【名校课堂】2017北师大版九年级数学上册(练习)3.单元测试(三) 概率的进一步认识
北师大版九年级上册数学《概率的进一步认识》单元测试卷(有答案)
北师大版九年级上册数学《第3章概率的进一步认识》单元测试卷一.选择题(共10小题)1.转动如图的转盘两次,两次所指数字之积为奇数,则A胜,偶数则B胜,则A胜的概率为()A.B.C.D.2.有下列说法:①同一个人在相同的条件下做同一个实验,第一天做了1000次,第二天做了1000次,对这一实验中的同一事件来说,这两天出现的频率相等;②投掷骰子,偶数朝上的概率是;③如果一个袋里装有2个红球,1个白球,从中任取1个,因为取出的球不是红球,就是白球,所以取出红球的概率是.其中正确的有()A.0个B.1个C.2个D.3个3.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是()A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%4.下列说法不正确的()A.抛掷一枚硬币,正面向上或者反面向上是无法预测的B.抛掷一枚硬币,正面向上和反面向上的机会一样C.抛掷一枚硬币,六次中必有3次正面向上D.抛掷一枚硬币,随着试验次数的大量增加,正面向上的频率逐渐趋于稳定5.下列说法不正确的是()A.增加几次试验,事件发生的频率与这一事件发生的概率的差距可能扩大B.增加几次试验,事件发生的频率与这一事件发生的概率的差距可能缩小C.试验次数很大时,事件发生的频率稳定在这一事件发生的概率附近D.试验次数增大时,事件发生的频率越来越接近这一事件发生的概率6.如图,随机闭合开关S1、S2、S3、S4中的两个,则灯泡发光的概率是()A.B.C.D.17.两道单选题都含有A、B、C、D四个选项,瞎猜这两道题,至少猜对一道题的概率是()A.B.C.D.8.抛掷两枚普通的骰子,则出现数字之积为奇数的机会是()A.B.C.D.不能确定9.掷两枚普通正六面体骰子,所得点数之和为10的概率为()A.B.C.D.10.在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其他都相同.贝贝同学摸出一个球后放回口袋摇匀再摸一个;莹莹同学一次摸2个球,设贝贝摸到1红1黄的概率记为P1,贝贝摸到2红的概率记为P2,莹莹摸到1红1黄的概率记为P3,莹莹摸到2红的概率记为P4,正确的是()A.P1=P3B.P1>P3C.P2=P4D.P2>P4二.填空题(共10小题)11.有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E,则从每组卡片中各抽取一张,两张都是B的概率是.12.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于20的概率为.13.随机掷三枚硬币,出现三个正面朝上的概率是.14.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中;搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知,摸到一红一白两球的概率是.15.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中黄球可能有个.16.某口袋中有红色、黄色、蓝色玻璃球共160个,小颖通过多次摸球实验后,发现摸到红球、黄球、蓝球的频率依次是0.35、0.25、0.4,试估计口袋中三种玻璃球的数目分别是、、.17.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为、和,试估计黄、蓝、红三种球的个数分别是.18.利用计算器产生1~6个随机数,连续两次随机相同的概率是.19.一个盒子中装有白色的乒乓球、为估计这袋里有多少个乒乓球,小李将形状,大小都相同的红色乒乓球100个混入其中,摇匀后任意取出100粒,发现红色乒乓球有4个,则可估计出白色乒乓球有个数为个.20.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(0,﹣1),则他第三次掷得的点也在这条直线上的概率为.三.解答题(共7小题)21.一个口袋中有除颜色外其余均相同的12个白球和若干个黑球,在不允许将球倒出来数的情况下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,求口袋中黑球的个数.22.某工厂生产的一批零件,出现次品的概率为5%,若生产这种零件10000个,大约出现次品多少个?23.经过某路口的行人,可能直行,也可能左拐或右拐.假设三种可能性相同.现有两个人经过该路口,请用画树状图列出所有可能出现的结果,并求下列事件的概率:(1)两人都左拐;(2)恰有一人直行,另一人左拐;(3)至少有一人直行.24.小颖有两件上衣,分别是红色和白色,有三条裤子,分别是一条黑色和两条白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?请用列表的方法列出所有可能出现的结果.25.某小鱼塘放养鱼苗500尾,成活率为80%,成熟后,平均质量1.5斤以上的鱼为优质鱼,若在一天中随机捞出一条鱼,称出其质量,再放回去,不断重复上面的实验,共捞了50次,有32条鱼的平均质量在1.5斤以上,若优质鱼的利润为2元/斤,则这个小鱼塘在优质鱼上可获利多少元?26.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是多少?27.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?参考答案与试题解析一.选择题(共10小题)1.解:列表得:123456 11×1=12×1=23×1=34×1=45×1=56×1=621×2=22×2=43×2=64×2=85×2=106×2=1231×3=32×3=63×3=94×3=125×3=156×3=1841×4=42×4=83×4=124×4=165×4=206×4=2451×5=52×5=103×5=154×5=205×5=256×5=3061×6=62×6=123×6=184×6=245×6=306×6=36∵共有36种等可能的结果,两次所指数字之积为奇数的有9种情况,∴A胜的概率为:=.故选:C.2.解:①同一个人在相同的条件下做同一个实验,第一天做了1000次,第二天做了1000次,对这一实验中的同一事件来说,这两天出现的频率相等;由于是模拟实验,事件发生的可能性不是唯一确定不变的,故此选项错误;②投掷骰子,偶数朝上的概率是,因为奇数与偶数个数相等,故此选项正确;③如果一个袋里装有2个红球,1个白球,从中任取1个,因为取出的球不是红球,就是白球,但是由于小球个数不同,所以取出红球的概率是.故此选项错误.故选:B.3.解:由题意知,抽取10台,出现1台是次品,只能说次品率接近10%,故选C.4.解:A、正确,是随机事件,故无法预测;B、正确,因为一枚硬币只有正反两面,故正面向上和反面向上的机会一样;C、错误,是随机事件,故无法预测;D、正确,因为随着试验次数的大量增加,正面向上的频率逐渐接近概率,故逐渐趋于稳定.故选:C.5.解:A、随着实验次数的增加,事件发生的频率与概率的差距越来越小,逐渐稳定在概率附近,故A选项说法错误,符合题意.故B,C,D中的说法正确.故选:A.6.解:画树状图得:∵共有12种等可能的结果,操作一次就能使灯泡⊗发光的有6种情况,∴操作一次就能使灯泡⊗发光的概率是:=.故选:B.7.解:画树状图得:∵共有16种等可能的结果,假设两个题的答案为:A,A,则至少猜对一道题的有7种情况,∴至少猜对一道题的概率是:.8.解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种情况,数字之积为奇数的有9种情况,所以概率为,故选A.9.解:所得点数之和的所有可能如下表所示:123456123456723456783456789456789105678910116789101112由表可知,共有36种等可能结果,其中所得点数之和为10的有3种结果,∴所得点数之和为10的概率为=.故选:C.10.解:贝贝同学摸出的球的所有情况如下:由树状图知,共有9种等可能结果,其中摸到1个红球1个黄球有4种结果、摸到2个红球有4种结果,所以摸到1个红球1个黄球的概率P1=,摸到2个红球的概率P2=;莹莹同学摸出的球的所有情况如下:由以上树状图知共有6种等可能的结果,其中摸到1个红球1个黄球的有4种结果、两次都摸到红球的有2种情况,∴所以摸到1个红球1个黄球的概率P3=,摸到2个红球的概率P4=,∴P(贝贝摸到2红)>P莹莹摸到2红,∴P3>P1=P2>P4,故选:D.二.填空题(共10小题)11.解:列表如下:A B B D EA(A,A)(B,A)(B,A)(D,A)(E,A)B(A,B)(B,B)(B,B)(D,B)(E,B)B(A,B)(B,B)(B,B)(D,B)(E,B)所有等可能的情况有15种,其中从每组卡片中各抽取一张,两张都是B的情况有4种,则P=.故答案为:.12.解:画树状图得:∵共有12种等可能的结果,所得的两位数大于20的有9种情况,∴所得的两位数大于20的概率为=,故答案为:.13.解:画树状图得:∵共有8种等可能的结果,三枚硬币的投掷结果都是正面朝上的只有1种情况,∴3次抛掷的结果都是正面朝上的概率是,故答案为:.14.解:(1)补图如下:(2)可得所有等可能的情况有9种,其中一红一白两球的情况有4种,则P(一红一白)=.故答案为:.15.解:设袋子中黄球有x个,根据题意,得:=0.3,解得:x=15,即布袋中黄球可能有15个,故答案为:15.16.解:∵多次摸球实验后,摸到红球、黄球、蓝球的频率依次是0.35、0.25、0.4,∴红球的概率为0.35,黄球的概率为0.25,蓝球的概率为0.4,∴口袋中红色玻璃球有0.35×160=56(个),黄色玻璃球有0.25×160=40(个),蓝色玻璃球有0.40×160=64(个).故答案为:56,40,64.17.解:∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为、和,∴黄、蓝、红三种球的个数分别是:80×=20(个),80×=28(个),80×=32(个).故答案为:20、28、32.18.解:∵第一个数随机产生,第二个数与第一个数相同的情况有一种,而第二个数可能出现的情况有6种∴连续两次随机相同的概率是.故答案为:.19.解:设白球个数有x个则由题意知解得x=2400.故估计白色乒乓球有个数为2400个.20.解:每掷一次可能得到6个点的坐标分别是(其中有两个点是重合的):(1,1),(1,1),(2,3),(3,2),(3,5),(5,3),通过描点和计算可以发现,经过(1,1),(2,3),(3,5),三点中的任意两点所确定的直线都经过点P(0,﹣1),所以小华第三次掷得的点也在直线l上的概率是故答案为:.三.解答题(共7小题)21.解:∵(0.4+0.1+0.2+0.1+0.2)÷5=0.2,∴口袋中球的总数为:12÷0.2=60,∴口袋中共有黑球:60﹣12=48个.故口袋中黑球一共48个.22.解:∵出现次品的概率为5%,生产这种零件10000个,∴大约出现次品:10000×5%=500(个),答:大约出现次品500个.23.解:(1)根据题意画树状图如下:共有9种等可能的结果数,其中“两人都左拐”的结果数为1,则两人都左拐”的概率是;(2)恰好有一人直行,另一人左拐的结果数为2,所以恰好有一人直行,另一人左拐的概率是;(3)至少有一人直行的结果数为5,所以“至少有一人直行”的概率为.24.解:根据题意列表如下:黑白白红黑红白红白红白黑白白白白白∵共有6种等可能的结果,恰好是白色上衣和白色裤子的有2种情况,∴恰好是白色上衣和白色裤子的概率是=.25.解:∵共捞了50次,有32条鱼的平均重量在1.5斤以上,∴池塘中有1.5斤以上鱼的概率为:=,故×500×80%×2×1.5=768(元),答:优质鱼上至少可获利768元.26.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.27.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数是:5×0.6=3(只);(3)根据题意画树状图如下:共有20种等可能的结果数,其中两只球颜色相同占8种,所以两只球颜色相同的概率==.。
北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)
北师大版九年级数学上册第三章概率的进一步认识单元测试题
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( )
随机摸出另一个小球,其数字记为 q,则满足关于 x 的方程 x2+px+q=0 有实数根的概率是(
)
1
1
1
2
A.4
B.3
C.2
D.3
二、填空题(每小题 3 分,共 24 分)
11.有两辆车按 1,2 编号,舟舟和嘉嘉两人可任意选坐一辆车 . 则两人同坐 2 号车的概率为
12.一个盒子内装有大小、形状相同的四个球,其中红球 1 个,绿球 1 个,白球 2 个,小明摸出一个球不放回, 再摸出一个球,则两次都摸到白球的概率是______.
1
1
2
3
A.3
B.2
C.3
D.4
8.从长度分别为 1、3、5、7 的四条线段中任选三条作边,能构成三角形的概率为( C )
1
1
1
1
A.2
B.3
C.4
D.5
9.掷两枚普通正六面体骰子,所得点数之和为 11 的概率为( A )
1
1
1
1
A.18
B.36
C.12
D.15
10.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4.随机摸出一个小球(不放回),其数字为 p, 随机摸出另一个小球,其数字记为 q,则满足关于 x 的方程 x2+px+q=0 有实数根的概率是( D )
北师大版九年级数学上册第三章概率练习题(含答案)
概率练习题1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )A.10B.15C.5D.2 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n 的值是( ) A .4 B .6 C .8D .103.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( )A 、400只B 、600只C 、800只D 、1000只4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A.13B.14C.15D.185.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( )A.12B.13C.14D.186.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值; ④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率. A .1 B .2 C .3 D .4257.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.358.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( ) A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢9.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.10.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,经历多次试验后,记录抽到红桃的频率为20%,则红桃大约有张.11.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只。
【名校课堂】2017北师大版九年级数学上册(练习)3.1第1课时 画树状图法和列表法
第三章 概率的进一步认识 3.1 用树状图或表格求概率 第1课时 画树状图法和列表法基础题知识点 用画树状图法或列表法求概率1.(大连中考)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率为( ) A.16B.13C.12D.562.5月19日为中国旅游日,宁波推出“读万卷书,行万里路,游宁波景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从奉化溪口、象山影视城、宁海浙东大峡谷中随机选择一个地点;下午从宁波动物园、伍山石窟、东钱湖风景区中随机选择一个地点游玩,则王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地点的概率是( ) A.19B.13C.23D.293.(德州中考)经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( ) A.47B.49C.29D.194.某次活动课上,要在某个小组中随机挑选2名同学上台表演,已知这个小组共有2名男同学,2名女同学,那么恰好挑选1名男同学和1名女同学的概率是( ) A.23B.13C.12D.345.(黄石中考)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是( ) A.23B.56C.16D.126.(黔南中考)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A .两正面都朝上 B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大7.(嘉兴中考)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为________. 8.某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程是①每位考生从写有A ,B ,C 的三个小球中随机抽取一个小球确定考试组别;②再从写有“引体向上”“立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是________.9.(河南中考)现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是________. 10.(咸宁中考)小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.11.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a ,b ,c ,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表格)的方法,求小玲两次抽出的卡片上的字母相同的概率.中档题12.(荆门中考)如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A.12B.13C.14D.1613.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x ,然后从余下的两张中再抽出一张,记为y ,则点(x ,y)在直线y =-12x -1上方的概率为( )A.12B.13C.23D .114.(泰安中考)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.3515.一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字-1、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).综合题16.(连云港中考)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌点数为“2”,“3”,“3”,“5”,“6”的5张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x ,按下表要求确定奖项,奖项 一等奖 二等奖 三等奖 |x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获一等奖的概率;(2)是否每次抽奖都会获奖,为什么?参考答案基础题1.A2.A3.C4.A5.A6.C7.148.199.58 10.1911.画树状图为:共有9种等可能的结果,其中两次抽出的卡片上的字母相同的结果有3种,所以小玲两次抽出的卡片上的字母相同的概率为39=13.中档题12.A 13.A 14.C 15.列表格如下:第二次第一次-1 0 1 -1 (-1,-1) (-1,0) (-1,1) 0 (0,-1) (0,0) (0,1) 1(1,-1)(1,0)(1,1)所有可能的结果共有9种,其中满足条件的结果有5种,∴P(所得的两数的绝对值相等)=59.综合题16.(1)画树状图如图所示:可以看出,一共有20种等可能情况,其中获一等奖的情况有2种,∴P(甲获一等奖)=220=110.(2)不一定,当两张牌都抽取3时,||x =0,不会获奖.。
(北师大版)北京市九年级数学上册第三单元《概率的进一步认识》测试(答案解析)
一、选择题1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.12.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2 B.3 C.4 D.123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.125.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.186.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定7.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A.16B.13C.12D.239.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率()A.12B.13C.14D.1611.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1512.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有()A.6个B.10个C.15个D.30个二、填空题13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a,放回后从卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=2x-1的概率为___________.14.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上,从A、D、E、F中任取两点,以所取这两点和点B、C作四边形,则所作四边形是平行四边形的概率为____.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.16.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.17.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.18.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________19.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20-+=有解的概率是__________。
新北师大版九年级数学上册单元测试卷附答案第三章概率的进一步认识
第三章概率的进一步认识一、选择题(共15小题;共45分)1. 关于频率和概率的关系,下列说法正确的是A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等2. 小明将分别标有“爱”“我”“中”“华”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是A. B. C. D.3. 在一个口袋中有个完全相同的小球,把它们分别标号为,,,,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是4. 布袋里装有个白球和个黑球,从中任意取出个球,设事件“取到的个球都是白球”和事件“取到的个球都是黑球”发生的概率分别为,,则A. B.C. D. 以上都有可能5. 在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是A. B. C. D.6. 甲从标有,,,的张卡片中任抽张,然后放回.乙再在张卡片中任抽张,两人抽到的标号的和是的倍数的(包括)概率是A. B. C. D.7. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是时,计算机记录“钉尖向上”的次数是,所以“钉尖向上”的概率是;②随着试验次数的增加,“钉尖向上”的频率总在附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是;③若再次用计算机模拟此试验,则当投掷次数为时,“钉尖向上”的频率一定是.其中合理的是A. ①B. ②C. ①②D. ①③8. 某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是A. B. C. D.9. 同时投掷颗均匀的骰子,朝上一面点数的和是偶数的概率是A. D.10. 某号码锁有个拨盘,每个拨盘上有从到共个数字.当个拨盘上的数字组成某一个两位数字号码(即开锁号码)时,锁才能打开.如果不知道开锁号码,问试开一次就能把锁打开的概率是A. B.C. D. 以上结论都不对11. 气象台预报“本市明天降水概率是”,对此消息,下面几种说法正确的是A. 本市明天将有的地区降水B. 明天降水的可能性比较大C. 本市明天降有的时间降水D. 明天肯定下雨12. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是13. 有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是A. B. C. D.14. 一个质地均匀的正方体骰子任意掷两次,下列说法正确的是A. 得到的数字和必然是偶数B. 得到的数字和可能是奇数C. 得到的数字和不可能是D. 得到的数字和可能是15. 四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为D.二、填空题(共8小题;共40分)16. 在一个不透明的口袋中,装有A,B,C,D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 一个不透明的口袋中只有若干个白球,小颖往袋中放入个黑球,它们与袋中白球只有颜色不同,每次从袋中摸出一球后放回摇匀.经过多次摸球试验,她发现摸到黑球的频率稳定在,则此口袋中原有白球个.18. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是个.19. 某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中环以上”的概率是(结果保留小数点后一位).20. 袋中共有个大小相同的红球、白球,任意摸出一球是红球的概率为出个球均为红球的概率是.21. 现有四张正面分别标有数字,,,的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为,,则点在第二象限的概率为.22. 掷两枚骰子,出现点数之和为的概率是.23. 将,,,四个号码牌放入一个布袋中,搅匀后随即摸出两张,将它们的号码相乘,结果不为的概率是.三、解答题(共5小题;共65分)24. 为了调节紧张的学习生活,小刚和小荣两位同学根据所学知识制作了如图两个可以自由转动的转盘A,B进行游戏娱乐,转盘是由红色和蓝色区域构成的,其中A转盘的蓝色区域占整个转盘的,B转盘的蓝色区域占整个转盘的.小刚同学转动A转盘,小荣同学转动B转盘.(1)两人分别转动各自的转盘,谁转到红色区域的概率大?(2)经过几次转动后,小林同学发现游戏规则不公平,因此建议新的游戏规则如下:A转盘与B转盘均由小林同学转动,如果两个转盘均转到了红色区域,则小刚同学获胜;否则,小荣同学获胜,请你帮助小林同学用概率的知识验证修改后的游戏规则是否公平?并说明理由.25. 在一个不透明的盒子里,装有个黑球和若干个白球,它们除颜色外其它都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复这一过程,共摸球次,其中次摸到黑球,则估计盒子中大约有白球多少个?26. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“”的扇形圆心角为.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.27. 《阅读者》是一档由中央推出,旨在实现用文化感染人、鼓舞人、教育人的大型朗读类真人秀节目,一经播出,便掀起了全民阅读热潮,为培养广大青少年的阅读意识,蓝田某中学举办“阅读人生”朗读比赛,九(三)班通过内部初选,选出了小丽和小铭两位同学,但由于每个班级的参赛名额有限,现决定通过如图所示被等分的转盘游戏来决定由谁代表全班参赛.规则如下,小丽和小铭分别同时转动转盘甲、乙,转盘停止后,指针所指区域内数字之和小于,小丽获胜,指针所指区域内的数字之和等于,为平局,指针所指区域内的数字之和大于,小铭获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)求玩一轮上述游戏,小丽获胜的概率;(2)该游戏规则对小丽和小铭双方公平吗?为什么?28. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:(1)请直接写出,的值;(2)如果实验继续进行下去,根据如表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验次,那么“兵”字面朝上的次数大约是多少?答案第一部分1. B2. B 【解析】列表得:因为种可能的结果中,能组成“中华”有种可能,共种,所以两次摸出的球上的汉字能组成“中华”的概率.3. C4. B5. A【解析】设袋子中红球有个,根据题意,得:,解得,袋子中红球的个数最有可能是个.6. A7. B8. B9. C10. C【解析】个拨盘的数字正好是从一共个等可能的结果,只有其中个是开锁号码,因此概率为.11. B12. B13. A 【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有种等可能情况,其中两张图案一样的共有种情况,故任意翻开两张,其中两张图案一样的概率为.14. B15. B第二部分16.17.18.19.【解析】从频率的波动情况可以发现频率稳定在附近,这名运动员射击一次时“射中9环以上”的概率大约是.20.【解析】题意可得红球有个,白球有个.列出所有等可能情况,如下表.由表可知,任意摸出两个球共有种情况,其中摸到的个球均为红球的有种,所以任意摸出个球均为红球的概率为.21.22.【解析】将四个号码牌放入一个布袋中,搅匀后随机摸出两张,可能的情况有,,,,,,共种.其中结果不为的只有一组,故结果不为的概率是第三部分24. (1)因为A转盘的蓝色区域占整个转盘的B转盘的蓝色区域占整个转盘的所以小刚同学转动A转盘转到红色区域的概率为B转盘转到红色区域的概率为;因为,所以小荣同学转到红色区域的概率大;(2)公平.理由如下:将A转盘红色区域部分等分为:红,红,B转盘红色区域等分为:红,红,红,画树状图如解图:共有种等可能的情况,其中两个转盘均转到红色区域的情况有种,所以,,所以小林同学修改后的游戏规则是公平的.25. 设盒子中大约有白球个,根据题意得:解得:经检验,是原方程的解,答:估计盒子中大约有白球个.26. (1)由题知:“”“”所占圆心角均为,,.(2)由()知,转出“”,“列表得:由表格可知:等可能出现的结果共种,其中积为正数的情况共种,.27. (1)画树状图如下:可见,共有种等可能的情况,其中和小于的有种;小丽获胜的概率为.(2)该游戏规则不公平.由()可知,共有种等可能的情况,其和大于的情况有种,小铭获胜的概率为,显然,故该游戏规则不公平.28. (1);【解析】;.(2)根据表中数据,试验频率为,,,,,,,稳定在左右,故估计概率的大小为.(3)朝上的概率接近于,所以抛掷次,朝上的次数为(次),所以“兵”字面朝上的次数大约是次.。
(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)
北师大版九年级数学上册第三章《概率》专题练习一.知识梳理(一)事件的分类:1. 频率二频数/总数,频率随着试验的不同而不同,它是一个不确定数。
2. 事件发生的——大小叫做概率。
事件的概率是一个确定的常数。
3. 事件的分类:确定事件和随机事件。
确定事件包括必然事件和不可能事件4. 必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0--1之间。
(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1) 一步试验或几何图形,利用概率的定义直接计算(2) 两步试验,且结果较少,用树状图和列表格求概率都可以;(3) 两步试验,但每步结果较多,适合用列表法求概率;(4) 三步或三步以上,适合用画树状图求概率。
(5) 用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。
二.简单概率计算一步试验:1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是________________2. 一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是________________ 3. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄球的概率是】,则放入口袋中的黄球总数是n= _____________________3两步试验:仔细区分:(1)放回;(2)不放回4. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为_________5. 某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是_______6. 某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是 ___________7. 袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 ________三步试验:8. 随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是____________三:概率与其他知识的综合9. 在x2口2xy 口y2的“口”中分别填上“ +”或“-”,在所得的代数式中,能构成完全平方式的概率是__________A.1B. 3C.丄D.丄4 2 410. 已知a,b可以取-2 , -1,1,2中的任意一个值(a z b),则直线y=ax+b的图像不经过第四象限的概率是____________11. 一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于X的方程x2px q 0有实数根的概率是 _ _12. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0 ,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M点横,纵坐标,则点M(a,b)落在以A (-2,0 ) , B (2,0 ) , C (0,2 )为顶点的三角形内(包括边界)的概率是_______________________________________ 标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是 _____________________ 14.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,贝惟组成分式的概率是—15. 有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是——16. 小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?17. 端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿13. 一个不透明的袋子中有3个分别标有3,1 , -2的球,这些球除了所粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷3爷和奶奶后,这时随机取出火腿粽子的概率为2 .(1)请你用所学知5识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体18. 一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球 __________ 个。
北师大版九年级数学上册 第三章 概率的进一步认识 单元测试题(有答案)
第三章概率的进一步认识单元测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2. 两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率3. 在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到红球的频率稳定在0.6左右,则袋中白球约有()A.5个B.10个C.15个D.25个4. 甲、乙两人做“锤子、剪刀、布”的游戏,游戏规则是:剪刀胜布,布胜锤子,锤子胜剪刀;若两人一样,则算打平.若游戏只进行一局,那么两人打平的概率是()A.19B.29C.13D.495. 甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,则甲获胜的概率是()A.1 3B.23C.56D.126. 一个不透明的盒子里有n个除颜色不同外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20B.24C.28D.307. 一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球.A.30B.15C.20D.128. 一个不透明的袋子中放有2个红球,2个白球(红球和白球的形状、材质完全相同),从中任意摸出2个球,恰好是一个红球、一个白球的概率是()A.1 4B.12C.13D.239. 某一部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第1,2,3册的概率为()A.1 3B.12C.16D.11210. 在做“抛掷两枚硬币实验”时,有部分同学没有硬币,因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较合适的是()A.两张扑克牌,一张是红桃,另一张是黑桃B.两个乒乓球,一个是黄色,另一个是白色C.两个相同的矿泉水瓶盖D.四张扑克牌,两张是红桃,另两张是黑桃二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在一个暗箱中,只装有a个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么暗箱中的乒乓球共有________个.12. 某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是________.13. 小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个都出“布”的概率是________.14. 一个不透明的口袋中只有若干个白球,小颖往袋中又放入8个黑球,它们与袋中白球只有颜色不同,每次从袋中摸出一球后放回摇匀.经过多次摸球实验,她发现摸到黑球的频率稳定在20%,则此口袋中原有白球________个.15. 在一个不透明的盒子里装有4个分别标有数字1、2、3、4的小球,它们除数字外其他均相同.充分摇匀后,先摸回1个球不放回,再摸出一个球.那么这两个球上数字之和为奇数的概率为________.16. 如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概,则转盘B中标有数字1的扇形的圆心角的度数是________∘.率是1917. 一个家庭有两个孩子,两个都是女孩的概率是________.18. 三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.19. 在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色小球的概率是________.20. 在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:(结果精确到0.1).三、解答题(本题共计6 小题,共计60分,)21. 四张扑克牌的点数分别是4、5、6、10,将它们洗匀后背面朝上放在桌面上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率是________.(2)从中先随机抽取一张牌(不放回),接着再抽取一张牌,求这两张牌的点数都是偶数的概率.22. 若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)请用列表法或树状图写出所有的等可能性结果,写出所有个位数字是6的“两位递增数”;(2)求抽取的“两位递增数”的个位数字与十位数字之积能被5整除的概率.23. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1,2,3,4四个数字.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.24. 如图,是一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列表或树状图的方法表示此游戏所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于4的概率.25. 九年一班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,小强拿出一个箱子说:“这个不透明的箱子里装有红、白球各1个和若干个黄球,它们除了颜色外其余都相同,谁能同时摸出两个黄球谁就获得一等奖”.已知任意摸出一个球是黄球的.概率为12(1)请直接写出箱子里有黄球________个;(2)请用列表或树状图求获得一等奖的概率.26. 一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】D9.【答案】A10.【答案】D二、填空题(本题共计10 小题,每题 3 分,共计30分)11.2512.1413.12714.3215.2316.8017.1418.1319.1320.0.7三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】34(2)画树状图为:共有12种等可能的结果数,其中这两张牌的点数都是偶数的结果数为6,所以这两张牌的点数都是偶数的概率=612=12.22.【答案】根据题意画树状为:所有个位数字是6的“两位递增数”是16,26,36,46,56这5个;共有15种等可能的结果数,其中个位数字与十位数字之积能被5整除的结果数为5,所以个位数字与十位字之积能被5整除的概率=515=13.23.【答案】解:列表得:∵ 共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∵ 两次摸出的小球上所标数字之和为5的概率=412=13.24.【答案】解:(1)画树状图为:共有9种等可能的结果数;(2)两张牌的牌面数字之和不小于4的结果数为6,所以两张牌的牌面数字之和不小于4的概率=69=23.25.【答案】共有12种等可能的结果数,其中同时摸出两个黄球的结果数为2,所以获得一等奖的概率=212=16.26.【答案】2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10种,所以两次摸出的球颜色不同的概率=1012=56.。
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是.用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14.三、415.【综合练习】(1)7;(2)14 ;(3)12.【探究练习】14.第2课时 概率与游戏的综合应用1.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负. (1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对小明、小芳公平吗?试说明理由.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么?红 蓝 红 黄 转盘A 红蓝 黄 转盘B答案:1.解:用列表法将所有可能出现的结果表示如下:转盘B转盘A红蓝黄红(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,蓝)(蓝,黄)红(红,红)(红,蓝)(红,黄)黄(黄,红)(黄,蓝)(黄,黄)所以,所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是31124=,即小芳获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是21126=,即小明获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的.2.解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为516P=甲.(2)这个游戏对双方不公平,因为甲获胜的概率516P=甲,乙获胜的概率1116P=乙,1116165≠,所以,游戏对双方是不公平的.3.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平?4. 甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘. (1)试用列表或画树形图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.5. 甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
北师大版九年级数学上册第三章概率的进一步认识测试卷(全章)
北师大版九年级数学测试卷(考试题)第三章概率的进一步认识周周测6一、选择题1. 下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下实验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③2、袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是()A.13B.12C.14D.343、小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利4、从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()A.19B.18C.29D.135、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7、从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是()A.33100B.34100C.310D.不确定8、随机从三男一女四名学生的学号中抽取两人的学号,被抽中的两人性别不同的概率为()A.14B.13C.12D.34二. 填空题9、 用下面的两个圆盘进行“配紫色”游戏,则配得紫色的概率为___________.10、甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗? .11、从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1).12、现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .13、在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为13,则___________.14、为了估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,分别作上记号后放飞;待它们完全混合于天鹅群后,重新捕捉40只天鹅,发现其中有2只有标记,据此可估算出该地区大约有天鹅 只。
北师大版数学九年级上册第三章概率的进一步认识综合同步练习题(含答案)
北师大版数学九年级上册第三章概率的进一步认识综合同步练习题(含答案)概率的进一步看法综合同步练习题1、 在抛一枚质地平均的硬币的实验中,假设没有硬币,那么以下实验不能作为替代物的是〔 〕A 、一枚平均的骰子,B 、瓶盖,C 、两张相反的卡片,D 、两张扑克牌2、如右图,在这三张扑克牌中恣意抽取一张,抽到〝红桃7” 的概率是 .3、密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁翻开的概率是______.假定此人忘了中间两位号码,随意拔动中间两位号码正好能把锁翻开的概率是______.4、某商场在〝五一〞时期推出购物摸奖活动,摸奖箱内有除颜色以外完全相反的白色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,假设两个球的颜色相反就得奖,颜色不同那么不得奖.那么顾客摸奖一次,得奖的概率是 .5、从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是 .6、如下图的两个圆盘中,指针落在每一个数上的时机均等,那么两个指针同时落在偶数上的概率是……( )A .1925 ;B .1025 ;C .625 ;D .5257、为了估量湖里有多少条鱼,我们从湖里捕上100条做上标志,然后放回湖里,经过一段时间待带标志的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标志的鱼25条,经过这种调查方式,我们可以估量出这个湖里有______条鱼.8、在一个密闭不透明的盒子里有假定干个白球,在不允许将球倒出来的状况下,为了估量白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不时重复,共摸球400次,其中88次摸到黑球,估量盒中大约有白球〔 〕A 、28个B 、30个C 、36个D 、42个9、有一个抛两枚硬币的游戏,规那么是:假定出现两个正面,那么甲赢;假定出现一正一反,那么乙赢;假定出现两个反面,那么甲、乙都不赢。
北师大版数学九年级上册第三章概率的进一步认识单元测试卷【含答案】
北师大版数学九年级上册第三章概率的进一步认识单元测试卷一、选择题(每小题3分,共30分)1. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A.B. C.D.613121322. 下列说法正确的是()A .在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖1001B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是1313. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )32A.2B.4C.12D.164. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域, 则这两个数的和是2的倍数或是3的倍数的概率等于( )A. B.16383 C.D.8516135. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其试验次数分别为10次,50次,100次,200次,其中试验相对科学的是( )A .甲组B .乙组C .丙组D .丁组6. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A.B.C. D.1019131217. 在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400 次,其中88次摸到黑球,估计盒中大约有白球( ) A. 28个 B. 30个 C. 36个 D. 42个8. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:奖金(元)1 00050010050102数量(个)1040150400 1 00010 000如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是( )A.B.C.D.200015001500320019. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄 球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( ) A.5个B.10个C.15个D.30个10. 一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把 杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是( ) A.B.C.D.312161121二、填空题(每小题3分,共18分)11. 某长途汽车站的显示屏,每隔五分钟显示某班次汽车的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示该班次信息的概率是 .12. 一个不透明的袋子中只装有2个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色能配成紫色的概率是 .13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651365222035007056131701758026430成活的频率nm 0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为__________.14. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相 同的概率是 .15. 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.16. 为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记 的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.三、解答题(4小题,共52分)17. (12分) 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当很大时,摸到白球的频率将会接近 (精确到0.01),假如你摸一n 次,你摸到白 球的概率为 ;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?3518. (11分)新年联欢会,班里组织同学们进行才艺展示如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1- 唱歌;2- 舞蹈;3- 朗诵;4- 演奏,每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.19. (14分) 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.(1)用列表(或树状图)法分别求出小明和小刚的得分;(2)这个游戏公平吗?请说明理由;如果不公平,如何修改规则才能使游戏双方公平?20.(15分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.答案一、1-5 BDBCD 6-10 ABCCC 二、11、 12、13、 0.881 14、15 、6132316516、 800三、解答题.17. (1)根据题意得:当很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸n 到白球的概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个;(2)设需要往盒子里再放入个白球;根据题意得:,解得:;x 534020=++x x 10=x 经检验,是原方程的解.10=x答:需要往盒子里再放入10个白球.18. 解:转动转盘两次所有可能出现的结果列表如下:(树状图同样得分)4(4,1)(4,2)(4,3)/由列表可知共有12种结果,每种结果出现的可能性相同.小明恰好展示“唱歌”和“演奏”才艺的结果有2 种:(1,4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是.1619. (1)根据题意列表如下:一共有9种结果,每种结果出现的可能性相同,能配成紫色的有2种结果,配不成的有7种结果, 所以小刚可能得2分,小明可能得7分.(2)这个游戏不公平,由(1)可知(小刚赢)=,(小明赢)=. ,所P 92P 979792 以游戏不公平.可修改游戏规则为:两个转盘都转出红色,小刚得1分,两个转盘都转出蓝色,小明得1分.20. (1)列树状图如下.第二次红白蓝红(红,红)(红,白)(红,蓝)黄(黄,红)(黄,白)(黄,蓝)蓝(蓝,红)(蓝,白)(蓝,蓝)第一次(2)P (“三次传球后,球回到甲脚下”)==.8241(3)P (“三次传球后,球回到甲脚下”)=,P (“三次传球后,球传到乙脚下”)=41,因此球传到 乙脚下的概率大. 83。
北师大版九年级数学上名校课堂章末复习(三)(含答案)
章末复习(三) 概率的进一步认识基础题 知识点1 用树状图或列表求概率1.(湖州中考)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A.49B.13C.16D.192.(海南中考)某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是( ) A.13B.49C.23D.293.(山西中考)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是________. 知识点2 用树状图或列表求概率的应用4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( ) A.13B.14C.15D.185.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚( )A .公平B .对小明有利C .对小刚有利D .不可预测6.(朝阳中考)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影. (1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不用说明理由)知识点3 用频率估计概率7.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是( ) A .10 B .14C .16D .408.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是15,则估计袋子中大概有球的个数是________个.中档题9.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( ) A .10个 B .15个 C .20个D .25个10.(漳州中考)如图,有以下3个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A .0 B.13C.23D .111.如图,“石头、剪刀、布”是民间广为流传的游戏.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,那么两人打平的概率P =________.12.(乐山中考)在一个不透明的口袋里有标号为1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球. (1)下列说法:①摸一次,摸出1号球和摸出5号球的概率相同; ②有放回的连续摸10次,则一定摸出2号球两次;③有放回的连续摸4次,则摸出四个球标号数字之和可能是20. 其中正确的序号是________.(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率. 综合题13.小明、小芳做一个“配色”的游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.参考答案基础题1.D 2.A 3.134.D5.A6.(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.(2)不公平. 7.A 8.25 中档题9.B 10.D 11.1312.(1)①③ (2)列表如下:所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=1220=35.综合题13.(1)用列表法将所有可能出现的结果表示如下:由表可知,所有可能出现的结果共有12种.(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是312,即小明获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是212,即小强获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)(3)
一、选择题1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A.16B.19C.118D.2152.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( )A.12B.56C.13D.233.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定4.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.15.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A.12B.35C.16D.3106.一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为()A.50 B.30 C.12 D.87.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )A.12B.13C.15D.168.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个9.四个外观完全相同的粽子有三种口味:两个豆沙、一个红枣、一个蛋黄,从中随机选一个是豆沙味的概率为()A.14B.13C.12D.110.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.38B.12C.58D.2311.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.812.小张和小王相约去参加“抗疫情党员志愿者进社区服务”活动现在有A、B、C三个社区可供随机选择,他们两人恰好进入同一社区的概率是()A.19B.13C.29D.23二、填空题13.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.14.同时掷两枚质地均匀的骰子;两枚骰子点数之和为10的概率为__________.15.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.16.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.17.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率mn0.650.620.5930.6040.6010.6200.6200.615估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)18.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920;③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是________(填序号)19.一个不透明的袋子中装有若干个红球和6个黄球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,通过大量反复实验发现,摸到黄球的频率约为0.3,由此推测从这个袋中摸到红球的概率约为_____________.20.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题21.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.(1)从中随机抽取一张,求抽到方程没有实数根的概率;(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.22.为了增强学生体质,开展体育娱乐教学,某校举行了“趣味运动会”,运动会的比赛项目有:“两人三足”、“春种秋收”、“有轨电车”、“摸石过河”(分别用字母A,B,C,D 依次表示这四个运动项目),将A,B,C,D这四个字母分别写在4张完全相同的不透明卡片的正面上,把这4张卡片背面朝上洗匀后放在桌面上.小明和小亮参加趣味比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上内容进行趣味运动比赛.(1)小明参加“有轨电车”的概率是;(2)请用列表法或画树状图法,求出小明和小亮参加同一项目的概率.23.有4张印有“青”、“山”、“绿”、“水”字样的卡片(卡片的开状、大小、质地都相同),放在一个不透明的盒子中,将卡片洗匀.(1)从盒子中任意取出一张卡片,恰好取出印有“青”字的卡片的概率为__________;(2)先从盒子中任意取出一张卡片,记录后放回并搅匀,再从其中任意取出一张卡片,求取出的两张卡片中,至少有1张印有“青”字的卡片的概率(请画树状图或列表等方法求解).24.自从我国全面实行二孩政策后,甲、乙两个家庭都有了各自的规划,假定生男生女的概率相同,请回答下列问题:(1)甲家庭已经有一个男孩,求第二个孩子是女孩的概率;(2)乙家庭目前没有孩子,计划生两个孩子,请用列表法或树状图求至少有一个孩子是女孩的概率.25.小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A,B,C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D,E表示),参加人员在每个阶段各随机抽取一个项目完成.请用画树状图或列表的方法,求小明恰好抽中B,D两个项目的概率.26.现有若干个完全相同的硬币(硬币的正、反面图案不同),按如下方式抛掷硬币:方式一:从中选取一枚硬币抛掷;方式二:从中选取两枚硬币抛掷;方式三:从中选取三枚硬币抛掷.请你在每一种抛掷方式中,各找出一种随机现象,使得这三种随机现象的概率相等(要求:概率不能为0或1),并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∴掷得面朝上的点数之和是5的概率是:41369.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2.B解析:B【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得.【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56,故选:B.【点睛】此题主要考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.B解析:B【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是12故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.4.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.也考查了中心对称图形的定义.5.D解析:D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,∴两次摸到的球的颜色相同的概率为:310.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B【分析】设白球个数为x个,白球数量÷袋中球的总数=1-04=0.6,求得x【详解】解:设白球个数为x个,根据题意得,白球数量÷袋中球的总数=1-04=0.6,所以0.620xx =+, 解得30x = 故选B 【点睛】本题主要考查了用评率估计概率.7.B解析:B 【解析】 【分析】nanhai 共有6个拼音字母,a 有2个,根据概率公式可得答案. 【详解】∵nanhai 共有6个拼音字母,a 有2个, ∴抽中a 的概率为21=63,故选:B . 【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数 得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.9.C解析:C 【分析】根据概率公式用豆沙口味的个数除以粽子的总个数即可得出答案.【详解】解:∵外观完全相同的粽子有4个,两个豆沙、一个红枣、一个蛋黄,∴从中随机选一个是豆沙味的概率是21=.42故选:C.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.10.D解析:D【分析】首先根据题意列出表格,然后由表格中求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案;【详解】两次摸出小球标号的组合如下:共12组∴其概率为:82=,123故选:D.【点睛】本题考查了用列表法或树状图法求概率,注意列表法或树状图法要不重复不遗漏的列出所有等可能的情况,所用到的知识点为:概率 =所求情况数与总情况数之比.11.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】-,共2个解:共有5个数,其中无理数有,2π1所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.12.B解析:B【分析】画树状图展示所有9种等可能的结果数,找出两人恰好进入同一社区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,则两人恰好进入同一社区的概率=31 93 =.故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.二、填空题13.【分析】设正方形的边长为a则正方形的面积为阴影部分的面积=2倍扇形面积-正方形面积空白区域面积=正方形面积-阴影部分面积豆子恰好落在空白区域的概率=空白区域面积÷正方形面积【详解】解:设正方形的边长解析:42π-【分析】设正方形的边长为a,则正方形的面积为2a,阴影部分的面积=2倍扇形面积-正方形面积,空白区域面积=正方形面积-阴影部分面积,豆子恰好落在空白区域的概率=空白区域面积÷正方形面积.【详解】解:设正方形的边长为a,则正方形的面积为2a,则2倍扇形面积=2×2π4a=22aπ,∴阴影部分的面积=2倍扇形面积-正方形面积=222aaπ-,∴空白区域面积=正方形面积-阴影部分面积=22 222222a aa a aππ⎛⎫--=-⎪⎝⎭,∴豆子恰好落在空白区域的概率=空白区域面积÷正方形面积222242==2aaaππ--.故答案为:42π-.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.此题用2倍扇形面积-正方形面积求出阴影部分的面积是解题关键.14.【分析】利用列表法确定所有可能的情况确定两枚骰子点数之和为10的情况的数量根据概率公式计算得出答案【详解】解:列表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7解析:1 12【分析】利用列表法确定所有可能的情况,确定两枚骰子点数之和为10的情况的数量,根据概率公式计算得出答案.【详解】解:列表:∴P(两枚骰子点数之和为10)=336=112,故答案为:1 12.【点睛】此题考查利用列举法求事件的概率,正确列出所有等可能的情况,熟记概率的计算公式是解题的关键.15.【分析】画树状图展示所有16种等可能的结果数再找出小红第二次取出的数字能够整除第一次取出的数字的结果数然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数其中小红第二次取出的数字能够解析:7 16【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=7 16.故答案为7 16.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.17.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可.【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6.故答案为0.6.【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.18.②【分析】观察表格利用大量重复试验中频率的稳定值估计概率即可【详解】解:观察表格发现:随着试验的次数的增多口罩合格率的频率逐渐稳定在0920附近所以可以估计这批口罩中合格的概率是0920故答案为:②解析:②【分析】观察表格,利用大量重复试验中频率的稳定值估计概率即可.【详解】解:观察表格发现:随着试验的次数的增多,口罩合格率的频率逐渐稳定在0.920附近,所以可以估计这批口罩中合格的概率是0.920,故答案为:②.【点睛】本题主要考查了利用频率估计概率及概率的意义等知识,解题的关键是了解大量重复试验中频率的稳定值估计概率,难度不大.19.7【分析】由于摸到红球和黄球的频率之和等于1根据摸到黄球的频率可以得到摸到红球的频率【详解】解:由题意可得摸到红球和黄球的频率之和为:1摸到黄球的频率约为03∴摸到红球的频率约为1-03=07故答案解析:7【分析】由于摸到红球和黄球的频率之和等于1,根据摸到黄球的频率,可以得到摸到红球的频率.【详解】 解:由题意可得,摸到红球和黄球的频率之和为:1,摸到黄球的频率约为0.3, ∴摸到红球的频率约为1-0.3=0.7, 故答案为:0.7. 【点睛】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.20.【分析】根据题意列举出所有4种等可能的结果数再根据题意得出能够构成三角形的结果数最后根据概率公式即可求解【详解】从中任取3根共有4种等可能的结果数它们为246;248;268;468其中恰好能搭成一解析:14【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解. 【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题21.(1)13;(2)49.【分析】(1)根据根的判别式分别判断三个方程根的情况,再运用概率公式求解即可; (2)画出树状图展示所有9种等可能的结果,找出恰好抽到两个方程都有实数根的结果数,然后根据概率公式求解. 【详解】解:(1)方程有实数根,则2=40b ac ∆-≥> 甲方程:210x +=2=0411=40∆-⨯⨯-<∴甲方程没有实数根; 乙方程:20x x +=2=1410=10∆-⨯⨯>∴乙方程有实数根 丙方程:2210x x ++=2=2411440∆-⨯⨯=-=∴丙方程有实数根所以,抽到方程没有实数根的概率13; (2)画树状图:共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4, 所以恰好抽到两个方程都有实数根的概率=49. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)14;(2)14【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有16种等可能性结果,再找出小明和小亮加同一项目的结果数,然后根据概率公式求解. 【详解】(1)小明参加“有轨电车”的概率是:14. 故答案为:14(2)列表如下: 小明 小亮 A B C D A (A,A ) (A,B ) (A,C ) (A,D ) B(B,A )(B,B )(B,C )(B,D )C (C,A ) (C,B ) (C,C ) (C,D ) D(D,A )(D,B )(D,C )(D,D )种:(,)A A ,(,)B B ,(,)C C ,(,)D D , 所以小明和小亮参加同一项目的概率为41164=. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 23.(1)14;(2)716【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得. 【详解】解:(1)从盒子中任意取出1张卡片,恰好取出印有“青”字的卡片的概率为14, 故答案为:14; (2)画树状图如下:由图可知,共有16种等可能的结果,其中取出的两张卡片中,至少有1张印有“青”字的卡片的有7种结果,∴P (取出的两张卡片中,至少有1张印有“青”字的卡片)716=. 【点睛】本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比. 24.(1)12;(2)34. 【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【详解】解:(1)∵第二个孩子是可能是男孩,也可能是女孩,可能性相同,∴第二个孩子是女孩的概率= 12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=34.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.25.1 6【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】小明在两个阶段参加项目的所有可能的结果如下表:D EA(A,D)(A,E)B(B,D)(B,E)C(C,D)(C,E)其中抽中B,D两个项目的结果有1中,所以小明恰好抽中B,D两个项目的概率为P=1 6【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.26.方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面及以上的概率相等,理由见解析【分析】根据三种方式分别得出方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面以上的概率,即可得出答案.【详解】解:方式一:从中选取一枚硬币抛掷,出现正面向上的概率为:12,方式二:从中选取两枚硬币抛掷,可能出现的情况为:正正,反反,正反,反正,出现一正一反的概率为:12,方式三:从中选取三枚硬币抛掷,出现两个反面及以上的概率为:12.故方式一:出现正面向上的概率与方式二:出现一正一反的概率和方式三:出现两个反面及以上的概率相等.【点睛】这道题考察的是用列举法求概率,掌握列举的基本方法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(三) 概率的进一步认识(时间:45分钟 满分:100分)题号 一 二 三 总分 合分人 复分人 得分一、选择题(每小题3分,共30分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( ) A.12B.13C.23D.142.(新疆中考)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) A.116B.316C.14D.5163.(玉林中考)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.12B.14C.16D.1124.(南通中考)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ) A .12 B .15 C .18 D .215.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( ) A.14B.34C.13D.126.(台湾中考)有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( ) A.16B.14C.13D.12 7.(临沂中考)从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.238.如图,直线a ∥b ,直线c 与直线a 、b 都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( ) A.35B.25C.15D.239.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x =________时,游戏对甲、乙双方公平( )A .3B .4C .5D .610.(大庆中考)如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916二、填空题(每小题4分,共20分)11.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是____.12.(扬州中考)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:抽取的体检表数n 50 100 200 400 500 800 1 000 1 200 1 5002 000色盲患者的频数m 3 7 13 29 37 55 69 85 105138色盲患者的频率m n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据上表,估计在男性中,男性患色盲的概率为________(结果精确到0.01).13.(襄阳中考)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.14.(凉山中考)“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.15.如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小丁得1分,这个游戏公平吗?________. 三、解答题(共50分)16.(8分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF 的顶点A 处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几,棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)17.(10分)(陕西中考)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)18.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x ,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总次数 1020306090120180240330450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.19.(10分)(曲靖中考)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?20.(12分)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示);(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),则员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?参考答案1.D 2.C 3.C 4.B 5.D 6.A7.C8.A9.B10.B11.1312.0.0713.1214.3515.公平16.用列表法表示为1 2 31 2 3 4 2 3 4 5 3456由表格可知,两数和为4出现的次数最多,棋子走到E 点的可能性最大,P(走到E 点)=39=13. 17.(1)P =36=12.(2)游戏公平.理由如下:小亮小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 18.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):3 4 5 7 3 7 8 10 4 7 9 11 5 8 9 12 7101112∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4、6). 19.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表法):A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3)∵23>59,∴此游戏对甲更有利.20.(1)根据题意得:(20+40+30)÷(1-10%)=100(张),则去丁地车票数为100-(20+40+30)=10(张),补全图形,如图所示.(2)总票数为100张,去甲地票数为20张,则员工小胡抽到去甲地的车票的概率为20100=15.(3)列表如下:小王小李) 1 2 3 4 1(1,1)(2,1)(3,1)(4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4)所有等可能的情况数有16种,其中小王掷得数字比小李掷得的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴P(小王掷得的数字比小李小)=616=38,P(小王掷得的数字不小于小李)=1-38=58.∴这个规则不公平.。