线性代数向量空间自测题(附答案)

合集下载

第六章线性空间自测练习及答案

第六章线性空间自测练习及答案

第六章 线性空间—自测答案一.判断题1.两个线性子空间的和(交)仍是子空间。

2.两个线性子空间的并仍是子空间。

3.n 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。

4.线性空间中两组基之间的过渡阵是可逆的。

5.两个线性子空间的和的维数等于两个子空间的维数之和。

6.同构映射的逆映射仍是同构映射。

7.两个同构映射的乘积仍是同构映射。

8.同构的线性空间有相同的维数。

9.数域P 上任意两个n 维线性空间都同构。

10.每个n 维线性空间都可以表示成n 个一维子空间的和。

答案:错:2.5.8 对:1.3.4.6.7.9.10 二.计算与证明1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维数。

解:(1)0f =0110n a a a -∴++=……+ 0121n a a a a -∴=----……设11a k =,22a k =,…,11n n ak --=,故0121n a k k k -=----……,21121121()n n n f t k k k k t k t k t ---∴=---+++ 21121(1)(1)(1)n n t k t k tk --=-+-++-因此,W 中任一多项式可写成211,1,,1n t t t ---- 的线性组合,易知211,1,,1n t t t---- 线性无关,故为W 的一组基,且W 的维数为n -1. 2. 求22P ⨯中由矩阵12113A ⎛⎫= ⎪-⎝⎭,21020A ⎛⎫= ⎪⎝⎭,33113A ⎛⎫= ⎪⎝⎭,41133A ⎛⎫= ⎪-⎝⎭生成的子空间的基与维数。

解:取22P ⨯的一组基11122122,,,E E E E ,则有 12341112212221311011,,,)(,,,)12133033A A A A E E E E ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦( 设213110111213333A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,即为1234,,,A A A A 在11122122,,,E E E E 下的坐标矩阵,对其作初等行变换得矩阵1011011-1000000B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1234dim (,,,)2L A A A A rankB ∴==,12,A A 为一组基。

自考线性代数试题及答案

自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。

答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。

答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。

答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

线性代数第三章向量试题及答案

线性代数第三章向量试题及答案

第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。

分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。

请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。

习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。

一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。

矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。

两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。

n 维向量组的线性组合也是n 维向量。

定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。

判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。

反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

(完整)自考线性代数第三章向量空间习题

(完整)自考线性代数第三章向量空间习题

第三章 向量空间一、单项选择题1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I)线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( )A .1B .2C .3D .43.设向量组4321,,,αααα线性相关,则向量组中( )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )A 。

α1,α3线性无关 B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )A .s ααα,,,21 中没有线性相关的部分组B .s ααα,,,21 中至少有一个非零向量C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。

如果|A |=2,则|—2A |=()A.-32B.-4C 。

4 D.327。

设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D 。

α1,α2,α3一定线性无关8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1 B 。

线性代数自考试题及答案

线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 行等价于零矩阵D. 列等价于零矩阵答案:B2. 若矩阵A的秩为r,则矩阵A的齐次线性方程组的解空间的维数为()A. rB. r-1C. n-rD. n+r答案:C3. 向量组α1,α2,…,αs线性无关,则()A. 向量组α1+α2,α2+α3,…,αs-1+αs线性无关B. 向量组kα1,kα2,…,kαs线性无关,其中k为非零常数C. 向量组α1+α2,α2+α3,…,αs-1+αs,αs线性无关D. 向量组kα1,kα2,…,kαs线性相关,其中k为非零常数答案:B4. 设A为n阶方阵,且|A|≠0,则下列命题中正确的是()A. A与A*的秩相等B. A*与A^(-1)的秩相等C. A与A^(-1)的秩相等D. A与A*的秩不相等答案:C5. 矩阵A=()A. 行最简形矩阵B. 行阶梯形矩阵C. 行等价于单位矩阵的矩阵D. 行等价于零矩阵的矩阵答案:C6. 设A为3×3矩阵,且|A|=2,则|2A|=()A. 4B. 8C. 16D. 32答案:C7. 设A为n阶方阵,且A^2=0,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:D8. 设A为n阶方阵,且A^2=E,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:C9. 设A为n阶方阵,且A^T=A,则()A. A为对称矩阵B. A为反对称矩阵C. A为正交矩阵D. A为斜对称矩阵答案:A10. 设A为n阶方阵,且|A|=1,则|A^(-1)|=()A. 0B. 1C. -1D. 2答案:B二、填空题(每题2分,共20分)11. 若A为n阶方阵,且|A|=-3,则|-2A|=______。

答案:1212. 设A为n阶方阵,且A^2=0,则矩阵A的秩r(A)满足______。

线性空间测试题及答案

线性空间测试题及答案

线性空间测试题及答案一、选择题1. 线性空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 分配律D. 所有选项都正确2. 以下哪个不是线性空间的定义条件?A. 向量加法的封闭性B. 标量乘法的封闭性C. 存在零向量D. 向量加法的逆元存在二、填空题1. 线性空间中的向量加法满足_________,即对于任意向量u, v ∈ V,存在一个向量w ∈ V,使得u + w = v。

2. 线性空间中的标量乘法满足_________,即对于任意向量v ∈ V和标量a, b,有(a + b)v = av + bv。

三、简答题1. 请简述线性空间的定义。

2. 线性空间中的向量加法和标量乘法需要满足哪些条件?四、计算题1. 给定线性空间V中的向量u = (1, 2)和v = (3, 4),计算u + v。

2. 若标量a = 2,计算2u。

五、证明题1. 证明线性空间中的向量加法满足结合律。

2. 证明线性空间中的标量乘法满足分配律。

答案:一、选择题1. 答案:D2. 答案:D二、填空题1. 答案:逆元存在2. 答案:分配律三、简答题1. 答案:线性空间是一个集合V,配合两个二元运算:向量加法和标量乘法,满足以下条件:向量加法的封闭性、结合律、存在零向量、向量加法的逆元存在,以及标量乘法的封闭性、分配律、结合律。

2. 答案:向量加法需要满足封闭性、结合律、存在零向量、逆元存在,而标量乘法需要满足封闭性、分配律、结合律。

四、计算题1. 答案:u + v = (1+3, 2+4) = (4, 6)2. 答案:2u = 2 * (1, 2) = (2, 4)五、证明题1. 证明:设u, v, w ∈ V,则(u + v) + w = u + (v + w),由向量加法的结合律得证。

2. 证明:设u ∈ V,a, b为标量,则a(bu) = (ab)u,由标量乘法的分配律得证。

线性代数自测习题及答案

线性代数自测习题及答案

自测复习题21填空题 (1) 向量组[][][]1232,2,7,3,1,2,1,5,12a a a T T T ==-=线性 关。

(2) 4维向量组[]11,4,0,2a T =-,[]25,11,3,0a T =-,[]33,2,4,1a T =--,[]42,9,5,0a T =--, []50,3,1,4a T=-的秩是 ,且一个极大无关组为 。

的秩为,则向量组的秩为)已知向量组(321321,3,,4a a a a a a - 。

=⨯m A A n m 则的行向量组线形无关,,且的秩为矩阵)已知(35 ,m n 。

(6)已知秩为3的向量组1234,,,a a a a 可由向量组123,,βββ线性表示,则向量组123,,βββ必线性 。

(7)设20,,k k βT ⎡⎤=⎣⎦能由[]11,1,1a k T =+,[]21,1,1a k T =+,[]31,1,1a k T =+唯一线性表出,则k 满足 。

(8)设A 为4阶方阵,且()2r A =,则*0A x =的基础解系所含解向量的个数为 。

2选择题(1)设向量组()I 123,,a a a ;1234(),,,a a a a II ;1235(),,,a a a a III ;()V I 12345,,,a a a a a +,且()()3r r I =II =,()4,r III =则()r V I =( )。

(A)2 (B)3 (C)4 (D)5(2)设向量β可由向量组12,,....m a a a 线性表示,但不能由向量组121(),,....m a a a -I 线性表示,若向量组121(),,...,m a a a β-II ,则m a ( )。

(A )既不能由(I )线性表示,也不能由(II )线性表示(B )不能由(I )线性表示,但可由(II )线性表示(C )可由(I )线性表示,也可由(II )线性表示(D )可由(I )线性表示,但不可由(II )线性表示(3)n 维向量组12,,.....(3)s a a a s n ≤≤线性无关的充要条件是( )。

空间向量的习题及答案

空间向量的习题及答案

空间向量的习题及答案空间向量是线性代数中的重要概念之一,它在解决几何问题时起到了关键作用。

本文将通过一些典型的习题来探讨空间向量的性质和应用,并给出详细的答案解析。

1. 习题一:已知向量a = (1, 2, -3),向量b = (-2, 1, 4),求向量a与向量b的数量积和向量积。

解析:向量a与向量b的数量积为:a·b = 1*(-2) + 2*1 + (-3)*4 = -2 + 2 - 12 = -12。

向量a与向量b的向量积为:a×b = (2*(-3) - 1*4, 1*(-3) - (-2)*4, 1*1 - (-2)*(-3)) = (-6 - 4, -3 + 8, 1 + 6) = (-10, 5, 7)。

2. 习题二:已知向量a = (2, -1, 3),向量b = (3, 4, -2),求向量a与向量b的夹角的余弦值。

解析:向量a与向量b的夹角的余弦值为:cosθ = (a·b) / (|a| * |b|)。

其中,a·b为向量a与向量b的数量积,|a|为向量a的模,|b|为向量b的模。

计算得到:a·b = 2*3 + (-1)*4 + 3*(-2) = 6 - 4 - 6 = -4,|a| = √(2^2 + (-1)^2+ 3^2) = √(4 + 1 + 9) = √14,|b| = √(3^2 + 4^2 + (-2)^2) = √(9 + 16 + 4)= √29。

代入公式得到:cosθ = (-4) / (√14 * √29)。

3. 习题三:已知向量a = (1, 2, 3),向量b = (4, 5, 6),求向量a与向量b的和、差和模长。

解析:向量a与向量b的和为:a + b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。

向量a与向量b的差为:a - b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

线性代数自考试题及答案

线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共10分)1. 向量组α1,α2,α3线性无关的充分必要条件是()。

A. 齐次方程组Ax=0只有零解B. 齐次方程组Ax=0有非零解C. 齐次方程组Ax=0只有零解,且α1,α2,α3线性相关D. 齐次方程组Ax=0只有零解,且α1,α2,α3线性无关答案:A2. 矩阵A与矩阵B相等的充分必要条件是()。

A. A与B的行数相同B. A与B的列数相同C. A与B的行数相同,且A与B的列数相同D. A与B的行数相同,且A与B的列数相同,且对应元素相等答案:D3. 设A为n阶矩阵,若A的行列式|A|=0,则A是()。

A. 可逆矩阵B. 非可逆矩阵C. 正交矩阵D. 反对称矩阵答案:B4. 设A为3阶矩阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则A的迹为()。

A. 0B. 1C. 2D. -3答案:C5. 设A为3阶矩阵,且A的秩为2,则A的零度为()。

A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共15分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。

答案:42. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的逆矩阵A^{-1}=______。

答案:\(\begin{bmatrix}-2 & 1 \\ 1.5 & -0.5\end{bmatrix}\)3. 若向量α=(1,2,3),β=(4,5,6),则向量α与向量β的夹角的余弦值为______。

答案:\(\frac{1}{3}\)4. 设矩阵A的特征值λ1=2,λ2=3,对应的特征向量分别为α1和α2,则矩阵A+E的特征值λ3=______,对应的特征向量为______。

答案:3,α1;4,α25. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的秩为______。

线性代数自考试题及答案

线性代数自考试题及答案

线性代数自考试题及答案一、选择题(每题2分,共20分)1. 向量空间中的基是一组向量,以下哪个不是基的性质?A. 线性无关B. 线性相关C. 张成整个空间D. 可以是空间中的任意向量2. 矩阵A和矩阵B相乘,结果矩阵的行列式等于:A. A的行列式乘以B的行列式B. B的行列式乘以A的行列式C. 两个矩阵的行列式之和D. 无法确定3. 对于线性变换,以下哪个说法是错误的?A. 线性变换保持向量的加法运算B. 线性变换保持标量的乘法C. 线性变换保持向量的长度D. 线性变换保持向量的点积4. 一个矩阵的特征值是指:A. 矩阵的对角线元素B. 矩阵的行列式C. 使得矩阵的某个特征向量不为零的标量D. 矩阵的迹5. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵6. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大的线性无关行或列的数量D. 矩阵的行数或列数7. 线性方程组的解集可以是:A. 一个点B. 一条直线C. 一个平面D. 无限多个解8. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵的对角线元素之和D. 矩阵的转置矩阵9. 向量空间的维数是指:A. 空间中向量的个数B. 空间中基的向量个数C. 空间中任意向量的个数D. 空间中线性无关向量的最大个数10. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后为任意向量的集合D. 变换后为非零向量的集合二、简答题(每题10分,共30分)1. 解释什么是线性相关和线性无关,并给出一个例子。

2. 描述如何计算矩阵的特征值和特征向量。

3. 解释什么是正交矩阵,并给出正交矩阵的一个性质。

三、计算题(每题25分,共50分)1. 给定矩阵A = \[\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}\],求矩阵A的逆矩阵。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题1. 线性代数是数学的一个分支,主要研究向量空间、线性变换以及它们之间的关系。

以下哪个选项不是向量空间的基本性质?A. 封闭性B. 结合律C. 交换律D. 单位元存在性答案:C2. 设A是一个3级方阵,且det(A) = 2,那么det(2A)等于多少?A. 4B. 6C. 8D. 10答案:C3. 在线性代数中,线性变换可以通过什么来表示?A. 矩阵B. 行列式C. 特征值D. 坐标答案:A4. 特征值和特征向量在描述线性变换时具有重要意义。

一个矩阵的特征值和特征向量分别表示什么?A. 变换后矩阵的行列式,变换前矩阵的行列式B. 变换后矩阵的行列式,变换前向量的方向C. 变换前矩阵的行列式,变换后向量的方向D. 变换前矩阵的行列式,变换后向量的方向答案:B5. 线性代数中的欧几里得空间是一个完备的度量空间,它满足哪些性质?A. 可数性B. 完备性C. 可加性D. 所有上述性质答案:D二、填空题1. 在线性代数中,若一个向量空间的基包含n个向量,则该向空间的维数为______。

2. 设矩阵A = [a_ij],其中i表示行索引,j表示列索引。

如果A的逆矩阵存在,则A的行列式det(A)不等于______。

3. 对于一个n级方阵A,若存在一个非零向量v,使得Av=λv,其中λ为一个标量,则称λ为A的______,v为对应于λ的______。

三、计算题1. 给定矩阵B = [1 2 3; 4 5 6; 7 8 9],求矩阵B的秩。

2. 设线性方程组如下:a_1 + 2a_2 + 3a_3 = 64a_1 + 5a_2 + 6a_3 = 127a_1 + 8a_3 + 9a_3 = 18求该方程组的解。

3. 给定一个3级方阵C,其特征值为1,-2和3,求矩阵C。

四、论述题1. 讨论线性变换在几何上的意义,并给出一个具体的例子来说明其作用。

2. 解释何为线性空间,以及线性空间的同构关系是如何定义的。

《线性代数》单元自测题

《线性代数》单元自测题

《线性代数》基础习题第一章 行列式一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i = ,j = 。

2. 在四阶行列式中,带正号且同时包含因子23a 和31a 的项为__ ___。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取 。

4.已知xx x x x x f 42124011123313)(--=,则)(x f 中4x 的系数为 。

5. 行列式=600300301395200199204100103__ __。

二、 计算下列各题:1.计算63123112115234231----=D 。

2.设4321630211118751=D ,求44434241A A A A +++的值。

3.计算ab b a b a b a D n 000000000000=4.计算nD n 222232222222221=5.计算ab b b b a b bb b a bb b b a D n = 6.计算4443332225432543254325432=D 7.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值。

第二章 矩阵一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则R(A)= 。

2.设A 是3阶方阵,且m A =,则1--mA = 。

3.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20092010100001010534432121001010100 。

4.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A 。

5.设A 为3阶方阵,1A =-,A 按列分块为()321A A A A =,()32122A A A B =,则*B = 。

线性代数练习题及答案

线性代数练习题及答案

线性代数练习题及答案线性代数作为一门重要的数学学科,对于理工科学生来说是必修课程之一。

在学习线性代数的过程中,练习题是非常重要的一环,通过练习题的完成,可以巩固理论知识,提高解题能力。

本文将介绍一些常见的线性代数练习题及其答案,希望对读者有所帮助。

一、向量与矩阵1. 给定向量a=(2,3,1)和b=(1,-1,2),求向量a与向量b的内积及外积。

答案:向量a与向量b的内积为a·b=2*1+3*(-1)+1*2=1,向量a与向量b的外积为a×b=(7,3,-5)。

2. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵和逆矩阵。

答案:矩阵A的转置矩阵为A^T = [1 4 7; 2 5 8; 3 6 9],矩阵A的逆矩阵不存在,因为A的行列式为0。

二、线性方程组1. 解方程组:2x + 3y - z = 13x - 2y + 4z = 5x + y + 2z = 0答案:通过高斯消元法,可以得到方程组的解为x = -1,y = 2,z = -1。

2. 解方程组:x + 2y + z = 32x + 4y + 2z = 63x + 6y + 3z = 9答案:该方程组为一个超定方程组,通过最小二乘法可以得到方程组的近似解为x = 1,y = 1,z = 1。

三、特征值与特征向量1. 给定矩阵A = [2 1; 1 2],求矩阵A的特征值和特征向量。

答案:首先求解A的特征方程det(A-λI)=0,得到特征值λ=1,λ=3。

然后,将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。

2. 给定矩阵A = [3 -1; 1 3],求矩阵A的特征值和特征向量。

答案:同样地,求解特征方程det(A-λI)=0,得到特征值λ=2,λ=4。

将特征值代入(A-λI)x=0,得到特征向量x=(1,1)和x=(-1,1)。

四、线性变换1. 给定线性变换T:R^2 -> R^2,将向量(1,0)和(0,1)分别变换为(2,3)和(-1,4),求线性变换T的矩阵表示。

线性代数向量空间自测题(附答案)

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟)一、选择、填空(20分,每小题4分)1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。

(A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量;(C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量;(D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。

2.设R 4 的一组基为,,,,4321αααα令414433322211,,,ααβααβααβααβ+=+=+=+=,则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。

3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。

4. 设W 是所有二阶实对称矩阵构成的线性空间,即⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R a a aa a W ij 22121211,则它的维数为 ,一组基为 。

5.若A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-100021021b a 为正交矩阵,且|A|=-1,则a = ,b = 。

二、计算题(60分)1.(15分)设R 3的两组基为:T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ,向量α=(2,3,3)T(1)求由基321,,ααα到基321,,βββ的过渡矩阵。

(2)求α关于这两组基的坐标。

(3)将321,,βββ化为一组标准正交基。

2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,⎪⎩⎪⎨⎧=+-+=-+-=+-+0111353033304523432143214321x x x x x x x x x x x x 3.(20分)已知321,,ααα是3维向量空间R 3的一组基,向量组321,,βββ满足3132322132131,,ααββααββαααββ+=++=+++=+(1)证明:321,,βββ是一组基。

数学人教B选修21自我小测:3空间向量的线性运算 含解析

数学人教B选修21自我小测:3空间向量的线性运算 含解析

自我小测1.如图所示的空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD→等于( )A.32DB → B .3MG → C .3GM → D .2MG →2.平行六面体ABCD -A 1B 1C 1D 1中,O 为BD 1与AC 1的交点,下列说法正确的是( )A .AO →=12(AB →+AD →+AA 1→) B .AO →=13AC 1→ C .BO →=12(B A →+BC →+BD 1→) D .BO →=14(AC 1→+BD 1→) 3.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM→=2MA →,N 为BC 的中点,则MN →等于( )A.12a -23b +12c B .-23a +12b +12c C.12a +12b -23c D.23a +23b -12c 4.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A .P A →+PB →=0 B .PB →+PC →=0 C .PC →+P A →=0D .P A →+PB →+PC →=0 5.设点M 是BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM→|=( )A .8B .4C .2D .16.化简:(AB →-CD →)-(AC →-BD →)=__________.7.化简:12(a +2b -3c )+5⎝⎛⎭⎫23a -12b +23c -3(a -2b +c )=__________. 8.在平行六面体ABCD - EFGH 中,AG →=xAC →+yAF →+zAH →,则x +y +z =__________.9.在四面体ABCD 中,E ,F 分别为棱AC ,BD 的中点,求证:AB →+CB →+AD →+CD →=4EF →.10.已知ABCD - A ′B ′C ′D ′是平行六面体,AA ′的中点为E ,点F 为D ′C ′上一点,且D ′F =23D ′C ′. (1)化简:12AA ′→+BC →+23AB →; (2)设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD →+γAA ′→,试求α,β,γ的值.参考答案1.解析:MG →-A B →+AD →=MG →+B D →=MG →+2MG →=3MG →.答案:B2.解析:AB →+AD →+AA 1→=AC →+AA 1→=AC 1→.故选A.答案:A3.解析:MN →=ON →-OM →=12(OB →+OC →)-23OA →=12×(b +c )-23a =-23a +12b +12c . ∴应选B.答案:B4.解析:∵BC →+BA →=2BP →,∴BC →-BP →+BA →-BP →=0,即PC →+P A →=0.答案:C 5.解析:由|AB →+AC →|=|AB →-AC →|=|CB →|=|BC →|=4,又M 为BC 的中点,所以|AM →|=12|AB →+AC →|=2. 答案:C6.答案:07.答案:56a +92b -76c 8.解析:因为AG →=AB →+AD →+AE →,所以AG →=AB →+AD →+AE →=x (AB →+AD →)+y (AB →+AE →)+z (AE →+AD →),所以AG →=(x +y )AB →+(x +z )AD →+(y +z )AE →,所以x +y =x +z =y +z =1,所以x +y +z =32.答案:329.证明:左边=(AB →+AD →)+(CB →+CD →)=2AF →+2CF →=2(AF →+CF →)=4EF →=右边,得证.10.解:(1)由AA ′的中点为E ,得12AA ′→=EA ′→, 又BC →=A ′D ′→,D ′F =23D ′C ′, 因此23AB →=23D ′C ′→=D ′F →. 从而12AA ′→+BC →+23AB →=EA ′→+A ′D ′→+D ′F →=EF →. (2)MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→, 因此α=12,β=14,γ=34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第四章 向量空间》 自测题 (75分钟)
一、选择、填空(20分,每小题4分)
1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。

(A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量;
(C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量;
(D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。

2.设R 4 的一组基为,,,,4321αααα令
414433322211,,,ααβααβααβααβ+=+=+=+=,
则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。

3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。

4. 设W 是所有二阶实对称矩阵构成的线性空间,即⎪⎭

⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R a a a
a a W ij 2212
1211,则它的维数为 ,一组基为 。

5.若A=⎥⎥⎥⎥⎥
⎥⎦

⎢⎢⎢⎢⎢⎢⎣⎡-100021
021b a 为正交矩阵,且|A|=-1,则a = ,b = 。

二、计算题(60分) 1.(15分)设R 3的两组基为:
T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ,
向量α=(2,3,3)T
(1)求由基321,,ααα到基321,,βββ的过渡矩阵。

(2)求α关于这两组基的坐标。

(3)将321,,βββ化为一组标准正交基。

2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,
⎪⎩⎪
⎨⎧=+-+=-+-=+-+0
1113530333045234321
43214321x x x x x x x x x x x x 3.(20分)已知321,,ααα是3维向量空间R 3的一组基,向量组321,,βββ满足
3132322132131,,ααββααββαααββ+=++=+++=+
(1)证明:321,,βββ是一组基。

(2)求由基321,,βββ到基321,,ααα的过渡矩阵。

(3)求向量3212αααα-+=关于基321,,βββ的坐标。

4.(10分)已知A 是2k+1阶正交矩阵,且|A|=1,求|A -E|。

三、证明题(20分)
1. (5分)设0321=++γβαk k k ,且031≠k k 。

证明:),(),(γββαL L =。

2. (5分)设A 为正交矩阵,证明:A *为正交矩阵。

3.(10分)设A 、B 为n 阶正交矩阵,且|A||B|。

证明:A+B 为不可逆矩阵。

参考答案
一、选择、填空 1. A
2. dimW=3,一组基为.,,321βββ
3. dimW=n-2,一组基为T n T T )0,1,0,,0,0(,)0,0,,1,0,0(,)0,0,,0,1,1(221 ==-=-ααα
4. dimW =3,一组基为⎪⎪⎭

⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛0110,1000,0001。

5. a =
2
1
,b =
2
1
二、计算题
1.(1)基321,,ααα到基321,,βββ的过渡矩阵:⎥⎥⎥⎥⎥
⎥⎦

⎢⎢⎢⎢⎢⎢⎣⎡112110210121
(2) α关于321,,ααα的坐标是(0,1,1)
α关于321,,βββ的坐标是(1,1,2) (3)⎪⎪
⎪⎪⎪
⎪⎪⎭

⎝⎛-
-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝
⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫

⎛02121,626161,313131。

2.解空间的维数是2,一组基为T T )1,0,3
7,92(,)0,1,38
,91(21-=-=αα。

3.(1)提示:证明321,,βββ与321,,ααα等价,从而r(321,,βββ)=3,线性无关。

(2)基321,,βββ到基321,,ααα的过渡矩阵为⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--001211010。

(3)向量α关于基321,,βββ的坐标为(2,-5,1)。

4. ()
()0)1(121=-⇒--=--=--=-=-=-+-E A E A E A E A A E A E A E A T
k T T 。

三、证明题
1. 提示:证明两个向量组等价,即},{},{γββα≅,则生成子空间),(),(γββαL L =。

2. 证明: ()
()
E AA A A A A A A A A A T T
T
T ====----1
12
1
1*)(*。

3.提示:0111=+⇒+-=+=+=+---B A B A B A B A B A E A B A
.。

相关文档
最新文档