为60+1+2,然后再用结合律将18与2,19与1凑整。
解:63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100例3:45-18+19=?分析:在只有加减法得同级运算中,运算顺序可改动,先+19,再-18,也可以理解为“带符号搬家”。
小学数学整数乘除简便运算分解
第二章 巧算乘除第1讲 与一数乘除【探究1】一个数与5相乘一个数与5相乘,只要把这个数折半,再将小数点向右移一位,就行了。
即:A ×5=2A ×10 例1、184×5 〖思路点拨〗=184÷2×10 184折半得92,小数点向右推一位补0.=920例2、343×5 〖思路点拨〗=343÷2×10 343÷2=171.5,小数点向右推一位,得1715.=1715练一练:(1)84×5 (2)38×5 (3)387×5 (4)442×5(5)1246×5 (6)37.66×5 (7)0.68×5 (8)341×5【探究2】一个数与9相乘一个数乘以9,我们可以采用“以减代乘法”,只要在这个数末位添个0,再将原数减去,即可。
即:A ×9=A ×10-A例1、87×9=870-87=783例2、7.23×9=72.3-7.23=65.07练一练:(1)12×9 (2)17×9 (3)23×9(4)45×9 (5)218×9 (6)385×9(7)204×9 (8)6.7×9 (9)8.34×9【探究3】一个数与11相乘一个数与11相乘,一般是首尾两个数字不变,中间的数字是各相邻两位数字依次相加得到的。
简单地说,就是“首尾数字无变化,邻数相加放中间”。
例1、11例2、如果相邻的数字相加满十,就要进位。
因此,有时积的“头”也可能比被乘数的“头”大,但“尾”是不会变的。
即“邻数相加有进位,头大1,尾不变”。
例3、11=3 9 2 7〖思路点拨〗邻数相加有进位。
例4、=3 1 2 5 1练一练:1、计算下列各式:(1)24×11 (2)72×11(3)231×11(4)271×11 (5)43×11(6)2614×11(7)3625×112、粮库有一批大米,一辆载重4800千克的汽车运了22趟后,粮库还有5000千克大米。
小学数学简便计算的几种方法
请归纳小学数学简便计算得几种方法1、利用运算定律、性质、法则。
①加法加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c),②减法性质a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a。
③乘法乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:(a+b)×c=a×c+b×c,(a-b)×c=a×c-b×c,④除法性质a÷(b×c)=a÷b÷c,a÷(b÷c)=a÷b×c,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c、⑤与、差、积、商不变得规律与不变:如果a+b=c,那么(a+d)+(b-d)=c,差不变:如果a-b=c,那么(a+d)-(b+d)=c,积不变:如果a×b=c,那么(a×d)×(b÷d)=c,商不变:如果a÷b=c,那么(a×d)÷(b×d)=c,(a÷d)÷(b÷d)=c、2、拆数法、凑整法。
3、利用基准数法。
4、等差数列求与。
例1:87+44+56=?分析:运用加法结合律,先将44与56凑整,再计算。
解:87+44+56=87+(44+56)=87+100=187例2:63+18+19=?分析:将63拆分为60+1+2,然后再用结合律将18与2,19与1凑整。
解:63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100例3:45-18+19=?分析:在只有加减法得同级运算中,运算顺序可改动,先+19,再-18,也可以理解为“带符号搬家”。
整数乘除法速算巧算教师版
本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。
整数乘除法运算法则
整数乘除法运算法则是什么先乘除,后加减,有括号的先算括号里的积/一个因数=另一个因数被除数/除数=商被除数/商=除数除数*商=被除数整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减;2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。
)3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变;2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
)5、小数乘法法则:1)按整数乘法的法则算出积;2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;2)然后按照除数是整数的小数除法来除10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子;2)用被除数的分母与除数的分子相乘作为分母。
整数乘除法运算技巧(二)
1.乘法交换律:两个数相乘,交换因数的位置,积不变。
一般地有a×b=b×a2.乘法结合律:三个数相乘,可以先把前两个数结合起来先乘,也可以先把后两个数结合起来先乘,积不变。
一般地有(a×b)×c=a×(b×c)3.乘法分配律:两个加数的和与一个数相乘,可以用每一个加数分别与这个数相乘,再把所得的积相加。
一般地有(a+b)×c=a×c+b×c要点诠释:1.除法运算性质,即a÷(b÷c)=a÷b×c,a÷(b×c)=a÷b÷c。
2.首同末合十:十位数字相同,个位数字相加得10的两位数相乘,先用十位数乘以比十位数字大1的数,并放在百位,再加上个位相乘的积。
3.末同首合十:个位上的数字相同,而十位上的数字之和为10的两个两位数相乘,只要把十位数字相乘,再加上个位上的数字放在百位上,再加上两个数的各位数字之和。
4.一个数乘以5可以利用乘以10再除以2(“添0拆半”法);一个数乘以9可以利用乘以10再减它本身。
一个数乘以11可以利用乘法分配律乘以10再加本身,或两头拉开中间相加。
例1.简便计算(1)8500÷25÷4 (2)560÷(56÷6)(3)75000÷8÷125 (4)360÷(36÷5)例2.简便计算(1)353×5 (2)145×5(3)235×5 (4)324×5例3.简便计算(1)235×9 (2)423×9(3)324×9 (4)152×9例4.简便计算(1)27×11 (2)45×11例5.简便计算(1)93×97 (2)47×43(3)84×86 (4)72×78例6.简便计算(1)74×34 (2)82×221.请你先想一想,怎样计算简便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 巧算乘除第1讲 与一数乘除【探究1】一个数与5相乘一个数与5相乘,只要把这个数折半,再将小数点向右移一位,就行了。
即:A ×5=2A ×10 例1、184×5 〖思路点拨〗=184÷2×10 184折半得92,小数点向右推一位补0.=920例2、343×5 〖思路点拨〗=343÷2×10 343÷2=171.5,小数点向右推一位,得1715.=1715练一练:(1)84×5 (2)38×5 (3)387×5 (4)442×5(5)1246×5 (6)37.66×5 (7)0.68×5 (8)341×5【探究2】一个数与9相乘一个数乘以9,我们可以采用“以减代乘法”,只要在这个数末位添个0,再将原数减去,即可。
即:A ×9=A ×10-A例1、87×9=870-87=783例2、7.23×9=72.3-7.23=65.07练一练:(1)12×9 (2)17×9 (3)23×9(4)45×9 (5)218×9 (6)385×9(7)204×9 (8)6.7×9 (9)8.34×9【探究3】一个数与11相乘一个数与11相乘,一般是首尾两个数字不变,中间的数字是各相邻两位数字依次相加得到的。
简单地说,就是“首尾数字无变化,邻数相加放中间”。
例1、 +=3 7 43 4 × 11例2、 =2 5 4 1+2 3 1× 11+如果相邻的数字相加满十,就要进位。
因此,有时积的“头”也可能比被乘数的“头”大,但“尾”是不会变的。
即“邻数相加有进位,头大1,尾不变”。
例3、=3 8 +3 5 7 × 11+1 2 7=3 9 2 7〖思路点拨〗邻数相加有进位。
例4、=2 + 1 02 8 4 1× 11+1 2 5 1=3 1 2 5 1练一练:1、计算下列各式:(1)24×11 (2)72×11(3)231×11(4)271×11 (5)43×11(6)2614×11(7)3625×112、粮库有一批大米,一辆载重4800千克的汽车运了22趟后,粮库还有5000千克大米。
粮库共有大米多少千克?3、一个长方形操场,长55米,宽33米,其面积是多少平方米?【探究4】一个数与15相乘我们先来研究一下“一个数乘以1.5”的算法。
例1、86×1.5=86×(1+0.5)=86×1+86×0.5=86+43=129可见,一个数乘以1.5,只要用这个数加上它本身的一半,就行了。
因此,又叫“加半定积法”。
上例可直接写为:86×1.5=86+286=129,写成公式为:A ×1.5=A +2A . 由此,我们得出:一个数乘以15、150、1500…或乘以0.15、0.015、0.0015、…同样都可以按这个方法计算,只是需要移动小数点的位数。
例2、78×15=78×(1.5×10)=78×1.5×10=(78+278)×10 =1170用这种方法应用到平方米换算成亩,也很方便。
例3、3600平方米合多少亩?(1平方米=0.0015亩)3600×0.0015=3600×1.5×0.001=(3600+1800)×0.001=5400×0.001=5.4(亩)将这种方法推广延伸,还可简化一些运算。
练一练:1、计算下列各式:(1)24×1.5 (2)36×1.5 (3)126×1.5 (4)16×15 (5)12×15 (6)270×15 (7)406×152、花生的出油率是38%。
现有1500千克花生仁,可榨油多少千克?3、一块长方形稻田,长44米,宽15米。
它的面积是多少平方米?合多少亩?【探究5】一个数与25相乘一个数与25相乘,只要将这个数除以4,再把小数点向右推两位,即可。
即:A×25=A×(100÷4)=A÷4×100例1、84×25=84÷4×100=2100练一练:1、计算下列各式:(1)24×25 (2)36×25 (3)128×25(4)8.8×25 (5)0.96×25 (6)2.16×25 2、一盏25瓦的电灯,每天用4时,一年(365天)用电多少千瓦时?【探究6】一个数与37相乘37是个很有趣的数。
你瞧:37×3=111 37×6=222 37×9=333 37×12=444 37×15=55537×18=666 37×21=777 37×24=888 37×27=999由此,我们便可以推导出一些速算方法来。
例1、37×7=37×(6+1)=37×6+37×1=222+37=259例2、37×14=37×(15-1)=37×15-37×1=555-37=518例3、54×37=37×(27×2)=999×2=1998练一练:1、计算下列各式:(1)37×8 (2)37×5 (3)37×42(5)37×26 (6)36×37 (7)81×372、计算下列各式:(1)3.7×45 (2)37×1.8 (3)3.7×9.6 (4)3.7×210 (5)370×15 (6)480×37【探究7】一个数与67相乘因为67×3=201,而201与一个数相乘计算时非常容易。
所以,67与一个数相乘时,如果这个数是3的倍数,就将这个数分解成3乘以某个数后,再与67相乘。
例1、67×36=67×3×12=201×3×4=603×4=2412练一练:(1)67×12 (2)67×15 (3)67×21我们已经学习了一个数乘11的速算方法,现在来研究乘111的速算方法。
先从一个具体的题目入手:26×111=26×(100+10+1)=26×100+26×10+26×1=2886将上述过程列成竖式,则是2 6× 1 1 12 62 62 62 8 8 6可见,首尾两个数字仍未变,中间的两个数字是2与6的和。
如果邻位相加有进位,仍按以前的方法处理。
但这时首数、中间数都会发生变化。
练一练:1、计算下列各式(1)27×111 (2)12×111(3)21×111 (4)32×1112、一种矿石用自卸载重汽车,一次可装卸货物22.2吨。
用这种车22辆,一次可装卸货物多少吨?一个数与125相乘,只要将这个数除以8,再将小数点向右推三位,即可。
即:A×125=A×(1000÷8)=A÷8×1000=A×1000÷8例1、96×125=96÷8×1000=12000例2、4.8×125=4.8×1000÷8=600练一练:1、计算下列各式(1)88×125 (2)56×125 (3)4088×0.125(4)8.04×1250 (5)320×12.52、用某种浓度的农药稀释210倍来防治棉铃虫。
现有此农药1250克,需加水多少才能使用?【探究10】一个数除以5一个数除以5,只要把这个数乘以2,再把小数点向左移一位,即可。
例1、120÷5=120×2÷10=24例2、23÷0.5=23÷(5÷10)=23÷5×10=46练一练:(1)130÷5 (2)240÷5 (3)18÷5(4)122÷50 (5)41.5÷5 (6)27.5÷5(7)27÷0.5 (8)42÷0.05 (9)1.3÷5【探究11】一个数除以25一个数除以25,只要把这个数乘以4,再把小数点向左移两位,即可。
例1、2300÷25=2300×4÷100=92例2、32÷250=32÷(25×10)=32×4÷100÷10=0.128练一练:(1)2100÷25 (2)160÷25 (3)8÷0.25 (4)132÷25一个数除以125,只要把这个数乘以8,再把小数点向左移三位,即可。
例1、2130÷125=2130×8÷1000=17040÷1000=17.04例2、23÷0.125=23000÷125=23×8=184练一练:(1)8÷125 (2)11÷125 (3)100÷125 (4)75÷12.5 (5)54÷1.25 (6)7÷0.125 【探究13】一个数除以3因为:1÷3=0.333……=0.∙3 2÷3=0.666 0∙6所以,若余数是1的,小数部分必为0.∙3;若余数是2的,小数部分必为0.∙6.例1、(1)28÷3=9.∙3(2)35÷3=11.∙6若一个数除以3的倍数,则可通过推导得出结果。
练一练:(1)7÷3 (2)14÷3 (3)25÷3我们先看下列算式:1÷9=0.11……=0.∙1=0.∙1×12÷9=0.22……=0.∙2=0.∙1×23÷9=0.33……=0.∙3=0.∙1×34÷9=0.44……=0.∙4=0.∙1×4……8÷9=0.88……=0.∙8=0.∙1×8由此可见,若被除数为A ,余数为m ,商的整数部分为n ,则:A ÷9=n +10m +100m +1000m +…… 或者,A ÷9=n ……m ,余数m 只可取1~8.故A ÷9=n.∙m这就是说,若某数不能被9整除,则它的小数部分的数字和余数相同。