茆诗松概率论
概率论与数理统计教程(茆诗松)第一章

5. 试用A、B、C 表示下列事件: ① A 出现; A ② 仅 A 出现;A B C ③ 恰有一个出现;A B C A B C A B C ④ 至少有一个出现;ABC ⑤ 至多有一个出现;A B C A B C A B C A B C ⑥ 都不出现; A B C
⑦ 不都出现; ABCABC ⑧ 至少有两个出现;A B A C B C
• 非负性公理: P(A)0;
• 正则性公理: P(Ω)=1;
• 可列可加性公理:若A1, A2, ……, An ……
互不相容,则
U
P Ai P(Ai ) i1 i1
3/22/2020
华东师范大学
第一章 随机事件与概率
1.2.2 排列与组合公式
第23页
• 从 n 个元素中任取 r 个,求取法数. • 排列讲次序,组合不讲次序. • 全排列:Pn= n! • 0! = 1. • 重复排列:nr • 选排列: P nr(nn !r)!n(n1)......(nr1)
第29页
注意
• 抛一枚硬币三次 抛三枚硬币一次 • Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)} 此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
➢ 而实际去做 N 次试验,得 n 次针与平行线相 交,则频率为: n/N.
➢ 用频率代替概率得: 2lN/(dn). ➢ 历史上有一些实验数据.
3/22/2020
A发生但 B不发生
• 对立: A
A 不发生
3/22/2020
华东师范大学
第一章 随机事件与概率
概率论与数理统计教程(茆诗松)

2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。
概率论与数理统计(茆诗松)第四章讲义

大数定律与中心极限定理
本章主要是解决概率论中的一些基本问题,如频率稳定性,正态分布的普适性问题.
§4.1
+∞
特征函数
现实生活中,独立随机变量和广泛存在,它在概率论中具有重要地位,但其分布的计算需要用到卷积 运算.而函数 f (x) 的傅立叶变换 ϕ (t ) = ∫ e itx f ( x)dx (其中 i = − 1 是虚数单位)可将函数复杂的卷积运
因狄利克雷积分 ∫
sin x π dx = ,令 x = at, (a ≠ 0) , x 2 +∞ sin at +∞ sin at π dt ; 当 a > 0 时,有 = ∫ ⋅ adt = ∫ 0 2 0 at t −∞ sin at +∞ sin at +∞ sin at 0 sin at π π dt = − ∫ dt ,即 ∫ 当 a < 0 时, = ∫ ⋅ adt = − ∫ dt = − ; 0 0 0 − ∞ 2 at t t t 2 +∞ sin at 当 a = 0 时, ∫ dt = 0 , 0 t +∞ sin at π 则∫ dt = sgn( a ) , 0 t 2
⎞ ⎟≥0, ⎟ ⎠
故特征函数ϕ (t) 半正定; (7)因 | ϕ (t + h) − ϕ (t) | = | E [e i(t + h) X − e itX ] | ≤ E | e itX (e ihX − 1) | = E | e ihX − 1 |,
| e ihX − 1 | = | cos(hX ) − 1 + i sin( hX ) | = [cos(hX ) − 1]2 + [sin( hX )]2 = 2 − 2 cos(hX ) = 2 sin
茆诗松概率论教案

茆诗松概率论教案第一章概率论的基本概念1.1 随机试验与样本空间介绍随机试验的概念及其特点讲解样本空间、事件及它们的分类举例说明如何判断两个事件的关系(包含、互斥、独立等)1.2 概率的定义与性质介绍概率的定义(古典概率、几何概率、条件概率)讲解概率的基本性质(互补性、可加性、乘法公式)举例说明如何计算简单事件的概率1.3 条件概率与独立性讲解条件概率的定义及其计算方法介绍独立事件的定义及其性质讲解如何判断两个事件是否独立1.4 贝叶斯定理讲解贝叶斯定理的定义及其意义讲解如何应用贝叶斯定理计算后验概率第二章随机变量及其分布2.1 随机变量的概念介绍随机变量的定义及其分类(离散型、连续型)讲解随机变量的数学期望、方差、标准差等基本统计量2.2 离散型随机变量的概率分布讲解离散型随机变量的概率质量函数(PMF)讲解常见离散型随机变量的分布(均匀分布、二项分布、泊松分布等)2.3 连续型随机变量的概率分布讲解连续型随机变量的概率密度函数(PDF)讲解常见连续型随机变量的分布(均匀分布、正态分布、指数分布等)2.4 大数定律与中心极限定理讲解大数定律的意义及其应用讲解中心极限定理的内容及其意义第三章随机变量的数字特征3.1 随机变量的数学期望讲解随机变量数学期望的定义及其计算方法讲解随机变量数学期望的性质及其应用3.2 随机变量的方差与标准差讲解随机变量方差的定义及其计算方法讲解随机变量标准差的定义及其计算方法3.3 随机变量的协方差与相关系数讲解随机变量协方差的定义及其计算方法讲解随机变量相关系数的定义及其计算方法3.4 随机变量的矩讲解随机变量矩的定义及其计算方法讲解随机变量矩的应用及其意义第四章随机向量及其分布4.1 随机向量的概念介绍随机向量的定义及其分类(离散型、连续型)讲解随机向量的数学期望、方差、标准差等基本统计量4.2 离散型随机向量的概率分布讲解离散型随机向量的概率质量函数(PMF)讲解常见离散型随机向量的分布(均匀分布、二项分布等)4.3 连续型随机向量的概率分布讲解连续型随机向量的概率密度函数(PDF)讲解常见连续型随机向量的分布(均匀分布、正态分布等)4.4 大数定律与中心极限定理在随机向量中的应用讲解大数定律与中心极限定理在随机向量中的应用方法第五章随机变量的函数及其分布5.1 随机变量函数的定义及其分类介绍随机变量函数的定义及其分类(确定性函数、随机性函数)5.2 离散型随机变量的函数的分布讲解离散型随机变量的函数的分布的定义及其计算方法讲解常见离散型随机变量的函数的分布的性质及其应用5.3 连续型随机变量的函数的分布讲解连续型随机变量的函数的分布的定义及其计算方法讲解常见连续型随机变量的函数的分布的性质及其应用5.4 随机向量的函数的分布讲解随机向量的函数的分布的定义及其计算方法讲解随机向量的函数的分布的应用及其意义第六章随机过程及其基本性质6.1 随机过程的概念介绍随机过程的定义及其特点讲解随机过程的分类(离散时间、连续时间)6.2 随机过程的随机变量的相关性质讲解随机过程中随机变量的相关性质(独立性、马尔可夫性等)6.3 随机过程的分布函数及其性质讲解随机过程的分布函数的定义及其性质讲解如何计算随机过程的分布函数6.4 随机过程的数字特征讲解随机过程的数字特征(数学期望、方差、协方差等)讲解如何计算随机过程的数字特征第七章马尔可夫链7.1 马尔可夫链的概念介绍马尔可夫链的定义及其特点讲解马尔可夫链的分类(有限状态、无限状态)7.2 马尔可夫链的转移概率讲解马尔可夫链的转移概率的定义及其计算方法讲解如何判断马尔可夫链的稳态分布7.3 马尔可夫链的性质及其应用讲解马尔可夫链的性质(无后效性、唯一性等)讲解马尔可夫链在实际应用中的例子(例如,股票价格预测、人口变化等)7.4 马尔可夫决策过程讲解马尔可夫决策过程的定义及其特点讲解如何应用马尔可夫决策过程解决实际问题第八章随机过程的数学期望和方差8.1 随机过程的数学期望讲解随机过程的数学期望的定义及其计算方法讲解随机过程的数学期望的性质及其应用8.2 随机过程的方差和协方差讲解随机过程的方差的定义及其计算方法讲解随机过程的协方差的定义及其计算方法8.3 随机过程的矩讲解随机过程的矩的定义及其计算方法讲解随机过程的矩的应用及其意义8.4 随机过程的线性变换讲解随机过程的线性变换的定义及其计算方法讲解如何利用线性变换分析随机过程的性质第九章随机过程的应用9.1 随机过程在统计学中的应用讲解随机过程在统计学中的应用方法(例如,时间序列分析、生存分析等)9.2 随机过程在物理学中的应用讲解随机过程在物理学中的应用方法(例如,噪声、布朗运动等)9.3 随机过程在经济学中的应用讲解随机过程在经济学中的应用方法(例如,随机模型、经济预测等)9.4 随机过程在其他领域中的应用讲解随机过程在其他领域中的应用方法(例如,生物学、工程学等)第十章随机过程的进一步研究10.1 随机过程的极限讲解随机过程的极限的定义及其性质讲解如何判断随机过程的极限存在性10.2 随机过程的稳态分布讲解随机过程的稳态分布的定义及其计算方法讲解如何判断随机过程的稳态分布的存在性10.3 随机过程的谱分析讲解随机过程的谱分析的定义及其方法讲解如何利用谱分析研究随机过程的性质10.4 随机过程的其他研究方法讲解随机过程的其他研究方法(例如,主成分分析、信息论等)重点和难点解析重点环节1:随机试验与样本空间需要重点关注样本空间的定义及其包含的所有可能结果。
概率论与数理统计教程(茆诗松)第1章

SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数
茆诗松概率论与数理统计教程第一章

n 10 20 23 30 40 50 P(A) 0.12 0.41 0.51 0.71 0.89 0.97
上表所列的答案是出乎很多人意料的, 因为”一个班
级至少有两个人生日相同”的概率, 并不如大多数人
直觉中想象的那样小, 而是相当大. 这个例子告诉我
们, “直觉”有时并不可靠, 这就说明研究随机现象
B=“两球都是红球”,共有22 种取法, C=“两球中至少有一只白球”, 则
AB=“两个球颜色相同”,事件CB,
故P(A)=(44)/(6 6) 0.444,P(B)=(22)/(6 6) 0.111, 则P(AB)=P(A)+P(B) 0.556, P(C)=1-P(B) .0.889
(b)不放回抽样
P(C)=1-P(B) =14/15
.
例六.(分房问题, 类比于教材中例1.2.6的盒子模型) 设有n个人, 每个人都等可能地被分配到N个房 间中的任一间去住(n≤N), 求下列事件的概率 (1)指定的n个房间各有一个人住 (2)恰好有n个房间, 其中各住一个人
解: 将n个人分配到N个房间去, 相当于对每个人, 我们从
.
.
例二(被闪电击中概率的研究).
如何求一个人在某年中被 闪电击中的概率?
中国1.1×109人中, 在2005年被闪电击中 的人数为3300人, 通过概率的频率方法 我们知道, 某人被闪电击中的概率为
茆诗松概率论第三版教材课后题重点

茆诗松概率论第三版教材课后题重点茆诗松教授的《概率论第三版》是概率论的经典教材之一,深受学术界和教育界的好评。
该教材的课后题对提高学生的概率论技能非常有帮助,以下是一些重点题目。
一、基本概念与公理1. 概率的简单性质- 概率的非负性质- 概率的规范性质- 概率的可列可加性质2. 概率公理的等价性- Kolmogorov公理和Boole公理的等价性- 等价性的证明过程3. 事件的运算- 事件的包含和相等- 事件的和、积和差集的运算- 运算的应用实例二、条件概率与独立性1. 条件概率的定义与性质- 经典概型和几何概型条件概率的计算- Bayes公式的应用2. 独立事件的概念与判定- 独立性的简单性质- 独立性的应用实例三、随机变量1. 随机变量及其分布函数- 随机变量的概念和分类- 分布函数的定义、性质和应用2. 随机变量的数字特征- 数学期望的定义、性质和计算- 方差与标准差的定义和应用四、离散型随机变量1. 离散型随机变量及其分布律- 离散型随机变量的概念和分类- 分布律的定义、性质和应用2. 常见离散型随机变量- 0-1分布、二项分布、泊松分布的定义、性质和计算- 离散型随机变量的应用实例五、连续型随机变量1. 连续型随机变量及其密度函数- 连续型随机变量的概念和分类- 密度函数的定义、性质和应用2. 常见连续型随机变量- 均匀分布、正态分布、指数分布的定义、性质和计算- 连续型随机变量的应用实例以上是茆诗松教授《概率论第三版》课后题的一些重点内容,通过认真学习和练习,可以提高学生的概率论技能和应用能力,更好地理解概率论的基本概念和原理。
茆诗松《概率论与数理统计教程》课后习题

茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。
本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第二部分为课后习题及详解。
本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。
课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。
第三部分为章节题库及详解。
本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。
熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。
第四部分为模拟试题及详解。
参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。
通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。
本书提供电子书及打印版,方便对照复习。
目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。
茆诗松概率论教案

茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间定义随机现象、样本空间、事件列举实例,解释随机现象和样本空间的概念1.2 概率的定义与性质引入概率的概念,讲解概率的计算方法探讨概率的基本性质,如归一性、互补性等1.3 条件概率与独立性引入条件概率的概念,讲解条件概率的计算方法探讨事件的独立性,讲解独立事件的概率计算规则第二章随机变量及其分布2.1 随机变量的概念定义随机变量、随机变量的取值、随机变量的分布举例说明随机变量的概念及其应用2.2 离散型随机变量的概率分布讲解离散型随机变量的概率分布,如二项分布、泊松分布等探讨离散型随机变量的数学期望和方差的概念及计算方法2.3 连续型随机变量的概率密度讲解连续型随机变量的概率密度,如正态分布、均匀分布等探讨连续型随机变量的数学期望和方差的计算方法第三章随机向量及其分布3.1 随机向量的概念定义随机向量、随机向量的取值、随机向量的分布举例说明随机向量的概念及其应用3.2 离散型随机向量的分布讲解离散型随机向量的分布,如二元随机向量、多元随机向量等探讨离散型随机向量的数学期望和方差的概念及计算方法3.3 连续型随机向量的分布讲解连续型随机向量的分布,如二维正态分布、均匀分布等探讨连续型随机向量的数学期望和方差的计算方法第四章数学期望与方差4.1 数学期望的概念与计算定义数学期望,讲解数学期望的计算方法探讨数学期望的性质,如线性性、单调性等4.2 方差的概念与计算定义方差,讲解方差的计算方法探讨方差的性质,如非负性、线性性等4.3 协方差与相关系数讲解协方差的概念及计算方法探讨相关系数的定义及计算方法,讲解相关系数的性质与应用第五章大数定律与中心极限定理5.1 大数定律讲解大数定律的概念及意义,如弱大数定律、强大数定律等探讨大数定律的应用及在实际问题中的重要性5.2 中心极限定理讲解中心极限定理的概念及意义探讨中心极限定理的应用,如样本均值的分布、样本方差的分布等5.3 随机变量的标准化讲解随机变量标准化的概念及方法探讨标准化随机变量在概率论中的应用,如正态分布的标准化等第六章随机过程及其基本性质6.1 随机过程的概念定义随机过程,讲解随机过程的表示方法举例说明随机过程的应用,如随机游走、随机振动等6.2 随机过程的分布函数讲解随机过程的分布函数的概念及计算方法探讨随机过程的分布函数的性质,如单调性、规范性等6.3 随机过程的协方差函数讲解随机过程的协方差函数的概念及计算方法探讨随机过程的协方差函数的性质,如对称性、规范性等第七章马尔可夫链7.1 马尔可夫链的概念定义马尔可夫链,讲解马尔可夫链的表示方法举例说明马尔可夫链的应用,如天气变化、人口迁移等7.2 马尔可夫链的转移概率讲解马尔可夫链的转移概率的概念及计算方法探讨马尔可夫链的转移概率的性质,如无后效性、规范性等7.3 马尔可夫链的稳态分布讲解马尔可夫链的稳态分布的概念及计算方法探讨马尔可夫链的稳态分布的性质,如唯一性、非增性等第八章随机分析8.1 随机微分的概念定义随机微分,讲解随机微分的表示方法举例说明随机微分的应用,如金融市场的波动等8.2 随机微分方程讲解随机微分方程的概念及求解方法探讨随机微分方程的性质,如唯一性、存在性等8.3 随机积分讲解随机积分的概念及计算方法探讨随机积分的性质,如线性性、规范性等第九章随机最优化9.1 随机最优化问题定义随机最优化问题,讲解随机最优化问题的表示方法举例说明随机最优化问题的应用,如金融风险管理等9.2 随机最优化方法讲解随机最优化方法的概念及求解方法探讨随机最优化方法的性质,如收敛性、有效性等9.3 随机最优化问题的数值解法讲解随机最优化问题的数值解法概念及计算方法探讨随机最优化问题的数值解法的性质,如准确性、稳定性等第十章蒙特卡洛方法及其应用10.1 蒙特卡洛方法的概念定义蒙特卡洛方法,讲解蒙特卡洛方法的原理及步骤举例说明蒙特卡洛方法的应用,如随机模拟、参数估计等10.2 蒙特卡洛方法的收敛性讲解蒙特卡洛方法的收敛性概念及判断方法探讨蒙特卡洛方法的收敛性的性质,如收敛速度、条件等10.3 蒙特卡洛方法的应用讲解蒙特卡洛方法在实际问题中的应用,如金融市场模拟、风险管理等探讨蒙特卡洛方法的优缺点及其在实际应用中的限制重点和难点解析一、概率的定义与性质:理解概率的概念,掌握概率的计算方法,特别是概率的基本性质,如归一性、互补性等。
概率论讲义(茆诗松)

注意:(1) 随机变量 X () 是样本点 的函数,其定义域为 ,其值域为
R (, ) ,若 X 表示掷一颗骰子出现的点数,则{X 1.5}是不可能事件;
(2) 若 X 为随机变量,则{X k}、{a X b}、…均为随机事件,即:
b
(2) p(a X b) a p(x)dx ;
(3) F (x) 是 (, ) 上的连续函数;
(4) p( X x) F (x) F (x 0) 0 ;
§2.1.3 离散随机变量的概率分布列 定义 2.1.3 设 X 是一个离散随机变量,如果 X 的所有可能取值是 x1 、
x2 、…、 xn 、…,则称 X 取 xi 的概率
精彩文档
实用标准文案
pi p(xi ) p( X xi )
(i 1, 2,n,)
为 X 的概率分布列或简称为分布列,记为 X ~ pi 。
求离散随机变量的分布列应注意: (1) 确定随机变量的所有可能取值; (2) 计算每个取值点的概率。 对离散随机变量的分布函数应注意:
(1) F (x) 是递增的阶梯函数;
(2) 其间断点均为右连续的; (3) 其间断点即为 X 的可能取值点; (4) 其间断点的跳跃高度是对应的概率值。 例 2.1.2 已知 X 的分布列如下:
意的 x1 x2 ,有 F (x1) F (x2 ) ;
(2) 有界性: x ,有 0 F (x) 1 ,且
F () lim F (x) 0 x
F () lim F (x) 1 x
(3) 右连续性: F (x) 是 x 的右连续函数,即对任意的 x0 ,有
lim
x x0
茆诗松概率论与数理统计1.3

...... (1)n1 P( A1 A2 ......An )
n
1 n
Cn2
1 n(n 1)
C
3 n
n(n
1 1)(n
2)
Cn4
n(n
1 1)(n
2)(n
3)
L
(1)n
1 n!
1 1 1 1 L (1)n 1
2! 3! 4!
n!
习题1.3 14题相同模型
在古典概型中注意到事件的对称性可以简化计算。 思考:掷2n+1次硬币,则正面次数比反面次数多的 概率为?
18/20 1.3 概率的性质
二、事件序列的极限
定义2 若事件序列{Fn}满足:F1 F2 … Fn …
则称{Fn}为单调不减事件序列,其极限事件为
U lim
n
Fn
Fn
n1
P( AB) 1 P( A B)
1 P( A) P(B) P( AB) 8n 5n 4n
1 9n 9n 9n
16/20 1.3 概率的性质
利用对称性计算概率:
例8 甲掷硬币n+1次,乙掷n次. 求甲掷出的正面数 比乙掷出的正面数多的概率.
解:记甲正=“甲掷出的正面数”,乙正=“乙掷出的正面 数” 因为甲P反{甲=“正甲>乙掷正出}=的P反{甲面反数>”乙,反}乙(反对=称“乙性掷) 出的反面数”
§1.3 概率的性质
概率的可加性 概率的单调性 概率的加法公式 概率的连续性
1/20 1.3 概率的性质
学习目标
1. 理解概率的可加性 2. 理解概率的单调性 3. 掌握概率的加法公式
茆诗松概率论与数理统计教程

例三. 写出下列随机试验的样本空间, 用样本点的集合表示
所述事件. 袋中有3个白球和2个黑球, 从其中任取2个球, 令A表示“取出的全是白球”, B表示“取出的全是黑 球”, C表示“取出的球颜色相同”, D表示“取出的两个 球至少有一个白球”
解 : 解法(a) : ABC
根据事件的运算法 则可验证, 这三
种解法的结果相 同
解法(b) : 该事件从字面来理解就是"A,B,C中至 少有一个不发生", 所以就是A B C.
解法(c) : 该事件可分解为3种情况: (i)"ABC恰好有一个不发生", 即ABC ABC ABC (ii)"ABC恰好有两个不发生",即A BC ABC ABC (iii)"ABC都不发生",即A B C
事件A也可表示为X是奇数; 事件B是X为偶数; 事件C是 X=6; 事件D是X≥2; 事件E是X=0.
注意: 在实际问题中, 哪一种表示方法方便且有利 于问题的解答就采用哪一种.
3. 事件间的关系与运算
因为事件就是样本点的集合, 所以事件间的关系与 运算类比于集合间的关系与运算.
事件间的关系:包含关系, 相等关系, 互不相容关系
(2) 掷一颗骰子的样本空间为: Ω={1,2,3,4,5,6}. (3) 调查10名婴儿中的男婴数的样本空间为:
Ω={0,1,2,3,4,5,6,7,8,9,10}. (4) 试验II的样本空间为: Ω={白球, 黑球}.
(概率论与数理统计茆诗松)第5章统计量及其分布

统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。
性
构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域
茆诗松概率论教案

茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间引入随机现象的定义,解释其特点。
介绍样本空间的概念,举例说明。
1.2 随机事件与概率定义随机事件的术语,如必然事件、不可能事件、独立事件等。
解释概率的定义,讨论概率的性质。
1.3 条件概率与独立性引入条件概率的概念,给出计算公式。
讨论独立事件的性质,证明独立事件的概率乘积公式。
第二章随机变量及其分布2.1 随机变量的概念定义随机变量的概念,解释离散随机变量和连续随机变量的区别。
2.2 离散随机变量的概率分布引入概率分布的概念,讨论离散随机变量的概率分布函数。
介绍二项分布、泊松分布等常见的离散随机变量分布。
2.3 连续随机变量的概率分布解释连续随机变量的概率密度函数的概念。
介绍均匀分布、正态分布等常见的连续随机变量分布。
第三章随机变量的数字特征3.1 随机变量的期望值定义随机变量的期望值的概念,讨论期望值的性质。
给出计算随机变量期望值的方法。
3.2 随机变量的方差与标准差定义随机变量的方差和标准差的概念,解释其意义。
给出计算随机变量方差和标准差的方法。
3.3 随机变量的不完全信息引入条件期望的概念,讨论条件期望的性质。
解释协方差与相关系数的定义,讨论其性质与应用。
第四章随机向量及其分布4.1 随机向量的概念定义随机向量的概念,解释随机向量的分布。
4.2 随机向量的联合分布介绍随机向量的联合分布的概念,讨论随机向量的独立性。
4.3 随机向量的边缘分布与条件分布解释边缘分布的概念,给出计算边缘分布的方法。
引入条件分布的概念,讨论条件分布的性质。
第五章随机过程及其基本性质5.1 随机过程的概念定义随机过程的概念,解释其特点。
5.2 随机过程的分布函数介绍随机过程的分布函数的概念,讨论其性质。
5.3 随机过程的马尔可夫性解释马尔可夫过程的概念,讨论其性质。
5.4 随机过程的独立增量性引入独立增量性的概念,解释其意义。
第六章随机过程的数学期望6.1 随机过程的数学期望概念引入随机过程的数学期望的概念,解释其在随机过程中的重要性。
概率论与数理统计茆诗松讲义_百度文库

第二章随机变量及其分布上一章研究内容:事件(集合A)→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1. 随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable),常用大写英文字母X, Y, Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x, y, z.对于随机变量首先应掌握它的全部可能取值:⎧1,正面如掷硬币,X=⎨,X的全部可能取值为0, 1; 0,反面⎩掷两枚骰子,X表示掷出的点数之和,X的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X,X的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X表示使用的小时数,X的全部可能取值为[0,+∞);一场足球比赛(90分钟),用X表示首次进球时间(分钟),若为0:0,记X = 100,X的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法.例掷一枚骰子,用X表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3.例 X 表示商店一天中某商品的销售件数(顾客的需求件数),则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a件该商品,事件“能满足顾客需要”,即X ≤ a.例 X 表示一只电子元件的使用寿命(小时),则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上.例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100,则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2,3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X(小时),全部可能取值是[0,+∞).下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义如果随机变量X的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X的全部可能取值为x1, x2, …, x k , …,则X取值x k的概率pk = p (xk) = P{X = xk }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function,PDF),简称概率分布或概率函数.直观上,又写为XPx1p(x1)x2Lp(x2)L⎛x1 或 X~⎜⎜p(x)p(xk)L1⎝xkLx2Lp(x2)LxkL⎞⎟,⎟p(xk)L⎠称为X的概率分布列.如掷一枚骰子,X表示出现的点数,X的分布列为P66666. 6概率函数基本性质:(1)非负性p(xk) ≥ 0 , k = 1, 2, ……;(2)正则性∑p(xk=1∞k)=1.这是因为事件X = x1 , X = x2 , … , X = x k , … 是一个完备事件组,故P{X = x1} + P{X = x2} + … + P{X = x k} + … = P (Ω) = 1,即p (x1) + p (x2) + … + p (xk) + … = 1.例设盒中有2个红球3个白球,从中任取3球,以X表示取得的红球数.求X的分布列.解:X 的全部可能取值0, 1, 2 ,样本点总数为n=⎜⎜⎟⎟=10,⎛5⎞⎝3⎠⎛3⎞1⎟X = 0表示“取到3个白球”,所含样本点个数为k0=⎜=1,有p(0)==0.1,⎜3⎟10⎝⎠⎛3⎞⎛2⎞6⎟⎜⎟X = 1表示“取到1个红球2个白球”,所含样本点个数为k1=⎜=6,有p(1)==0.6,⎜2⎟⎜1⎟10⎝⎠⎝⎠⎛3⎞⎛2⎞3⎟⎜⎟X = 2表示“取到2个红球1个白球”,所含样本点个数为k2=⎜=3,有p(2)==0.3.⎜1⎟⎜2⎟10⎝⎠⎝⎠故X的分布列为XP012. 0.10.60.3求离散型随机变量X的概率分布步骤:(1)找出X的全部可能取值,(2)将X的每一取值表示为事件,(3)求出X的每一取值的概率.例现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X表示抽取次数,求X的概率分布.解:X的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有p(1)=7, 10377,⋅=109303277X = 3表示“第3次取得合格品且前两次是不合格品”,有p(3)=,⋅⋅=109812032171X = 4表示“第4次取得合格品且前三次是不合格品”,有p(4)=,⋅⋅⋅=10987120故X 的分布列为 X = 2表示“第2次取得合格品且第1次是不合格品”,有p(2)= P1030120. 120例上例若改为有放回地抽取,又如何?解:X的全部可能取值1 , 2 , … , n , … ,p(1)=737=0.7,p(2)=⋅=0.21,p(3)=0.32×0.7,…,p(k)=0.3k−1×0.7,…, 101010 k=1,2,L;故X的概率函数为p(k)=0.3k−1×0.7,X的分布列为XPk.0.70.210.32×0.7L0.3k−1×0.7L123C,k = 1, 2, 3, 4,且C为常数. k求:(1)C的值,(2)P{X = 3},(3)P{X < 3}.CCC解:(1)由正则性知:p(1)+p(2)+p(3)+p(4)=C+++=1,即C=1,故C=. 1225234例若离散型随机变量的概率函数为p(k)=(2)P{X=3}=p(3)=4, 2512618+=. 252525(3)P{X<3}=p(1)+p(2)=2.1.3. 随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间(−∞, x].定义随机变量X与任意实数x,称F(x) = P{X ≤ x},−∞< x < +∞为X的累积分布函数(Cumulative Distribution Function,CDF),简称分布函数.P{a < X ≤ b} = P{X ≤ b} − P{X ≤ a} = F(b) − F(a),P{X > a} = 1 − P{X ≤ a} = 1 −F(a),由概率的连续性知P{X<a}=lim−P{X≤x}=lim−F(x)=F(a−0),且P{X = a} = P{X ≤ a} − P{X < a} = F(a) − F(a – 0),x→ax→a可见X在任一区间上或任一点取值的概率都可用分布函数表示.例已知随机变量X的分布列为XP0120.20.50.3,求X的分布函数.解:X的全部可能取值为0, 1, 2,当x < 0时,F(x) = P{X ≤ x} = P (∅) = 0,当0 ≤ x < 1时,F(x) = P{X ≤ x} = p(0) = 0.2,当1 ≤ x < 2时,F(x) = P{X ≤ x} = p(0) + p(1) = 0.7,当x ≥ 2时,F(x) = P{X ≤ x} = P (Ω ) = 1,⎧0,⎪0.2,⎪故F(x)=⎨⎪0.7,⎪⎩1,F(x)=P{X≤x}=x<0,0≤x<1,1≤x<2,x≥2.若离散型随机变量的全部可能取值为x1, x2, ……,概率函数p (xk ) = pk,k = 1, 2, ……,则分布函数xk≤x∑p(xk).且离散型随机变量的分布函数F(x)是单调不减的阶梯形函数,X的每一可能取值xk 是F(x)的跳跃点,跳跃高度是相应概率p (xk ).⎧0,⎪0.3,⎪⎪例已知某离散型随机变量X的分布函数为F(x)=⎨0.4,⎪0.6,⎪⎪⎩1,x<−1−1≤x<0,0≤x<2, 求X的分布列.2≤x<5,x≥5,解:X的全部可能取值是F(x)的跳跃点,即−1, 0, 2, 5,跳跃高度依次为:p(−1) = 0.3 − 0 = 0.3;p(0) = 0.4 − 0.3 = 0.1;p(2) = 0.6 − 0.4 = 0.2;p(5) = 1 − 0.6 = 0.4.故X的分布列为XP−10250.30.10.20.4.分布函数的基本性质:(1)单调性,F(x) 单调不减,即x1 < x2时,F(x1) ≤ F(x2);(2)正则性,F(−∞) = 0,F(+∞) = 1;(3)连续性,F(x) 右连续,即limF(x)=F(x0). +x→x0证:(1)当x1 < x2时,{X ≤ x1} ⊂ {X ≤ x2},有F(x1) ≤ F(x2);(2)F(−∞) = P{X < −∞} = P (∅) = 0,F(+∞) = P{X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x0的数列{xn},有lim{X≤xn}=I{X≤xn}={X≤x0},n→∞n=1∞⎛∞⎞根据概率的连续性知limP{X≤xn}=P⎜{X≤x}F(x)=F(x0). n⎟⎜I⎟=P{X≤x0},即xlim+n→∞→x0⎝n=1⎠但F(x)不一定左连续,任取单调增加且趋于x0的数列{xn},⎛∞⎞⎟有lim{X≤xn}=U{X≤xn}={X<x0},得limP{X≤xn}=P⎜{X≤x}Un⎜⎟=P{X<x0},n→∞n→∞n=1⎝n=1⎠故lim−F(x)=P{X<x0}=F(x0)−P{X=x0}.x→x0∞2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数.注意:概率为0的事件不一定是不可能事件.定义随机变量X的分布函数F(x),若存在函数p(x),使F(x)=∫x−∞p(u)du,则称X为连续型随机变量,p(x)为X的概率密度函数(可以理解为:p(u)为概率密度,p(u)du为X在该小区间内取值的概率,∫x−∞为从−∞到x无限求和.几何意义:在平面上作出密度函数p(x)的图形,则阴影部分的面积即为F(x)的值.密度函数基本性质:(1)非负性p(x) ≥ 0;+∞(2)正则性∫p(x)dx=1.−∞因∫x−∞p(u)du=F(x),有∫+∞−∞p(x)dx=F(+∞)=1.连续型随机变量的性质:设连续型随机变量X的概率密度函数为p (x),分布函数为F(x),则有(1)P{x1<X≤x2}=F(x2)−F(x1)=∫(2)当p(x) 连续时,p(x) = F ′(x);因F(x)=∫x−∞x2x1p(x)dx;p(u)du,当p(x) 连续时,有F′(x)=[∫x−∞p(u)du]′=p(x)(3)X在单独一个点取值的概率为0,其分布函数为连续函数;随机变量在某区间内的(4)P{x1 < X ≤ x2} = P{x1 ≤ X ≤ x2} = P{x1 < X < x2} = P{x1 ≤ X < x2},即连续型...概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例设F (x) = A + B arctan x为某连续型随机变量X的分布函数.求:(1)A, B;(2)P{−1≤X≤};(3)密度函数p (x).解:(1)由正则性F (−∞) = 0,F (+∞) = 1,得:lim(A+Barctanx)=A−x→−∞ππB=0,lim(A+Barctanx)=A+B=1,x→+∞221故A=1,B=;π(2)F(x)=11⎛11π⎞⎡11⎛π⎞⎤7+arctanx,得P{−1≤X≤}=F(3)−F(−1)=⎜+⋅⎟−⎢+⋅⎜−⎟⎥=.2π⎝2π3⎠⎣2π⎝4⎠⎦121.π(1+x2)(3)密度函数p(x)=F′(x)=例已知⎧C(x2−x3),0<x<1,p(x)=⎨其它,⎩0,是某连续型随机变量X的密度函数,1求:(1)C,(2)P{−1<X<,(3)分布函数F (x).2解:(1)由正则性:∫1+∞−∞p(x)dx=1,111x3x4C23得∫C(x−x)dx=C(−=C(−−0==1,03403412故C = 12;12xx1115(2)P{−1<X<=∫p(x)dx=∫12(x2−x3)dx=12(−=12(−)=;2340246416(3)X的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,F(x)=∫x12−112034−∞p(u)du=0,xxxu3u423当0 ≤ x < 1时,F(x)=∫p(u)du=∫12(u−u)du=12(−=4x3−3x4,0−∞340当x ≥ 1时,F(x)=∫x−∞p(u)du=∫12(u2−u3)du=1,1x<0,⎧0,⎪故F(x)=⎨4x3−3x4,0≤x<1,⎪1,x≥1.⎩例已知⎧|x|,−1<x<1,p(x)=⎨0,,其它⎩是某连续型随机变量X的密度函数,求分布函数F (x).解:分段点−1, 0, 1,当x < −1时,F(x)=∫x−∞p(u)du=0;xxx当−1 ≤ x < 0时,F(x)=∫x−∞u2p(u)du=∫(−u)du=−−12x−1x211−x2;=−+=222u2当0 ≤ x < 1时,F(x)=∫p(u)du=∫(−u)du+∫udu=−0−∞−12当x ≥ 1时,F(x)=∫x−1u2+2x1x21+x2=0++=;222−∞p(u)du=∫(−u)du+∫udu=1.−101x<0,⎧0,2⎪1−x,−1≤x<0,⎪⎪2故F(x)=⎨ 2+1x⎪,0≤x<1,⎪2⎪x≥1.⎩1,§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念.2.2.1. 数学期望的概念例甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好?分析:比较他们射中的平均环数85=8.5环; 10131乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中=&8.73环.故乙的表现更好. 15一般地,若在n次试验中,出现了m1次x1,m2次x2,…,mk次xk ,(其中m1 + m2 + … + mk = n),甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中km1x1+m2x2++mkxkm则平均值为=∑xii,即平均值等于取值与频率乘积之和. nni=1因n很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近.2.2.2. 数学期望的定义定义设离散型随机变量X的分布列是⎛x1X~⎜⎜p(x)1⎝∞Lx2p(x2)LL⎞xk⎟, p(xk)L⎟⎠,记为E (X ).如果级数∑xkp(xk)绝对收敛,则称之为X的数学期望(Expectation)k=1数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.14⎞⎛−20 如X的分布列为⎜⎟,则E(X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6.⎜0.30.10.40.2⎟⎠⎝例某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X表示射击次数,求E (X ).解:先求X的分布列,X的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24;X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144;X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.234⎞⎛1则X的分布列为⎜⎜0.40.240.1440.216⎟⎟,⎝⎠故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.⎛(−2)k例若X的概率函数为p⎜⎜k⎝∞⎞1 ⎟⎟=2k,k=1,2,L,求E(X).⎠∞(−2)k1(−1)k收敛但不是绝对收敛,故E (X ) 不存在.解:因∑⋅k=∑kk2k=1k=1离散型随机变量的数学期望是取值乘概率求和:∑xkp(xk),类似可定义连续型随机变量的数学期望k=1∞是取值乘密度积分:∫xp(x)dx.−∞+∞定义设连续型随机变量X的密度函数为p(x).如果广义积分∫xp(x)dx绝对收敛,则称之为X的数学期−∞+∞望,记为E (X ).例已知连续型随机变量X 的密度函数为⎧2x,0<x<1, p(x)=⎨0,其它.⎩求E (X ). x3解:E(X)=∫xp(x)dx=∫x⋅2xdx=2⋅−∞03+∞11=02. 3例已知X 的密度函数为⎧a+bx,0<x<2, p(x)=⎨0,其它.⎩且E(X)=2,求a, b. 3+∞x2解:由正则性得∫p(x)dx=∫(a+bx)dx=(ax+b⋅=2a+2b=1,−∞02022又E(X)=∫xp(x)dx=∫−∞+∞2082x2x3x(a+bx)dx=(a⋅+b⋅)=2a+b=, 2303321. 2例已知X 的密度函数为故a=1,b=−p(x)=求E (X ).1,−∞<x<+∞,π(1+x2)解:因∫xp(x)dx=∫−∞+∞+∞+∞x11122dx=⋅d(x)=ln(1+x)发散,∫−∞π(1+x2)2−∞−∞π(1+x2)2π+∞故E (X )不存在.2.2.3. 数学期望的性质设X为随机变量,g (x) 为函数,则称Y = g (X ) 为随机变量函数,Y也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理设X为随机变量,Y = g (X ) 为随机变量函数,则(1)若X为离散型随机变量,概率函数为p(xk ), k = 1, 2, …,则E(Y)=E[g(X)]=∑g(xk)p(xk);k=1∞(2)若X为连续型随机变量,密度函数为p (x),则E(Y)=E[g(X)]=∫g(x)p(x)dx.−∞+∞数学期望具有以下性质:(1)常数的期望等于其自身,即E (c) = c;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g1 (X ) + g2 (X )] = E [g1 (X )] + E [g2 (X )].证明:(1)将常数c看作是单点分布p (c) = 1,故E (c) = c p (c) = c;(2)以连续型为例加以证明,E(aX)=∫axp(x)dx=a∫xp(x)dx=aE(X);−∞−∞+∞+∞(3)以连续型为例加以证明,E[g1(X)+g2(X)]=∫[g1(x)+g2(x)]p(x)dx=∫g1(x)p(x)dx+∫g2(x)p(x)dx −∞−∞−∞+∞+∞+∞= E [g1 (X )] + E [g2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质.例设X的分布列为12⎞⎛−10⎜⎜0.20.10.40.3⎟⎟,⎝⎠求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 ×0.1 + 1 × 0.4 + 4 × 0.3 = 1.8.例已知圆的半径X是一个随机变量,密度函数为⎧1⎪,1<x<3, p(x)=⎨2⎪⎩0,其他.求圆面积Y的数学期望.解:圆面积Y = π X 2,1πx故E(Y)=∫πx2p(x)dx=∫πx2⋅=⋅−∞1223+∞333=113π. 3例设国际市场对我国某种出口商品的需求量X(吨)的密度函数为⎧1⎪,2000<x<4000, p(x)=⎨2000⎪其他.⎩0,设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a吨,每年获利Y万美元.当X ≥ a时,销售a吨,获利3a万美元;当X < a时,销售X吨,积压a − X吨,获利3X − (a − X) = 4X − a万美元;a≤X≤4000,⎧3a,即Y=g(X)=⎨ 4X−a,2000≤X<a.⎩则E(Y)=∫g(x)p(x)dx=∫−∞+∞a2000(4x−a)⋅a40001113a4000dx+∫3a⋅dx=+x(2x2−ax)a20002000200020002000a11a2+7a−4000=−(a−3500)2+8250, 10001000故计划年出口量为3500吨时,使国家获利的期望最大.=−§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502;乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10.2.3.1. 方差的定义定义随机变量X与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义随机变量X,若E [X − E (X )]2存在,则称之为X的方差(Variance),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称X)为X的标准差(Standard Deviation).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中.例设X的分布列为23⎞⎛1⎜⎜0.20.40.4⎟⎟,⎝⎠求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56.例已知X 的密度函数为⎧2x,0<x<1,p(x)=⎨ 0,其他.⎩求E (X ), Var (X ). x3解:E(X)=∫xf(x)dx=∫x⋅2xdx=2⋅−∞03+∞11=02; 31128884⎞1841⎛2Var(X)=∫(x−2p(x)dx=∫(2x3−x2+x)dx=⎜x4−x3+x2⎟=−+=.0−∞33 999⎠029918⎝4+∞例已知X的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X的分布列.⎛012⎞解:设X的分布列为⎜⎜abc⎟⎟,⎝⎠由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81,解得a = 0.3,b = 0.1,c = 0.6,12⎞⎛0故X的分布列为⎜⎜0.30.10.6⎟⎟.⎝⎠2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2;(2)常数的方差等于零,即Var (c) = 0;(3)设a, b为常数,则Var (a X + b) = a 2 Var (X ).证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c) = E [c − E (c)]2 = E (c − c)2 = E (0) = 0;(3)Var (a X + b) = E [(a X + b) − E (a X + b)]2 = E [a X + b − a E (X ) − b]2 = a 2 E [X − E (X )]2 = a 2 Var (X ).由性质(1),显然有以下推论:推论对于随机变量X,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便.例设X的分布列为23⎞⎛1⎜⎜0.20.40.4⎟⎟,⎝⎠求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4,故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56.例已知X 的密度函数为⎧2x,0<x<1, p(x)=⎨其他0,.⎩求Var (X ).解:前面已求得E(X)=12, 31x422因E(X)=∫x⋅2xdx=2⋅0422=01, 221⎛2⎞1.故Var(X)=E(X)−[E(X)]=−⎜⎟=2⎝3⎠18对于随机变量X,若方差Var (X ) 存在,且Var (X ) > 0.令X*=有X−E(X)Var(X),⎛X−E(X)⎞11⎟=E(X*)=E⎜E[X−E(X)]=[E(X)−E(X)]=0;⎜⎟⎝⎠⎛X−E(X)⎞11⎟=Var(X*)=Var⎜Var[X−E(X)]=Var(X)=1.⎜Var(X)⎟Var(X)Var(X)⎝⎠称X *为X的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理设X为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有P{|X−E(X)|≥ε}≤Var(X)ε2.证明:以连续型随机变量为例证明,设X的密度函数为p (x),有P{|X−E(X)|≥ε}=|x−E(X)|≥∫p(εx)dx,且ε2Var(X)ε2=1ε2E[X−E(X)]=∫+∞2+∞[x−E(X)]2−∞ε2Var(X)p(x)dx,故P{|X−E(X)|≥ε}≤注:切比雪夫不等式的等价形式|x−E(X)|≥ε∫[x−E(X)]2p(x)dx≤∫[x−E(X)]2−∞ε2p(x)dx=ε2,得证.P{|X−E(X)|<ε}≥1−Var(X)ε2.如随机变量X的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得13=. 224例设随机变量X的全部可能取值为[0,+∞),且数学期望E (X ) 存在,试证:对任何正数a,都有P{8<X<12}=P{|X−10|<2}≥1−1E(X). a证明:以连续型随机变量为例证明,设X的密度函数为p (x),+∞+∞x11+∞有P{X≥a}=∫p(x)dx,且E(X)=∫xp(x)dx=∫p(x)dx,0aaaa−∞+∞x+∞x1故P{X≥a}≤∫p(x)dx≤∫p(x)dx=E(X),得证.aa0aa定理设随机变量X的方差存在,则Var (X ) = 0的充分必要条件是存在常数b,使得X几乎处处收敛于b,即P{X = b} = 1.证:充分性,设存在常数b,使得P{X = b} = 1,有P{X ≠ b} = 0,即E (X ) = b P{X = b} = b,故Var (X ) = E [X − E (X )]2 =E (X − b)2 = 0 × P{X = b} = 0;必要性,设X的方差Var (X ) = 0,P{X≥a}≤1⎫1⎫⎧⎧因事件{|X−E(X)|>0}=U⎨|X−E(X)|≥⎬=lim⎨|X−E(X)|≥,n⎭n→+∞⎩n⎭n=1⎩⎛+∞⎧则P{|X−E(X)|>0}=P⎜⎜U⎨|X−E(X)|≥⎝n=1⎩1⎫⎞⎧limP=⎨|X−E(X)|≥⎬⎟n→+∞n⎭⎟⎩⎠1⎫Var(X)lim≤=0,⎬n⎭n→+∞⎛1⎞2⎜⎟⎝n⎠+∞可得P{| X − E (X )| > 0} = 0,即P{| X − E (X )| = 0} = 1,取b = E (X ),有b为常数,故P{X = b} = 1.注:如果P{X = b} = 1,记为X = b, a.e.(或a.s.),称为X = b几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数.2.4.1. 两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p,p (1) = p,其中0 < p < 1,⎛0称X服从两点分布(Two-point Distribution)或0-1分布,记为X ~ (0-1).分布列为⎜⎜1−p⎝1⎞⎟. p⎟⎠两点分布实际背景是一次伯努利试验.通常描述为:X表示一次伯努利试验中事件A发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0;正则性:(1 − p) + p = 1.两点分布的数学期望为E (X ) = 0 × (1 − p) + 1 × p = p.又因E (X 2 ) = 02 × (1 − p) + 12 × p = p,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p2 = p(1 − p).二.二项分布在n重伯努利试验中,以X表示事件A的发生次数,则X的全部可能取值为0, 1, 2, …, n ,且⎛n⎞kn−k⎟P{X=k}=⎜p−p. (1)⎜k⎟⎝⎠定义若离散型随机变量X的概率函数为⎛n⎞kn−kp(k)=⎜⎟p(1−p),k = 0, 1, 2, …, n ;0 < p < 1,⎜k⎟⎝⎠则称X 服从二项分布(Binomial Distribution),记为X ~ b (n, p).二项分布的实际背景是n重伯努利试验.当n = 1时,二项分布就是两点分布.⎛n⎞kn−k非负性:p(k)=⎜⎟p(1−p)>0;⎜k⎟⎝⎠⎛n⎞kn−kn⎟正则性:∑p(k)=∑⎜p(1−p)=[p+(1−p)]=1.⎜k⎟k=1k=1⎝⎠nn例掷三枚硬币,X表示正面朝上的次数,求X的概率分布.解:X的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A,反面;每次试验相互独立;每次试验概率P(A)=0.5.即n重伯努利试验,n = 3,p=0.5,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,⎛3⎞12p(1)=⎜⎟×0.5×0.5=0.375,⎜1⎟⎝⎠⎛3⎞21⎟p(2)=⎜×0.5×0.5=0.375,⎜2⎟⎝⎠p (3) = 0.5 3 = 0.125.例现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X表示同一时刻开动的机床数,求X的概率分布.解:X的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A,不开动;每次试验相互独立;每次试验概率P (A) = 0.3.即n重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,⎛5⎞14p(1)=⎜⎟×0.3×0.7=0.36015,⎜1⎟⎝⎠⎛5⎞23⎟×0.3×0.7=0.3087, p(2)=⎜⎜2⎟⎝⎠⎛5⎞32p(3)=⎜⎟×0.3×0.7=0.1323,⎜3⎟⎝⎠⎛5⎞41p(4)=⎜⎟×0.3×0.7=0.02835,⎜4⎟⎝⎠p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X服从二项分布,概率函数值p (k) 将随着k的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X的概率函数或密度函数的最大值点称为X的最可能值.二项分布b (n, p)的最可能值为当(n+1)p不是正整数时,⎧[(n+1)p], k0=⎨np或np当np是正整数时(+1)(+1)−1,(+1).⎩这里[x]表示不超过x的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.⎛n⎞kn!n−k⎟p(1p)−=pk(1−p)n−k,0≤k≤n,证:若X ~ b (n, p),有p(k)=⎜⎜k⎟k!(n−k)!⎝⎠则p(k)−p(k−1)=n!n!pk−1(1−p)n−k+1 pk(1−p)n−k−(k−1)!(n−k+1)!k!(n−k)!=1−p⎞n!⎛ppk−1(1−p)n−k⋅⎜−⎟ (k−1)!(n−k)!⎝kn−k+1⎠(n+1)p−kn!,pk−1(1−p)n−k⋅(k−1)!(n−k)!k(n−k+1)=当k < (n + 1) p时,有p (k) > p (k − 1);当k > (n + 1) p时,有p (k) < p (k − 1).如果(n + 1) p不是正整数,取k0 = [(n + 1) p],有k0 < (n + 1) p,即p (k0) > p (k0 − 1);且k0 + 1 > (n + 1) p,即p (k0 + 1) < p (k0).故p (k0) 为最大值.如果(n + 1) p是正整数,取k0 = (n + 1) p,即p (k0) = p (k0 − 1),故p (k0) 和p (k0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k0 = [1.8] = 1.三.二项分布的数学期望和方差⎛n⎞(n−1)!n!nn⎛n−1⎞⎟.组合数公式⎜==⋅=⎟,(n ≥ k > 0)⎜k−1⎟⎜k⎟k!⋅(n−k)!k(k−1)!⋅(n−k)!k⋅⎜⎠⎝⎝⎠二项分布b (n, p)的数学期望为nn⎛n−1⎞k−1⎛n⎞kn⎛n−1⎞kn−kn−k⎟⎟⎜⎟⎜E(X)=∑k⋅⎜(1)ppkp(1p)npp(1−p)n−k −=−=⋅⋅∑∑⎟⎟⎜⎜⎜k⎟k⎝k−1⎠k=0k=1k=1⎝k−1⎠⎝⎠n= np [ p + (1 − p)]n − 1 = np.又因nn⎛n⎞k⎛n−1⎞k⎛n⎞kn−kn−kn−k2⎟⎜⎟⎟⎜E(X)=∑k⋅⎜ppkk(1)()ppk(1)p(1−p)−+⋅−=−⋅∑∑⎜k⎟⎜k−1⎟⎜k⎟k=0k=0k=0⎝⎠⎠⎝⎝⎠2n2=∑(k2−k)⋅k=2nnn(n−1)⎛n−2⎞k⎟⎜p(1−p)n−k+E(X) ⎟⎜k(k−1)⎝k−2⎠=n(n−1)p2⎛n−2⎞k−2n−k⎟⎜p(1−p)+np ∑⎜k−2⎟k=2⎝⎠= n(n − 1) p2 [ p + (1 − p)]n − 2 + np = (n2 − n) p2 + np,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n2 − n) p2 + np − (np)2 = − np2 + np = np (1 − p).2.4.2. 泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录).定义若随机变量X 的概率函数为k!则称X服从参数为λ 的泊松分布(Poisson’s Distribution),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,正则性:∑∞p(k)=λke−λ,k = 0, 1, 2, …… ;λ > 0,λkk!e−λ>0;λkk!⋅e−λ=eλ⋅e−λ=1.k=0例已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.2.3k−2.3解:因X ~ P(2.5),则p(k)=e,k = 0, 1, 2, ……. k!2.30−2.3比分0:0,即X = 0,p(0)=e=e−2.3=0.100(查表); 0!2.31−2.3比分1:0,即X = 1,p(1)=e=2.3e−2.3=0.331−0.100=0.231(查表); 1!52.3k−2.32.3k−2.3总进球数超过5个,即X > 5,P{X>5}=∑.=1−∑e=1−0.970=0.030(查表)ekk!!k=6k=0∞例已知某公用电话每小时内打电话的人数X服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.8k−8e.解:因X ~ P(8),有P{X=k}=k!80−8无人打电话的概率P{X=0}=e=e−8=0.0003, 0!810−8恰有10人打电话的概率P{X=10}=e=0.816−0.717=0.099(查表), 10!8k−8至少有10人打电话的概率P{X≥10}=∑.e=1−P{X≤9}=1−0.717=0.283(查表)k!k=10∞例已知某商店一天中某种贵重商品的销售件数X服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?7k−7解:设准备了a件该商品,X ~ P(7),则p(k)=e. k!事件“满足顾客需要”,即X ≤ a,有P{X ≤ a} ≥ 0.999,故查表可得a = 16.泊松分布P (λ )的最可能值为当λ不是正整数时,⎧[λ], k0=⎨⎩λ或λ−1,当λ是正整数时.证:若X ~ P(λ),有p(k)=故p(k)−p(k−1)= λkk!−λe−λ,k=0,1,2,L,λkk!e−λk−1(k−1)!e−λλλ−k⎛λ⎞=e⋅⎜−1⎟=e−λ⋅,k(k−1)!⎝k⎠(k−1)!−λλk−1k−1当k < λ 时,有p (k) > p (k − 1);当k > λ 时,有p (k) < p (k − 1).如果λ 不是正整数,取k0 = [λ ] ,有k0 < λ ,即p (k0) > p (k0 − 1);且k0 + 1 > λ ,即p (k0 + 1) < p (k0).故p (k0) 为最大值.如果λ 是正整数,取k0 = λ ,即p (k0) = p (k0 − 1),故p (k0) 和p (k0 − 1) 都是最大值.二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为E(X)=∑k⋅k=0∞λkk!e−λ=∑k=1∞λk(k−1)!e−λ=λe⋅∑−λk=1∞λk−1(k−1)!=λe−λ⋅eλ=λ,即泊松分布的参数λ 反映平均发生次数.又因E(X)=∑k⋅22k=0∞λkk!e−λ=∑(k−k)⋅2k=0∞λkk!e−λ+∑k⋅k=0∞λkk!e−λ=λe⋅∑2−λk=2∞λk−2(k−2)!+E(X)= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布.定理(泊松定理)在n重伯努利试验中,记事件A在每次试验中发生的概率为与试验次数n有关的数pn ,如果当n → +∞ 时,有n pn → λ ,则⎛n⎞kλk−λn−klim⎜⎟pn(1−pn)=e.n→+∞⎜k⎟k!⎝⎠证:记λ n = n pn ,有limλn=λ,n→+∞因(1−pn)n−k=⎜1−⎛⎝λn⎞⎟n⎠n−k⎛−λn⎞=⎜1+⎟n⎠⎝n−λn(n−k)−λnn,−λn(n−k)⎛−λn⎞−λn=−λ,且lim⎜1+=e,lim⎟n→+∞n→+∞nn⎠⎝n−λn⎞⎛则lim(1−pn)n−k=lim⎜1+⎟n→+∞n→+∞n⎠⎝−λn(n−k)−λnnn=e−λ,⎛n⎞n(n−1)(n−k+1)nk⎛又因⎜=⎜1−⎜k⎟⎟=!!kk⎝⎝⎠1⎞⎛1⎞⎛k−1⎞k−1⎞⎛⎟,且lim⎜1−⎟L⎜1−⎟=1,⎟L⎜1−n→+∞nnn⎠⎝n⎠⎠⎠⎝⎝⎛n⎞knkkk−1⎞1⎞⎛n−kn−k⎛⎟故lim⎜ppppL(1)lim(1)11−=−−−⎜⎟⎜⎟nnnnn→+∞⎜k⎟n→+∞k!n⎠⎝n⎠⎝⎝⎠(npn)k⎛=lim⋅lim(1−pn)n−k⋅lim⎜1−n→+∞n→+∞n→+∞k!⎝1⎞⎛k−1⎞λk−λe.⎟=⎟L⎜1−n⎠⎝n⎠k!此定理表明对于二项分布b (n, p),当n很大,p很小时,可用泊松分布P (λ ) 近似,其中λ = n p.例某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).5⎛60000⎞⎛60000⎞859992k60000−k⎟⎜PX则P{X=8}=⎜×0.0001×0.9999,{≤5}=,∑⎜8⎟⎜k⎟⎟×0.0001×0.9999k=0⎝⎝⎠⎠但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有X~&P(6),568−66k−6e=0.847−0.744=0.103,P{X≤5}≈∑e=0.446.故P{X=8}≈8!k=0k!2.4.3. 超几何分布一.超几何分布在N件产品中,有M件次品,从中不放回地取n件,以X表示取得的次品数.设X取值为k,一方面,显然有k ≤ n且k ≤ M,即k ≤ min{n, M},另一方面,有k ≥ 0且n − k ≤ N − M,可得k ≥ M + n − N,即k ≥ max{0, M + n − N }.这样X的全部可能取值为l, l + 1, …, L,其中l = max{0, M + n − N },L = min{n, M},且⎛M⎞⎛N−M⎞⎜⎜k⎟⎟⎜⎜n−k⎟⎟⎝⎠⎝⎠. P{X=k}=⎛N⎞⎜⎜n⎟⎟⎝⎠定义若随机变量X的概率函数为⎛M⎞⎛N−M⎞⎜⎜k⎟⎟⎜⎜n−k⎟⎟⎝⎠⎝⎠,k = l, l + 1, …, L,l = max(0, n + M − N ),L = min(M, n),M < N,n < N, p(k)= ⎛N⎞⎜⎜n⎟⎟⎝⎠则称X服从超几何分布(Hypergeometric Distribution),记为X ~ h (n, N, M).超几何分布的实际背景是古典概型中的不放回抽样检验问题.注:有放回检验抽样问题对应的是二项分布.⎛M⎞⎛N−M⎞⎜⎜k⎟⎟⎜⎜n−k⎟⎟⎝⎠⎝⎠>0;非负性:⎛N⎞⎜⎜n⎟⎟⎝⎠⎛M⎞⎛N−M⎞⎜⎟⎜⎟L⎜k⎟⎜n−k⎟⎝⎠⎝⎠=正则性:∑⎛N⎞k=0⎜⎜n⎟⎟⎝⎠注:比较(1 + x)(1 + x) M N −M⎛M⎞⎛N−M⎞⎛N⎞⎜∑⎜k⎟⎟⎜⎜n−k⎟⎟⎜⎜n⎟⎟k=l⎝⎠⎝⎠=⎝⎠=1.⎛N⎞⎛N ⎞⎜⎟⎜⎜n⎟⎜n⎟⎟⎝⎠⎝⎠L⎛M⎞⎛N−M⎞⎛N⎞与(1 + x)中x的系数可以证明∑⎜⎜k⎟⎟⎜⎜n−k⎟⎟=⎜⎜n⎟⎟.k=l⎝⎠⎝⎠⎝⎠NnL例一袋中有3个红球,2个白球,不放回地取出3个球,X表示取得的红球数.求X的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X的全部可能取值为1, 2, 3,(l = max (0, n + M − N ) = 1,L = min(n, M) = 3),⎛3⎞⎛2⎞⎛3⎞⎛2⎞⎛3⎞⎛2⎞⎜⎟⎜⎟⎜⎜⎟⎜⎟⎜2⎟⎜1⎟⎜3⎟⎟⎜⎜0⎟⎟⎜1⎟⎜2⎟⎝⎠⎝⎠⎝⎠⎝⎠=0.1.⎝⎠⎝⎠P{X=1}==0.3,P{X=2}==0.6,P{X=3}=⎛5⎞⎛5⎞⎛5⎞⎜⎟⎜⎟⎜⎜3⎟⎜3⎟⎜3⎟⎟⎝⎠⎝⎠⎝⎠超几何分布h (n, N, M )的最可能值为M+1M+1⎧[(1)(1)+n+当不是正整数时,n⎪N+2N+2k0=⎨ M+1M+1M+1⎪(n+1)−1,当(n+1)或(n+1)是正整数时.N+2N+2N+2⎩⎛M⎞⎛N−M⎞⎜⎜k⎟⎟⎜⎜n−k⎟⎟(N−M)!M!⎝⎠⎝⎠=1⋅证:若X ~ h(n, N, M),有p(k)=,⋅⎛N⎞⎛N⎞k!(M−k)!(n−k)!(N−M−n+k)!⎜⎟⎜⎜n⎟⎜n⎟⎟⎝⎠⎝⎠故p (k ) − p (k − 1)=M!(N−M)!⎛N⎞⎜⎟k!(M−k)!(n−k)!(N−M−n+k)!⎜n⎟⎝⎠M!(N−M)!−M!(N−M)!⎛N⎞⎜⎟(k−1)!(M−k+1)!(n−k+1)!(N−M−n+k−1)!⎜n⎟⎝⎠[(M −k+1)(n−k+1)−k(N−M−n+k)] =⎛N⎞⎜⎟k!(M−k+1)!(n−k+1)!(N−M−n+k)!⎜n⎟⎝⎠M!(N−M)!⎛N⎞⎜⎟k!(M−k+1)!(n−k+1)!(N−M−n+k)!⎜n⎟⎝⎠=[(M+1)(n+1)−k(N+2)]. M+1M +1时,有p (k) > p (k − 1);当k>(n+1)时,有p (k) < p (k − 1). N+2N+2M+1M+1如果(n+1)不是正整数,取k0=[(n+1), N+2N+2M+1M+1有k0<(n+1),即p (k0) > p (k0 − 1);且k0+1>(n+1),即p (k0 + 1) < p (k0). N+2N+2故p (k0) 为最大值. M+1M+1如果(n+1)是正整数,取k0=(n+1),即p (k0) = p (k0 − 1), N+2N+2故p (k0) 和p (k0 − 1) 都是最大值.二.超几何分布的数学期望和方差超几何分布h (n, N, M )的数学期望为当k<(n+1)L⎛M−1⎞⎛N−M⎞⎛M⎞⎛N−M⎞M⎛M−1⎞⎛N−M⎞⎟⎜⎜⎟⎟⎜⎜⎟⎜∑⎟⎜n−k⎟⎟⎜⎜k−1⎟⎜k−1⎟⎜n−k⎟⎜k⎟⎜n−k⎟LLknMk=l⎝⎠=nM,⎝⎠⎠⎝⎠⎠⎝⎝⎠⎝E(X)=∑k⋅=⋅=∑k⋅NN⎛N−1⎞⎛N⎞N⎛N−1⎞k=lk=l⎜⎟⎜⎟⎜⎟⎜n−1⎟⎟⎜n⎟n⎜⎝⎠⎝n−1⎠⎝⎠又因⎛M⎞⎛N−M⎞⎛M⎞⎛N−M⎞⎛M⎞⎛N−M⎞⎟⎜⎜⎟⎟⎜⎜⎟⎜⎟⎜n−k⎟⎟⎜⎜k⎟⎜k⎟⎜n−k⎟L⎜k⎟⎜n−k⎟LL⎠⎝⎠⎠⎝⎝⎠⎠⎝⎝⎠22⎝2E(X)=∑k⋅+∑k⋅=∑(k−k)⋅⎛N⎞⎛N⎞⎛N⎞k=lk=lk=l⎜⎜⎟⎜⎟⎜n⎟⎟⎜n⎟⎜n⎟⎝⎠⎝⎠⎝⎠M(M−1)⎛M−2⎞⎛N−M⎞⎟⎜⎟⎜n−k⎟⎟⎜k2−k(k−1)⎜⎠⎠⎝⎝N(N−1)⎛N−2⎞⎜⎟⎜n(n−1)⎝n−2⎟⎠19=∑(k2−k)⋅k=lL+E(X)⎛M−2⎞⎛N−M⎞⎟⎜⎟⎜∑⎟⎜⎟⎜k2nk−−n(n−1)M(M−1)k=l⎝⎠+nM=n(n−1)M(M−1) +nM,⎝⎠⋅=N(N−1)NN(N−1)N⎛N−2⎞⎜⎟⎜n−2⎟⎝⎠L故方差为nM(n−1)(M−1)nMn2M2nM(N−M)(N−n).Var(X)=E(X)−[E(X)]=+−=N(N−1)NN2N2 (N−1)22为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n, p):数学期望E (X ) = np,方差Var (X ) = np (1 − p);超几何分布h (n, N, M ):数学期望E(X)=n可见分布h (n, N, M )中的MM⎛M⎞N−n,方差Var(X)=n;⎟⎜1−NN⎝N⎠N−1MN−n相当于二项分布b (n, p)中的p,方差修正因子为.NN−1三.超几何分布的二项近似直观上,当抽样个数n远小于M及N − M时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.M定理如果当N → +∞ 时,→p, (0 < p < 1),则 N⎛M⎞⎛N−M⎞⎜⎟⎛n⎞⎜n−k⎟⎟⎜⎜k⎟⎠=⎜⎟pk(1−p)n−k.⎝⎠⎝lim⎜k⎟N→+∞⎛N⎞⎝⎠⎜⎜n⎟⎟⎝⎠⎛N⎞N(N−1)(N−n+1)Nn⎛1⎞⎛n−1⎞⎟11L证:因⎜−==−⎟,⎜⎟⎜⎜n⎟!!nnNN⎠⎠⎝⎝⎝⎠⎛M⎞Mk⎛1⎞⎛k−1⎞⎛N−M⎞(N−M)n−k且⎜⎜n−k⎟⎟=(n−k)!⎜k⎟⎟=k!⎜1−M⎟L⎜1−M⎟,⎜⎠⎝⎠⎝⎝⎠⎝⎠1⎛⎜1−N−M⎝n−k−1⎞⎞⎛⎟,⎟L⎜1−N−M⎠⎠⎝⎛M⎞⎛N−M⎞1⎞⎛1⎞⎛Mk⎛k−1⎞(N−M)n−k⎛n−k−1⎞⎟⎜⎟⎜−−−⋅−1111LL⎜⎟⎜⎟⎜⎟⎜⎟⎜k⎟⎜n−k⎟−−−!()!kMMnkNMNM⎝⎠⎝⎝⎠⎝⎠⎠⎠=lim⎝⎠⎝故limnN→+∞N→+∞1⎞⎛N⎛n−1⎞⎛N⎞⎜⎜1−⎟L⎜1−⎟⎜n⎟⎟!nNN⎝⎠⎝⎠⎝⎠1⎞⎛1⎞⎛k−1⎞⎛n−k−1⎞⎛⎟⎟L⎜1−⎟⋅⎜1−⎜1−⎟L⎜1−MMNMNM−−⎠⎠⎝⎠⎝⎠⎝⋅⎝1⎞⎛n−1⎞⎛⎜1−⎟L⎜1−⎟N⎠⎝N⎠⎝Mk(N−M)n−kn!=lim⋅N→+∞k!(n−k)!Nn⎛n⎞M⎞⎛M⎞⎛⎟lim1=⎜⋅−⎜⎟⎜⎟⎜k⎟N→+∞NN⎝⎠⎝⎠⎝⎠kn−k1⎞⎛1⎞⎛k−1⎞⎛n−k−1⎞⎛⎟⎟L⎜1−⎟⋅⎜1−⎜1−⎟L⎜1−MMNMNM−−⎠⎠⎝⎠⎝⎠⎝⋅lim⎝N→+∞1⎞⎛n−1⎞⎛⎜1−⎟L⎜1−⎟NN⎝⎠⎝⎠20⎛n⎞kn−k=⎜⎜k⎟⎟p(1−p).⎝⎠此定理表明对于超几何分布h (n, N, M ),当抽样个数n远小于M及N − M时,可用二项分布b (n, p) 近似,其中p=M. N例某校有20000名学生,其中男生8000人,女生12000人,从中任选6人.求取到2个男生与4个女生的概率.⎛8000⎞⎛12000⎞⎜⎟⎜4⎟⎟⎜⎜2⎟⎠.⎝⎠⎝解:设X表示“选到的男生数”,有X ~ H (6, 20000, 8000),可得p(2)=⎛20000⎞⎜⎜6⎟⎟⎝⎠但显然计算很繁琐,为便于计算,用二项分布近似.因n = 6较小,远小于M = 8000与N − M = 12000,且p=M=0.4,有X~&B(6,0.4), N⎛6⎞24⎟×0.4×0.6=0.31104.故p(2)≈⎜⎜2⎟⎝⎠2.4.4. 几何分布与负二项分布一.几何分布在伯努利试验中,以X表示事件A首次发生时的试验次数,则X的全部可能取值为1, 2, …,且P{X = k} = (1 − p)k − 1 p.定义若随机变量X的概率函数为p (k) = (1 − p)k − 1 p,k = 1, 2, …;0 < p < 1,则称X 服从几何分布(Geometric Distribution),记为X ~ Ge ( p).几何分布的实际背景是首次发生时的试验次数.非负性:(1 − p)k − 1 p > 0;正则性:∑(1−p)k−1p=k=1+∞p=1.1−(1−p)几何分布Ge ( p) 的最可能值显然是k0 = 1.二.几何分布的数学期望和方差令q = 1 − p,有p (k) = q k − 1 p.几何分布Ge ( p) 的数学期望为E(X)=∑kqk=1+∞k−1d(qk)d⎛+∞k⎞d⎛1⎞11⎟⎜⎜⎟,p=p⋅∑qpp=p⋅=⋅==⋅⎜∑⎟2⎜1−q⎟dqdqdqp(1)q−k=0⎝k=0⎠⎠⎝+∞又因E(X)=∑kq22k=1+∞k−1p=∑(k+k)q2k=1+∞k−1p−∑kqk=1+∞k−1d2(qk+1)p=p⋅∑−E(X) 2dqk=0+∞d2=p⋅2dq⎛+∞k+1⎞1212−pd2⎛q⎞1⎟⎜⎜⎟,−=⋅−=pqp−=⋅⎜∑⎟p⎟p2⎜32qp1−(1−)dqqp⎝k=0⎠⎠⎝21故方差为2−p⎛1⎞1−p⎜⎟−.Var(X)=E(X2)−[E(X)]2==2⎜p⎟p2p⎝⎠三.几何分布的无记忆性定理设X服从几何分布Ge ( p),则对任意正整数m与n有P{X > m + n | X > m} = P{X > n}.证:因对于正整数k,有P{X>k}=2i=k+1∑(1−p)+∞i−1(1−p)kpp==(1−p)k,1−(1−p)P{X>m+n}(1−p)m+nn故P{X>m+n|X>m}===(1−p)=P{X>n}.P{X>m}(1−p)m此定理在已经试验m次事件A没有发生的条件下,继续试验n次仍没有发生的条件概率,等于试验n次A没有发生的概率.这称之为几何分布的无记忆性.四.负二项分布在伯努利试验中,以X表示事件A第r次发生时的试验次数,则X的全部可能取值为r, r + 1, …,且⎛k−1⎞k−rr⎟P{X=k}=⎜−pp. (1)⎜r−1⎟⎝⎠定义若随机变量X的概率函数为⎛k−1⎞k−rr p(k)=⎜⎜r−1⎟⎟(1−p)p,k = r, r + 1, …;0 < p < 1,⎝⎠则称X 服从负二项分布(Negative Binomial Distribution),记为X ~ Nb (r, p).实际背景是第r次发生时的试验次数.当r = 1时,负二项分布Nb (1, p)就是几何分布Ge ( p).注:二项分布是已知实验次数时,发生次数的分布;负二项分布是已知发生次数时,试验次数的分布.⎛k−1⎞k−rr非负性:⎜⎜r−1⎟⎟(1−p)p>0;⎝⎠⎛k−1⎞pr+∞dr−1(qk−1)pr+∞k−rrk−r正则性:∑⎜⎜r−1⎟⎟(1−p)p=(r−1)!∑(k−1)L(k−r+1)q=(r−1)!∑dqr−1 k=r⎝k=rk=1⎠+∞prdr−1=⋅r−1(r−1)!dq负二项分布Nb (r, p)的最可能值为∑qk=1+∞k−1prdr−1=⋅r−1(r−1)!dq⎛1⎞pr(r−1)!⎟⎜=⋅⎜1−q⎟(r−1)!(1−q)r=1.⎠⎝⎧⎡r−1⎤r−1,当不是正整数时,⎪1+⎢⎪⎣p⎥p⎦ k0=⎨rrr−1−1−1⎪1+,当或是正整数时.⎪ppp⎩⎛k−1⎞(k−1)!k−rrk−rr⎟(1−p)p=(1−p)p,证:若X ~ Nb (r, p),有p(k)=⎜⎜r−1⎟(r−1)!⋅(k−r)!⎝⎠故p(k)−p(k−1)=(k−1)!(k−2)!(1−p)k−rpr−(1−p)k−r−1pr (r−1)!⋅(k−r)!(r−1)!⋅(k−r−1)! =(k−2)!(1−p)k−r−1pr[(k−1)(1−p)−(k−r)] (r−1)!⋅(k−r)!(k−2)!(1−p)k−r−1pr[(r−1)−(k−1)p],(r−1)!⋅(k−r)!=当k<1+r−1r−1时,有p (k) > p (k − 1);当k>1+时,有p (k) < p (k − 1). pp如果⎡r−1⎤r−1不是正整数,取k0=1+⎢⎥, pp⎣⎦r−1r−1,即p (k0) > p (k0 − 1);且k0+1>1+,即p (k0 + 1) < p (k0). pp有k0<1+ 故p (k0) 为最大值.如果r−1r−1是正整数,取k0=1+,即p (k0) = p (k0 − 1), pp故p (k0) 和p (k0 − 1) 都是最大值.负二项分布Nb (r, p) 的数学期望为⎛k−1⎞pr+∞pr+∞dr(qk)k−rrk−rE(X)=∑k⋅⎜⎜r−1⎟⎟(1−p)p=(r−1)!∑k(k−1)L(k−r+1) q=(r−1)!∑dqr k=rk=rk=0⎝⎠+∞prdr=⋅r(r−1)!dq又因 prdrq=⋅r∑(r−1)!dqk=0+∞k⎛1⎞prr!r⎟⎜=⋅=⎜1−q⎟(r−1)!(1−q)r+1p.⎠⎝+∞+∞⎛k−1⎞⎛k−1⎞⎛k−1⎞k−rrk−rrk−rr2⎟⎜⎟⎜⎟−=+⋅−−⋅−ppppkppkkE(X)=∑k⋅⎜(1)(1)(1)()∑∑⎜r−1⎟⎜r−1⎟⎜r−1⎟k=rk=rk=r⎝⎠⎝⎠⎝⎠2+∞2 pr+∞pr+∞dr+1(qk+1)rk−r=−(k+1)k(k−1)L(k−r+1)q−E(X)=∑∑r+1p(r−1)!k=r(r−1)!k=0dqprdr+1=⋅(r−1)!dqr+1∑qk=0+∞k+1prrdr+1−=⋅p(r−1)!dqr+1⎛q⎞rpr(r+1)!r⎟⎜−−=⋅⎜1−q⎟p(r−1)!(1−q)r+2p ⎠⎝=故方差为r(r+1)−rp, 2pr2+r−rp⎛r⎞r(1−p)⎜⎟−.Var(X)=E(X)−[E(X)]==⎜22⎟pp⎝p⎠222§2.5 常用连续分布2.5.1.均匀分布一.均匀分布的密度函数和分布函数某些随机变量分布在一个区间内,且其中处处都是等可能的.定义若连续型随机变量X的密度函数为⎧1⎪,a<x<b,(a < b),p(x)=⎨b−a⎪其它.⎩0,则称X服从区间 (a, b) 上的均匀分布(Uniform Distribution),记为X ~ U (a, b).其分布函数为。
茆诗松概率论教案

茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间介绍随机现象的概念,举例说明。
解释样本空间的概念,讨论样本空间的性质。
1.2 事件与概率定义事件的概念,讨论事件的性质。
介绍概率的定义,讨论概率的性质。
1.3 条件概率与独立性定义条件概率的概念,讨论条件概率的性质。
解释独立性的概念,讨论独立性的性质。
第二章随机变量及其分布2.1 随机变量的概念介绍随机变量的概念,讨论随机变量的性质。
2.2 离散型随机变量的分布律定义离散型随机变量的分布律,讨论分布律的性质。
2.3 连续型随机变量的概率密度定义连续型随机变量的概率密度,讨论概率密度的性质。
第三章随机变量的数字特征3.1 随机变量的期望值定义随机变量的期望值,讨论期望值的性质。
3.2 随机变量的方差与标准差定义随机变量的方差与标准差,讨论方差与标准差的性质。
3.3 随机变量的协方差与相关系数定义随机变量的协方差与相关系数,讨论协方差与相关系数的性质。
第四章随机变量的函数4.1 随机变量的函数的概念介绍随机变量的函数的概念,讨论随机变量的函数的性质。
4.2 随机变量的函数的分布讨论随机变量的函数的分布的概念,解释随机变量的函数的分布的性质。
4.3 随机变量的函数的期望值与方差讨论随机变量的函数的期望值与方差的性质,解释随机变量的函数的期望值与方差的计算方法。
第五章大数定律与中心极限定理5.1 大数定律介绍大数定律的概念,讨论大数定律的性质。
5.2 中心极限定理介绍中心极限定理的概念,讨论中心极限定理的性质。
第六章随机抽样与估计6.1 随机抽样的概念与方法介绍简单随机抽样的概念与实现方法。
讨论系统抽样、分层抽样等其它抽样方法。
6.2 点估计与置信区间定义点估计的概念,讨论点估计的性质。
介绍置信区间的概念,解释置信区间的构造方法。
6.3 评价估计量的标准讨论无偏性、有效性和一致性等评价估计量的标准。
第七章假设检验与决策7.1 假设检验的基本概念介绍假设检验的目的是什么,解释假设检验的步骤。
茆诗松概率论

茆诗松概率论概率论是研究事件发生可能性的数学分支学科,是一种用数量化方法描述随机现象的统计学。
它的理论基础是集合论,它利用数学语言与计算机技术对随机事件进行概率分析,为自然科学、社会科学、工程技术等领域提供了强有力的工具和方法。
概率论在现代科学与工程技术领域发挥了重要的作用,因此,它是自然科学、社会科学、工程技术领域中不可或缺的一部分。
首先,概率论的范畴涉及到事件的考虑。
事件是介于全真和全假之间的某种情况。
它可以是数字、字母、文字或符号之类的抽象符号或是某种具体情形,例如”某日(具体的日期)天气晴朗“或“投掷一枚硬币,正面朝上“等。
事件是不确定、有变化和随机性的,而不是确定、可计算和可重现的。
概率是用来描述事件发生的可能性的,它的范围是在0~1之间。
其次,概率论的应用领域非常广泛,涉及自然、社会和工程三个领域。
在自然领域中,概率论被用于描述许多有关天气、地震、交通、生态系统等方面的随机事件;而在社会领域中,概率论被用于普及、管理、教育、市场等方面随机事件的分析和预测;在工程领域中,概率论被用于计算结构在不同开发条件下复杂的概率和可靠性,研究可靠性工程、半导体制造和系统规划等等。
再次,概率论包括了许多基本概念和定理,例如事件、样本空间、概率公理、条件概率、独立性、期望值、方差、常见分布等。
其中,事件和样本空间是概率论的基础。
事件是所有与特定问题相关联的可能事件,而样本空间是所有可能的结果的集合,是事件集合的全体。
概率公理是将不同的事件转换成数字的一种方法,它基于一些公理和假设,包括对概率的基本定义和基本属性。
条件概率是指,已知事件B发生的条件下,事件A发生的概率,即U(A|B)。
独立性是指,当事件A和事件B在统计意义上没有联系时,“事件A发生的概率不受事件B发生的影响”。
期望值是指事件在频繁重复试验中可能出现的平均值,它可以用于计算统计数据中分布的中心位置,方差则是测量随机变量离其平均值的偏离程度的一个指标,用于确定数据的变异程度。
概率论讲义(茆诗松)

概率论讲义(茆诗松)第二章 随机变量及其分布教学目的与教学要求:理解随机变量的概念;掌握离散和连续随机变量的描述方法;理解分布函数、概率分布列和概率密度函数的概念和性质;会利用概率分布计算有关事件的概率;掌握二项分布、泊松分布、正态分布、指数分布、均匀分布等;会求简单随机变量函数的概率分布及特征数。
教学重点:不同类型的随机变量的概率分布的概念和性质、常用的离散和连续分布、随机变量的数学期望与方差的概念和性质、随机变量函数的分布。
教学难点:概率分布和数学期望以及方差性质的应用、随机变量函数的分布。
教学措施:理论部分的教学多采用讲授法,注意思想方法的训练,计算类问题采用习题与讨论的方法进行教学。
教学时数:20学时 教学过程:§2.1 随机变量及其分布例2.1.1 (1) 掷一颗骰子,出现的点数X :1、2、…、6; (2) n 个产品中的不合格品个数Y :0、1、2、…、n ; (3) 某商场一天内来的顾客数Z :0、1、2、…; (4) 某种型号电视机的寿命T :[0,)+∞。
§2.1.1 随机变量的概念定义2.1.1 定义在样本空间Ω上的实值函数称为随机变量,常用大写X 、Y 、Z 等表示;随机变量的取值用小写字母x 、y 、z 等表示。
注意:(1) 随机变量()X ω是样本点ω的函数,其定义域为Ω,其值域为(,)R =-∞+∞,若X 表示掷一颗骰子出现的点数,则{ 1.5}X =是不可能事件;(2) 若X 为随机变量,则{}X k =、{}a X b <≤、…均为随机事件,即:{}{:()}a X b a X b ωω<≤=<≤⊂Ω;(3) 注意以下一些表达式:{}{}{}X k X k X k ==≤-< {}{}{}a X b X b X a <≤=≤-≤ {}{}X b X b >=Ω-≤(4) 同一样本空间可以定义不同的随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
茆诗松概率论
茆诗松概率论是指茆诗松(Ricardoardo de乌拉圭)所写的概率论教科书,它是概率论的基础教材之一。
茆诗松的概率论主要涵盖了概率理论的基本思想、概率分布的基本概念、概率分布的性质、随机变量的数字特征、随机变量的期望和方差等方面的知识。
以下是对茆诗松概率论正文和拓展的简要介绍:
正文:
1. 概率论的基本概念
茆诗松的概率论主要介绍了概率论的基本概念,包括随机事件、样本空间、概率分布、随机变量等。
他强调了随机变量的数字特征,即随机变量的取值与它们的取值之间的关系。
2. 概率分布的基本概念
茆诗松的概率论主要介绍了概率分布的基本概念,包括概率分布的定义、概率分布的概率密度函数、概率分布的概率质量函数等。
他还介绍了概率分布的性质,如概率分布的离散程度、概率分布的连续程度、概率分布的对称性质等。
3. 概率分布的基本性质
茆诗松的概率论主要介绍了概率分布的基本性质,如概率分布的独立性、概率分布的叠加性、概率分布的互斥性等。
他还介绍了概率分布的数学期望和方差的定义及其性质。
4. 随机变量的数字特征
茆诗松的概率论主要介绍了随机变量的数字特征,即随机变量的
取值与它们的取值之间的关系。
他强调了离散程度、连续程度、对称性、增量等数字特征的重要性。
5. 茆诗松的概率分布
茆诗松的概率论主要介绍了概率分布,包括概率分布的概率密度
函数、概率分布的概率质量函数、随机变量的期望和方差等方面的知识。
他提出了概率分布的概念,并介绍了概率分布的性质,如概率分布的独立性、概率分布的叠加性、概率分布的互斥性等。
拓展:
1. 茆诗松的概率分布与随机变量的数字特征
茆诗松的概率分布和随机变量的数字特征是概率论的重要组成
部分,它们之间有着密切的联系。
他认为,随机变量的数字特征反映了它们的概率分布的性质,而概率分布反映了随机变量的概率性质。
2. 茆诗松的概率分布与概率理论
茆诗松的概率分布是概率理论的基础,是概率论的一个重要组成
部分。
他提出了概率分布的概念,并介绍了概率分布的性质,如概率分布的独立性、概率分布的叠加性、概率分布的互斥性等。
他还介绍了概率分布的数学期望和方差的定义及其性质,为概率理论奠定了基础。
3. 茆诗松的概率分布与统计学
茆诗松的概率分布在统计学中也有着广泛的应用。
他介绍了概率分布的概念,并介绍了概率分布的性质,如概率分布的独立性、概率分布的叠加性、概率分布的互斥性等。
他还介绍了概率分布的数学期望和方差的定义及其性质,为统计学奠定了基础。
4. 概率分布的应用
茆诗松的概率分布有着重要的应用价值,他在概率分布的基础上,提出了许多重要的应用,如随机抽样、参数估计、假设检验、最大似然估计等。
这些应用方法在科学研究和工程应用中有着广泛的应用。