函数单调性教学设计教学参考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性(教学设计)
一、本节内容在教材中的地位与作用:
《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、累函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
二、学情、教法分析:
按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。
三、教学目标与教学重、难点的制定:
依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:
1 .通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛, 学会运用函数图像理解和研究函数的性质。
2 .理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
3 .能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。
在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下:
教学重点:函数的单调性的判断与证明;
教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。
四、教材内容简析:
本节主要内容如下:
(1)单调性的相关定义:一般地,设函数/0)的定义域为I,区间ACI:如果对于区间A内的任意两个值々,孙,当々VM时都有了01)<∕(^M∕(xι)>/(叼)],那么就说/0)在区间A上是增加(减少)的。此时,A是单调递增(递减)区间。
注:关键词:“区间AGh ”、“任意”、“都”。区间A⊂T表明判断函数单调性首先判断函数的定义域,“任意”表明不可以用两个特定的值来确定函数是增函数还是减函数,但是可以用来否定函数是增函数或者否定函数是减函数,“都”表示单调区间中的每一个值无一例外。
如果函数y = /S)在定义域的某个子集上是增加或减少的,那么就称这个函数在这个子集上具有单调性。如果函数y = ∕S)在定义域是增加或减少的,那么就分别称这个函数为增函数或减函数,统称为单调函数。
(2)单调性的判断与证明:
①单调性的判断:图像法、定义法;(注:两个单调区间的“并”不一定是单调区间。)
②单调性的证明步骤归结为五个步骤:取值、作差与变形、判断、结论。
小数除法
教材简介:
本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环小数、用计算器探索规律、解决问题。
教学目标
1、使学生掌握小数除法的计算方法。
2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商的近似数,初步认识循环小数、有限小数和无限小数。
3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的计算。
4、使学生体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。
教学建议:
1.抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。
2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。
课时安排:
本单元可安排11课时进行教学。
第一课时小数除以整数(一)
一一商大于1
教学内容J P16例1、做一做,P19练习三第1、2题。
教学目的:
1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。
2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。
3、体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中
获得价值体验。
教学重点:理解并掌握小数除以整数的计算方法。
教学难点:理解商的小数点要与被除数的小数点对齐的道理。
教学过程:
一、复习准备:
计算下面各题并说一说整数除法的计算方法.
224÷4=416÷32=1380+15 =
—.5导入新课:
情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?
出示例1:王鹏坚持晨练。他计划4周跑步22. 4千米,平均每周应跑多少千米?
教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)
观察这道算式和前面学习的除法相比有什么不同?
板书课题:“小数除以整数”。
三.教学新课:
教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:(1)生:22. 4 千米=22400 米22400÷4=5600 米5600 米=5. 6 千米(2)还可以列竖式计算。
教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。
教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?追问:24表示什么?
商的小数点位置与被除数小数点的位置有什么关系?
引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”.
问:和前面准备题中的224除以4相比,224除以4和它有哪些相同的地方?有咖些不同的地方?
怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐)
教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.
教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.
四、巩固练习
完成“做一做” :25.2÷634.5÷15
五、课堂作业:练习三的第1、2题
课后反思:
学生们在前一天的预习后共提出四个问题:
1,被除数是小数的除法怎样计算?(熊佳豪)
2,为什么在计算时先要扩大,最后又要将结果缩小?(郑扬)
3,小数除以整数怎样确定小数点的位置?(梅家顺)