高三数学《极坐标与参数方程》专题测试题含答案
参数方程 极坐标专项训练 高三数学解析几何专项训练试题(含例题、练习、答案)

心尺引州丑巴孔市中潭学校第三章 参数方程 极坐标专项训练参数方程、极坐标〔一〕【例题精选】:一、参数方程:例1:化以下方程为普通方程解:〔1〕∴=--⎛⎝ ⎫⎭⎪+=+⎛⎝ ⎫⎭⎪-⎧⎨⎪⎪⎩⎪⎪∴--=-+=+⎧⎨⎪⎪⎩⎪⎪x t t y t t x t t y t t 311211131121①②②2-①2得 〔2〕解出cos sin θθ=+=-x y y x 4929〔3〕由x tt =-+21中解出t 得t x x x =-+≠-211()代入y t t=+21中,化简得:〔4〕由y tg y tg x tg =+=+=sin (cos )θθθθθ得·1 例2:P x y (,)是以A 〔1,0〕为圆心且过原点O 的圆,设∠=AOP α,以α为参数,写出此圆的参数方程。
解:连BP ,自P 作PM OB ⊥,M 为垂足,∴所求圆的参数方程是x y ==⎧⎨⎩∈-⎡⎣⎢⎤⎦⎥22222cos sin αααππ, 例3:一个质点按照规律x a t y b t t =+=+⎧⎨⎩cos sin θθ(为参数)运动,试求它从时间t 1到t 2所经过的距离。
解:设时间t 1、t 2对应的点为A 、B ,那么A 、B 点的坐标分别是:例4:圆锥曲线方程是x t y t =++=-+-⎧⎨⎩3516452cos sin ϕϕ〔1〕假设t 为参数,ϕ为常数,求这圆锥曲线的普通方程,并求出焦点到准线的距离。
〔2〕假设ϕ为参数,t 为常数,求这圆锥曲线的普通方程,并求出它的离心率。
解:〔1〕方程化成x ty t --=-+=-⎧⎨⎩5134562cos sin ϕϕ 消去参数t ,得()()x y --=--+5132452cos sin ϕϕ 顶点为()5145cos sin ϕϕ+-,焦点到准线的距离为P =34〔2〕方程化成x t y t --=++=⎧⎨⎪⎪⎩⎪⎪3156542cos sin ϕϕ消去参数ϕ,得例5:直线l x t y t t R :sin cos =-︒=+︒⎧⎨⎩∈125525()的倾斜角是:A .115B .75C .155D .25分析:y t -=︒525cos答案:A例6:直线x ty t t y x =--=+⎧⎨⎪⎪⎩⎪⎪--=1352452122(为参数)与曲线()相交于A 、B 两点。
高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
高三复习数学74_极坐标与参数方程(有答案)

7.4 极坐标与参数方程一、解答题。
1. 在平面直角坐标系xOy 中,圆C 的参数方程为{x =4cos θy =4sin θ(θ为参数),直线l 经过点(1,2),倾斜角α=π6,写出圆C 的直角坐标方程和直线l 的参数方程.2. 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( )A.(x −2)2+y 2=4 B .x 2+(y +2)2=4 C .(x +2)2+y 2=4 D .x 2+(y −2)2=43. 与普通方程x 2+y −1=0等价的参数方程为(t 为参数)( ) A.{x =√1−t y =t B.{x =sin ty =cos 2t C.{x =cos t y =sin 2t D.{x =tan ty =1−tan 2t4. 方程{x =2t −2−ty =2t +2−t (t 为参数)表示的曲线是( )A.双曲线下支B.双曲线C.圆D.双曲线的上支5. 在平面直角坐标系xOy 中,⊙O 的参数方程为{x =cos θ,y =sin θ(θ为参数),过点(0,−√2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点. 求α的取值范围;求AB 中点P 的轨迹的参数方程.6. (2015·重庆,15)已知直线l 的参数方程为{x =−1+t,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4(ρ>0,3π4<θ<5π4),则直线l 与曲线C 的交点的极坐标为________.7. (2015·北京,11)在极坐标系中,点(2,π3)到直线ρ(cos θ+√3sin θ)=6的距离为________.8. 在直角坐标系xOy 中,曲线C 1的方程为y =k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ−3=0. 求C 2的直角坐标方程;若C 1与C 2有且仅有三个公共点,求C 1的方程.9. 小结与反思______________________________________________________________________________________________________________________________________________________________________________________________________________________10. 极坐标方程ρcosθ=43表示( ) A.一个圆 B.一条平行于x 轴的直线 C.一条抛物线 D.一条垂直于x 轴的直线11. 直线:3x −4y −9=0与圆:{x =2cos θy =2sin θ,(θ为参数)的位置关系是( )A.直线过圆心B.相切C.相交但直线不过圆心D.相离12. 若(x,y )与(ρ,θ)(ρ∈R )分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=π6和sin θ=12;②θ=π6和tan θ=√33,③ρ2−9=0和ρ=3;④{x =2+√22ty =3+12t和{x =2+√2t y =3+t 其中表示相同曲线的组数为( ) A.3 B.1 C.4 D.213. 极坐标方程ρ=sin θ+2cos θ所表示的曲线是( ) A.双曲线 B.直线 C.抛物线 D.圆14. 若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1−x (0≤x ≤1)的极坐标方程为( ) A.ρ=cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π2C.ρ=cos θ+sin θ,0≤θ≤π4D.ρ=1cos θ+sin θ,0≤θ≤π415. 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是{x =t +1y =t −3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.√2 B.√14 C.2√2 D.2√1416. 若直线l 的参数方程为{x =3+45ty =−2+35t(t 为参数),则过点(4,−1)且与l 平行的直线在y 轴上的截距为________.17. 参数方程{x =cos θ1+cos θy =sin θ1+cos θ(θ为参数)化成普通方程为________.18. 已知直线l 的极坐标方程为2ρsin (θ−π4)=√2,点A 的极坐标为A (2√2,7π4),则点A到直线l 的距离为________.19. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =a cos ty =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.说明C 1是哪种曲线,并将C 1的方程化为极坐标方程.20. 已知动点P ,Q 都在曲线C:{x =2cos βy =2sin β(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M 为PQ 的中点. 求M 的轨迹的参数方程;将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.21. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为{x =1+t cos αy =2+t sin α’(t 为参数).求C 和l 的直角坐标方程;若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.参考答案与试题解析7.4 极坐标与参数方程一、解答题。
高考极坐标参数方程含答案(经典39题)(1)_看图王

方程. C1 与 C2 公共点的个数和 C 1 与C2 公共点的个数是否相同?说明你的理由.
29.在平面直角坐标系
xoy
中,圆
C
的参数方程为
x
y
4 cos 4 sin
(
为参数),直线
l
(2)求证直线 l 和曲线 C 相交于两点 A 、 B ,并求 | MA | | MB | 的值.
(2, )
6.在极坐标系中,O 为极点,已知圆 C 的圆心为 3 ,半径 r=1,P 在圆 C 上运动。 (I)求圆 C 的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点 O 为原点, 以极轴为 x 轴正半轴)中,若 Q 为线段 OP 的中点,求点 Q 轨迹的直角坐标方程。
程是
4 cos
,直线 l
的参数方程是
x
3 y1 2
3 2 t.
t
,
(t
为参数)。求极点在直线 l
上的射影点
P
的
极坐标;若 M 、 N 分别为曲线 C 、直线 l 上的动点,求 MN 的最小值。
x 4 cos
8.平面直角坐标系中,将曲线
y
sin
( 为参数)上的每一点纵坐标不变,横坐标变为原来的
为
t
2
,Q
为
C
2
上的动点,求
PQ
中点
M
到直线
C3
:
2x
y
7
0
(t
为参数)距离的最大值。
第 13页 共 16页
◎
第 14页 共 16页
极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标参数方程高考练习含答案非常好的练习题

极坐标参数方程高考练习含答案非常好的练习题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]极坐标与参数方程高考精练(经典39题)1.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点.(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t ty ta x ,3⎩⎨⎧=+=.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=.(Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
(完整版)经典《极坐标与参数方程》综合测试题(含答案)(2),推荐文档

《极坐标与参数方程》综合测试题1.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线l过点P(1,0),倾斜角为,且直线l与曲线C1交于A,B两点.3(1)求曲线C1的直角坐标方程,并说明它是什么曲线;(2)求+.2.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.3.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x +y 的最大值,并求出此时点P 的直角坐标.4.若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是ρ=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为(t 为参数),,当直线l 与曲线C 3P ,02⎛⎫ ⎪⎝⎭相交于A ,B 两点,求.2AB PA PB⋅5.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 1的参数方程为为参数),曲线C 2的极坐标方3cos (2sin x y θθθ=⎧⎨=⎩程为.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)设P 为曲线C 1上一点,Q 曲线C 2上一点,求|PQ |的最小值及此时P 点极坐标.6.在极坐标系中,曲线C 的方程为ρ2=,点R (2,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(Ⅱ)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ=(ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.9.在极坐标系中,射线l:θ=与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求•的取值范围.10.已知在直角坐标系中,曲线的C参数方程为(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.11.已知曲线C1的参数方程为(t为参数),以原点O为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.12.设点A为曲线C:ρ=2cosθ在极轴Ox上方的一点,且0≤θ≤,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy,(1)求曲线C的参数方程;(2)以A为直角顶点,AO为一条直角边作等腰直角三角形OAB(B在A的右下方),求B点轨迹的极坐标方程.13.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.14.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后,曲线为C2,以坐标原点为极点,x轴正半轴为极轴建极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.15.已知半圆C的参数方程为,a为参数,a∈[﹣,].(Ⅰ)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求半圆C的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T是半圆C上一点,且OT=,试写出T点的极坐标.16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)《极坐标与参数方程》综合测试题答案 一.解答题(共16小题)1.在极坐标系中,已知曲线C :ρ=2cosθ,将曲线C 上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C 1,又已知直线l 过点P (1,0),倾斜角为,且直线l 与曲线C 1交于A ,B 两点.3π(1)求曲线C 1的直角坐标方程,并说明它是什么曲线;(2)求+.【解答】解:(1)曲线C 的直角坐标方程为:x 2+y 2﹣2x=0即(x ﹣1)2+y 2=1.∴曲线C 1的直角坐标方程为=1,∴曲线C 表示焦点坐标为(﹣,0),(,0),长轴长为4的椭圆(2)将直线l 的参数方程代入曲线C 的方程=1中,得.2134120t t +-=设A 、B 两点对应的参数分别为t 1,t 2,∴+. 2.在直角坐标系xOy 中,圆C 的参数方程(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin (θ+)=3,射线OM :θ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.【解答】解:(I )利用cos 2φ+sin 2φ=1,把圆C 的参数方程为参数)化为(x ﹣1)2+y 2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.3.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O 为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.【解答】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…(4分)所以所求的圆C的参数方程为(θ为参数).…(6分)(Ⅱ)由(Ⅰ)可得,…(7分)当时,即点P的直角坐标为(3,3)时,…(9分)x+y取到最大值为6.…(10分)4.若以直角坐标系xOy 的O 为极点,Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是ρ=.(1)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l 的参数方程为(t 为参数),,当直线l 与曲线C3P ,02⎛⎫⎪⎝⎭相交于A ,B 两点,求.2ABPA PB⋅【解答】解:(1)∵ρ=,∴ρ2sin 2θ=6ρcosθ,∴曲线C 的直角坐标方程为y 2=6x .曲线为以(,0)为焦点,开口向右的抛物线.(2)直线l 的参数方程可化为,代入y 2=6x 得t 2﹣4t ﹣12=0.解得t 1=﹣2,t 2=6.∴||=|t 1﹣t 2|=8.2AB 2PA PB 3=⋅ 5.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 1的参数方程为为参数),曲线C 2的极坐标方程3cos (2sin x y θθθ=⎧⎨=⎩为.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)设P 为曲线C 1上一点,Q 曲线C 2上一点,求|PQ |的最小值及此时P 点极坐标.【解答】解:(1)由消去参数α,得曲线C 1的普通方程为.由得,曲线C2的直角坐标方程为.(2)设P(2cosα,2sinα),则点P到曲线C2的距离为.当时,d有最小值,所以|PQ|的最小值为.6.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,则:曲线C的方程为ρ2=,转化成.点R的极坐标转化成直角坐标为:R(2,2).(Ⅱ)设P()根据题意,得到Q(2,sinθ),则:|PQ|=,|QR|=2﹣sinθ,所以:|PQ|+|QR|=.当时,(|PQ|+|QR|)min=2,矩形的最小周长为4.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ=(ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.【解答】解:(I)曲线C1的参数方程为(φ为参数),利用平方关系消去φ可得:+(y+1)2=9,展开为:x2+y2﹣2x+2y﹣5=0,可得极坐标方程:ρcosθ+2ρsinθ﹣5=0.曲线C2的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.(II)把直线θ=(ρ∈R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣2ρ﹣5=0,∴ρ1+ρ2=2,ρ1•ρ2=﹣5,∴|PQ|=|ρ1﹣ρ2|===2.8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ﹣ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0).(1)设t为参数,若x=﹣2+t,求直线l的参数方程;(2)已知直线l与曲线C交于P、Q,设M(﹣2,﹣4),且|PQ|2=|MP|•|MQ|,求实数p的值.【解答】解:(1)直线l的极坐标方程为ρcosθ﹣ρsinθ=2,化为直角坐标方程:x﹣y﹣2=0.∵x=﹣2+t,∴y=x﹣2=﹣4+t,∴直线l的参数方程为:(t为参数).(2)曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0),即为ρ2sin2θ=2pρcosθ(p>0),可得直角坐标方程:y2=2px.把直线l的参数方程代入可得:t2﹣(8+2p)t+8p+32=0.∴t1+t2=(8+2p),t1t2=8p+32.不妨设|MP|=t1,|MQ|=t2.|PQ|=|t1﹣t2|===.∵|PQ|2=|MP|•|MQ|,∴8p2+32p=8p+32,化为:p2+3p﹣4=0,解得p=1.9.在极坐标系中,射线l:θ=与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求•的取值范围.【解答】解:(Ⅰ)射线l:θ=与圆C:ρ=2交于点A(2,),点A的直角坐标(,1);椭圆Γ的方程为ρ2=,直角坐标方程为+y2=1,参数方程为(θ为参数);(Ⅱ)设F(cosθ,sinθ),∵E(0,﹣1),∴=(﹣,﹣2),=(cosθ﹣,sinθ﹣1),∴•=﹣3cosθ+3﹣2(sinθ﹣1)=sin(θ+α)+5,∴•的取值范围是[5﹣,5+].10.已知在直角坐标系中,曲线的C参数方程为(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.【解答】解:(1)曲线的C参数方程为(φ为参数),普通方程为(x﹣1)2+(y﹣1)2=4,直线l的极坐标方程为ρ=,直角坐标方程为x﹣y﹣4=0;(2)点P到直线l的距离d==,∴φ﹣=2kπ﹣,即φ=2kπ﹣(k∈Z),距离的最小值为2﹣2,点P的直角坐标(1+,1﹣).11.已知曲线C1的参数方程为(t为参数),以原点O为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.【解答】解:(I)由可得ρ=x﹣2,∴ρ2=(x﹣2)2,即y2=4(x﹣1);(Ⅱ)曲线C1的参数方程为(t为参数),消去t得:2x+y+4=0.∴曲线C1的直角坐标方程为2x+y+4=0.∵M1是曲线C1上的点,M2是曲线C2上的点,∴|M1M2|的最小值等于M2到直线2x+y+4=0的距离的最小值.设M2(r2﹣1,2r),M2到直线2x+y+4=0的距离为d,则d==≥.∴|M 1M 2|的最小值为.12.设点A 为曲线C :ρ=2cosθ在极轴Ox 上方的一点,且0≤θ≤,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系xOy ,(1)求曲线C 的参数方程;(2)以A 为直角顶点,AO 为一条直角边作等腰直角三角形OAB (B 在A 的右下方),求点B 轨迹的极坐标方程.【解答】(1)θ为参数)1cos (0sin 2x y θπθθ=+⎧≤≤⎨=⎩(2):设A (ρ0,θ0),且满足ρ0=2cosθ0,B (ρ,θ),依题意,即代入ρ0=2cosθ0并整理得,,,所以点B 的轨迹方程为,.13.在平面直角坐标系xOy 中,曲线C 1:(φ为参数,实数a >0),曲线C 2:(φ为参数,实数b >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α(ρ≥0,0≤α≤)与C 1交于O 、A 两点,与C 2交于O 、B 两点.当α=0时,|OA |=1;当α=时,|OB |=2.(Ⅰ)求a ,b 的值;(Ⅱ)求2|OA |2+|OA |•|OB |的最大值.【解答】解:(Ⅰ)由曲线C 1:(φ为参数,实数a >0),化为普通方程为(x ﹣a )2+y 2=a 2,展开为:x 2+y 2﹣2ax=0,其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=.曲线C2:(φ为参数,实数b>0),化为普通方程为x2+(y﹣b)2=b2,展开可得极坐标方程为ρ=2bsinθ,由题意可得当时,|OB|=ρ=2,∴b=1.(Ⅱ)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.∴2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1=+1,∵2θ+∈,∴+1的最大值为+1,当2θ+=时,θ=时取到最大值.14.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,2为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.15.已知半圆C的参数方程为,a为参数,a∈[﹣,].(Ⅰ)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求半圆C的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T是半圆C上一点,且OT=,试写出T点的极坐标.【解答】解:(Ⅰ)由半圆C的参数方程为,a为参数,a∈[﹣,],则圆的普通方程为x2+(y﹣1)2=1(0≤x≤1),由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得半圆C的极坐标方程为ρ=2sinθ,θ∈[0,];(Ⅱ)由题意可得半圆C的直径为2,设半圆的直径为OA,则sin∠TAO=,由于∠TAO∈[0,],则∠TAO=,由于∠TAO=∠TOX,所以∠TOX=,T点的极坐标为(,).16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).。
极坐标与参数方程含答案(经典39题)(整理版)

高考极坐标参数方程(经典39题)在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B 两点.(1)求圆C 及直线l 的普通方程. (2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程; (Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y ta x ,3⎩⎨⎧=+=.在极坐标极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
7.在极坐标系中,极点为坐标原点O ,已知圆C 的圆心坐标为)4,2(C π,半径为2,直线l 的极坐标方程为22)4sin(=θ+πρ.(1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长.8.平面直角坐标系中,将曲线⎩⎨⎧==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=.21, 233t y t x (t 为参数).求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求MN 的最小值。
极坐标与参数方程经典练习题 带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标参数方程大题(含答案)

1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。
极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
高三数学专项训练:极坐标与参数方程(附答案)

x 中,⊙ 的参数方程为cos ,( 为参数), xOy O过点 0, 2 且倾斜角为 的直线 与⊙ 交于 , 两点.l O AB Ptl,( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 . m l l P k P Cm y , k(1)写出 的普通方程: C(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设l : (co s s in ) , 为 与 M lxC3 cosx 3、(2016 全国 I I I 卷高考)在直角坐标系s in1坐 标 原 点 为 极 点 , 以 x 轴 的 正 半 轴 为 极 轴 ,, 建 立 极 坐 标 系 , 曲 线) 2 2 . 41(II )设点 P 在 上,点 Q 在 上,求|P Q |的最小值及此时 P 的直角坐标.4、(成都市 2018 届高三第二次诊断)在平面直角坐标系xOy 中,曲线C 的参数方程为x.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标2s ins in ( ) 5 2 0 ,直线的极坐标方程为 . 44(1)求直线的直角坐标方程与曲线C 的普通方程;5、(成都市 2018 届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是 ,直线l 的2 s in 在直线l 上.以极点为坐标原点 O ,极轴为 x 轴的4正半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程; (Ⅱ)若直线l 与曲线C 相交于不同的两点 A,求 Q A Q B 的值.6、(达州市 2017 届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴2tx 2建立极坐标系,直线l 的参数方程为.t 2y 2 t2 2(1)若l 的参数方程中的t1 1(0, 2) l (2)若点 P, 和曲线C 交于 两点,求.7、(德阳市 2018 届高三二诊考试)在平面直角坐标系xOy 中,直线l : (t 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线C :x.0,0l与直线 和曲线C 的交点分别为点M 和点 N (异于点O ), 2 O N 求 的最大值.O M8、(广元市 2018 届高三第一次高考适应性统考)在平面直角坐标系x Oy4cos a 2(a 为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线 的极坐标方y程为 ( ) .R 6C(2)设直线 与曲线 相交于 , 两点,求的值.ABC A B 轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 3 c os s inC3 0 , 的极坐标方程为.4s in( ) 6(I )求直线 l 和 的普通方程;C (II )直线 l 与 有两个公共点 A 、B ,定点 P (2, 3) ,求|||| 的值.C 10、(绵阳市 2018 届高三第一次诊断)在直角坐标系中,曲线C 的参数方程是yx(1)求曲线C 的极坐标方程;C, AOB与曲线 分别交于异于原点的 A B 两点,求 的面积.(2)设l, ,若631211、(南充市 2018 届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线C 的参数方程为1:1 ,以坐标原点O 为极点,以 轴正半轴y1x22 2(Ⅰ)求曲线C 的普通方程和曲线C 的极坐标方程;12C C,与曲线 , 分别交于 A B 两点,求61 212、(仁寿县 2018 届高三上学期零诊)在平面直角坐标系xoy 中 ,圆 C 的参数方程为l3)=7. 43 t 2 (t 为参数),以坐标原 1224 c os(3(1)求圆C 的直角坐标方程; 2(2)若 P(x, y )是直线l 与圆面 4cos( )的公共点,求 3x y的取值范围.32 0( PQ (1)求点 的轨迹C 的直角坐标方程;3 (2)若C 上点 M 处的切线斜率的取值范围是,求点 M 横坐标的取值范围. 315、(雅安市 2018 届高三下学期三诊)在直角坐标系中,已知圆 的圆心坐标为(2,0) ,半径为CXCl(2)点 的极坐标为 1,,直线 与圆 相交于 , ,求 PAC 的值.P l A B 235 cos16、(宜宾市 2018 届高三第一次诊断)在直角坐标系 中,曲线C 的参数方程为xOy 5 s iny(其中参数 ).xCx 1 t c os (2)直线l 的参数方程为(其中参数 , 是常数),直线l 与曲线 交于t RC y点,且 ,求直线l 的斜率.AB2 3 l2t , x 2 y 4 t的极坐标方程为 4cos .(1)写出直线 l 普通方程和曲线 C 的直角坐标方程;(2)过点 M (1,0) 且与直线 平行的直线 交 于 A , B 两点,求| AB | .l l C 在平面直角坐标系中,以坐标原点为极点, 轴x si n 2 cos ( 0) ,过点 的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 a a2x 2 ( 为 t参数),直线 与曲线 相交于 两点. 的直线 的参数方程为2 y 42 (1)写出曲线 的直角坐标方程和直线 的普通方程; 2 PA PB AB 求 的值 (2)若 ,. a 1、解答:的参数方程为的普通方程为 22yl : x 0 与e O有两个交点,当| 0 0 2 |t an2 ,由直线l 与e O时,设直线l 的方程为 y x1 两个交点有,得 ,∴或,综上时,点P 坐标为 (0,0)ly 22A22为 y, 1 1 2 2③2 2k 2(1 k )x 2 2kx 1 0 2 2 ,∴,∴得121222y ④2xk 代入④得 x y 2y 0 .当点 P(0,0) 时满足方程 x y 2y 0 ,∴ AB 中点的 P2 2 2 2 y22 2 的 轨 迹 方 程 是 x, 即 xy2 22 2 2 222 2 22B (y 0 ,故点 P 的参数方程为 ,则22 2 2 2y s in2 2 0).2、【解析】⑴将参数方程转化为一般方程l : y k x 2 112k① ②消 可得: 4k x 2 y 2 即 的轨迹方程为 4 ;P ⑵将参数方程转化为一般方程……③Cl3422x 2y2 c os解得 5y.5s in c os 10 0.4c oss in ,可得直线的直角坐标方程为y , 2 3 c osx x 2 y 2 将曲线C 的参数方程C12 4(2)设Q(2 3cos ,2s in ) (0 ).(4 2, ) 化为直角坐标为(4, 4).4则 M.2s in( ) 103 cos s in 103.225s in ( ) 1,即 当 3 6∴点 M 到直线的距离的最大值为6 25、.316C242 2 t ) (2 2 22 2121 21121 121 2,4. s in c os2由得:2,所以 x 2 y 2 y ,所以曲线C 的直角坐标方程为: x .224 2s in, s in c oss in s in cos 2O N所以,4 4 23由于0 ,所以当时, 取得最大值:.2844cos a 2得曲线 的普通方程:C所以曲线 的极坐标方程为: 4 c os 12 C 2(2)设 , 两点的极坐标方程分别为( , ),( , ) ,661224 c os 12 0 的两根2是 C2∴ 2 3, 12121 29、解:(I )直线 l 的普通方程为: 3 3 0, ·································································· 1 分x y因为圆 的极坐标方程为, C 63 1所以 2 4( s i n cos ) , ··············································································· 3 分2 2所以圆 的普通方程 22 3 0 ;·························································· 4 分 C x 2 y 2 x y (II )直线 l : 3 3 0的参数方程为: x y3 y 3 t2代入圆 的普通方程 22 3 0 消去 x 、y 整理得: x 2 y 2 x y 2 9 17 0 , ··········································································································· 6 分t t | | | ,| | | |,··························································································· 7 分PB tPA t 1 2|| PA | | PB |||| t | | t ||| t t | (t t ) ······························································· 8 分2 12122 12219 417 13 .··································································································· 10 分2 10、解:(Ⅰ)将 C 的参数方程化为普通方程为(x -3) +(y -4) =25,2 2 22.(Ⅱ)把 代入 6 c os 8s in ,得,6 1∴ . ……………………………………………………………6 分A66 c os 8s in32∴ . ……………………………………………………………8 分B31s in AOB2 1 21225 3. 4211、解:(Ⅰ)由2.3yx 2所以曲线 的普通方程为C 2.13 c os1 s i n 1,得到,化简得到曲线把 x,代入22的极坐标方程为2 cos.C 2(Ⅱ)依题意可设 A,曲线C 的极坐标方程为 2.2 261211代入C 的极坐标方程得 2 2,解得 .621.622.12)=7.根据 ρcosθ=x ,ρsinθ=y 可得:﹣y+x=7. 即直线 l 的直角坐标方程为 x.---------------------------5 分(θ 为参数),其圆心为(﹣1,2),半径r=4.----6 分5 2.---------------------8 分2∴ AB 的最小值为圆心到直线的距离 d ﹣r ,即 AB min4 c os( )13、【解析】(1)∵圆C 的极坐标方程为323 14 c os ( cos )∴ , 322又∵ 2222∴圆C 的普通方程为 x 22(2)设 z,y 2x 2 3y 0 (x 1) (y 3) 4 ,22 2 2 ∴圆C 的圆心是(1, 3)3 t2 3x y 得 z t , 代入 z 12,圆C 的半径是 ,2 3,即 x y 的取值范围是∴,∴.……10 分 2 0 14、解:(1)由,得22设,,1 1x 2 yx 2x 2, y 2y则 x ,122111 1得22,∴221,0 为圆心,1半径的半圆,如图所示,,设点处切线 的倾斜角为 lM设253 由l 斜率范围, …………7 分3 3 63 而,∴,∴ ,26 3 22M , 所以,点 横坐标的取值范围是 . …………10 分22,,化简得圆 的极坐标方程:,:由l 得 ,y1l 的极坐标方程为.4(1,0), (2)由 PP22 t x2直线 的参数的标准方程可写成2y 1 t2 2 2t 2) (1 t) 2 ,2 2 2 2,,.3 5 cosx Q 16、解: (1)5 s iny 的普通方程 x 22x 1t c osQ1 直线l 的普通方程 y k xy3k 0 k k 122 t ,217、(1)由2y 4 t2 又由 4cos 得 4cos ,则 的直角坐标方程为 0 . ··············5 分2C x 2 y 22 t , x2 (2) 过点 M ( 1,0) 且与直线 平行的直线 的参数方程为l l 2 y t .2 将其代入 4 0 得 2 23 0 ,则 t t,x 2 y 2 x tt 1 2 所以| AB ||t t | (t t ) 4t t14 . ······················································10 分2 1212(1)由 整理得= ,,(2)将直线 的参数方程代入曲线 的直角坐标方程 = 得,.设两点对应的参数分别为,则有∵=,即=,解得或者(舍去),。
高中数学极坐标与参数方程大题(详解)

:+=1,直线l :(t 为参数)为参数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程.的普通方程.(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A|的最大值与最小值.的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (Ⅰ)联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线C 的参数方程,直接消掉参数t 得直线l 的普通方程;方程;(Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ).由点到直线的距离公式得到P 到直线l 的距离,除以的距离,除以 sin30°进一步得到|P A|,化积后由三角函数的范围求得|P A|的最大值与最小值.的最大值与最小值.解答:解:(Ⅰ)对于曲线C :+=1,可令x=2cos θ、y=3sin θ,故曲线C 的参数方程为,(θ为参数).对于直线l :,由①得:t=x ﹣2,代入②并整理得:2x+y ﹣6=0; (Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ). P 到直线l 的距离为.则,其中α为锐角.为锐角.当sin (θ+α)=﹣1时,|P A|取得最大值,最大值为. 当sin (θ+α)=1时,|P A|取得最小值,最小值为.点评: 本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线C 的参数方程为:(α为参数).(I )写出直线l 的直角坐标方程;的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值.的距离的最大值.考点: 参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C 的参数方程,然后,根据直线与圆的位置关系进行转化求解.的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l 的极坐标方程为:,∴ρ(sin θ﹣cos θ)=,参数方程极坐标系 解答题 1.已知曲线C∴,∴x ﹣y+1=0(α为参数).得(x ﹣2)2+y 2=4,它表示一个以(2,0)为圆心,以2为半径的圆,为半径的圆, 圆心到直线的距离为:圆心到直线的距离为: d=,∴曲线C 上的点到直线l 的距离的最大值最小值.最小值.考点: 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题: 计算题;压轴题;转化思想.计算题;压轴题;转化思想.分析: (1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C 1表示一个圆;曲线C 2表示一个椭圆;一个椭圆;(2)把t 的值代入曲线C 1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C 2的参数方程设出Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C 1:(t 为参数)化为普通方程得:(x+4)2+(y ﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;的圆; 把C 2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x 轴上,长半轴为8,短半轴为3的椭圆;的椭圆; (2)把t=代入到曲线C 1的参数方程得:P (﹣4,4),把直线C 3:(t 为参数)化为普通方程得:x ﹣2y ﹣7=0,设Q 的坐标为Q (8cos θ,3sin θ),故M (﹣2+4cos θ,2+sin θ) 所以M 到直线的距离d==,(其中sin α=,cos α=)从而当cos θ=,sin θ=﹣时,d 取得最小值..(2)根据曲线C 的参数方程为:=.点评: 本题重点考查了直线的本题重点考查了直线的极坐标极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C 1:(t 为参数),C 2:(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t=,Q 为C 2上的动点,求PQ 中点M 到直线C 3:(t 为参数)距离的考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入即可得出.代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入可得:圆C 的普通方程为x 2+y 2﹣2x+2y=0,即(x ﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1), ∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t 为参数),把t=x 代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点P 直线AB 距离的最大值为,.点评: 本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o 为极点,x 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值..求椭圆上点到直线距离的最大值和最小值.考点: 椭圆的参数方程;椭圆的应用. 专题: 计算题;压轴题.计算题;压轴题.点评: 此题考查学生理解并运用直线和圆的此题考查学生理解并运用直线和圆的参数方程参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.简求值,是一道综合题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线l 的参数方程为(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C上不同于A ,B 的任意一点.的任意一点. (Ⅰ)求圆心的极坐标;(Ⅰ)求圆心的极坐标;(Ⅱ)求△P AB 面积的最大值.面积的最大值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)分)点到直线的距离(6分)分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)分)点评: 此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy 中,直线I 的参数方程为(t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos (θ+).(1)求直线I 被曲线C 所截得的弦长;所截得的弦长;(2)若M (x ,y )是曲线C 上的动点,求x+y 的最大值.的最大值.考点: 参数方程化成普通方程.专题: 计算题;直线与圆;坐标系和参数方程.计算题;直线与圆;坐标系和参数方程.分析: (1)将曲线C 化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.可求弦长. (2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值. 解答:解:(1)直线I 的参数方程为(t 为参数),消去t ,可得,3x+4y+1=0; 由于ρ=cos (θ+)=(),即有ρ2=ρcos θ﹣ρsin θ,则有x 2+y 2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==, 故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,), 则x+y==sin (),由于θ∈R ,则x+y 的最大值为1.分析:由题意椭圆的由题意椭圆的参数方程参数方程为为参数),直线的直线的极坐标极坐标方程为.将椭7.选修4﹣4:参数方程选讲:参数方程选讲 已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;的普通方程; (Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :(t 为参数)距离的最小值.为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题:坐标系和参数方程.坐标系和参数方程. 分析: (1)利用x=ρcos θ,y=ρsin θ即可得出;即可得出; (2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出, 解答:解 (1)∵P 点的极坐标为,∴=3,=.∴点P 的直角坐标把ρ2=x 2+y 2,y=ρsin θ代入可得,即∴曲线C 的直角坐标方程为.(2)曲线C 的参数方程为(θ为参数),直线l 的普通方程为x ﹣2y ﹣7=0 设,则线段PQ 的中点.那么点M 到直线l 的距离.,∴点M 到直线l 的最小距离为.点评: 本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.标系.(Ⅰ)求圆C 的极坐标方程;的极坐标方程; (Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.的长.点评: 本题考查参数方程化为标准方程,本题考查参数方程化为标准方程,极坐标极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.专题: 直线与圆.直线与圆. 分析: )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q .联立,解得或.∴P .∴|PQ|==2.点评: 本题考查了极坐标化为普通方程、本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知两点间的距离公式等基础知识与基本方法,属于中档题.识与基本方法,属于中档题.9.在直角坐标系xoy 中,曲线C 1的参数方程为(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+)=4.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.的坐标.考点: 简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式考点: 简单曲线的简单曲线的极坐标极坐标方程;直线与圆的位置关系.(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简即可得到此圆的极坐标方程.化简即可得到此圆的极坐标方程. (II )由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出..分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(Ix=ρcos θ、y=ρ的距离为,可得d 的最小值,以及此时的α的值,从而求得点P的坐标.的坐标.解答:解:(1)由曲线C 1:,可得,两式两边平方相加得:,即曲线C 1的普通方程为:. 由曲线C 2:得:,即ρsin θ+ρcos θ=8,所以x+y ﹣8=0,即曲线C 2的直角坐标方程为:x+y ﹣8=0.(2)由(1)知椭圆C 1与直线C 2无公共点,椭圆上的点到直线x+y ﹣8=0的距离为,∴当时,d 的最小值为,此时点P 的坐标为.10.已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程为ρ=2cos (θ+).(Ⅰ)求圆心C 的直角坐标;的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.引切线,求切线长的最小值.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (I )先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标.的直角坐标.(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I )∵,∴,∴圆C 的直角坐标方程为,即,∴圆心直角坐标为.(5分)分)(II )∵直线l 的普通方程为, 圆心C 到直线l 距离是,∴直线l 上的点向圆C 引的切线长的最小值是(10分)分)点评: 本题考查点的极坐标和直角坐标的互化,本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角体会在极坐标系和平面直角sin θ,把,把极坐标极坐标方程化为直角坐标方程.方程化为直角坐标方程. (2)求得椭圆上的点到直线x+y ﹣8=0点评: 本题主要考查把本题主要考查把参数方程参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.2的直角坐标方程;的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB|≥2,求实数a 的取值范围.的取值范围.考点: 简单曲线的极坐标方程;参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将曲线C 1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹C 2的直角坐标方程;直角坐标方程; (2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答: 解:(1)根据题意,得)根据题意,得曲线C 1的直角坐标方程为:x 2+y 2﹣4y=12, 设点P (x ʹ,y ʹ),Q (x ,y ), 根据中点坐标公式,得根据中点坐标公式,得,代入x 2+y 2﹣4y=12,得点Q 的轨迹C 2的直角坐标方程为:(x ﹣3)2+(y ﹣1)2=4, (2)直线l 的普通方程为:y=ax ,根据题意,得,根据题意,得,解得实数a 的取值范围为:[0,].点评: 本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ()=2.(Ⅰ)求C 1与C 2交点的极坐标;交点的极坐标;坐标系中刻画点的位置的区别,能进行坐标系中刻画点的位置的区别,能进行极坐标极坐标和直角坐标的互化.和直角坐标的互化.11.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t 为参数),曲线C 1的方程为ρ(ρ﹣4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.的中点.(1)求点Q 的轨迹C(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 0,2),(1,3),从而直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,从而构造关于a ,b 的方程组,解得a ,b 的值.的值.解答: 解:(I )圆C 1,直线C 2的直角坐标方程分别为的直角坐标方程分别为x 2+(y ﹣2)2=4,x+y ﹣4=0,解得或,∴C 1与C 2交点的极坐标为(4,).(2,).(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3), 故直线PQ 的直角坐标方程为x ﹣y+2=0, 由参数方程可得y=x ﹣+1,∴,解得a=﹣1,b=2.点评: 本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.题.13.在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ (Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;的方程化为直角坐标方程;(Ⅱ)若曲线C 与直线相交于不同的两点M 、N ,求|PM|+|PN|的取值范围.的取值范围.解答:解:(I )直线l 的参数方程为(t 为参数).曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ.把x=ρcos θ,y=ρsin θ代入曲线C 的极坐标方程可得x 2+y 2=4x ,即(x ﹣2)2+y 2=4. (II )把直线l 的参数方程为(t 为参数)代入圆的方程可得:t 2+4(sin α+cos α)t+4=0.∵曲线C 与直线相交于不同的两点M 、N ,∴△=16(sin α+cos α)2﹣16>0, ∴sin αcos α>0,又α∈[0,π), ∴.又t 1+t 2=﹣4(sin α+cos α),t 1t 2=4. ∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵,∴,的参数方程为(t ∈R 为参数),求a ,b 的值.的值.考点: 点的点的极坐标极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程. 专题: 压轴题;直线与圆.压轴题;直线与圆.分析: (I )先将圆C 1,直线C 2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由(I )得,P 与Q 点的坐标分别为(∴.∴|PM|+|PN|的取值范围是.点评:考点: 点的极坐标和直角坐标的互化. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(I )由⊙C 的极坐标方程为ρ=2sin θ.化为ρ2=2,把代入即可得出;.(II )设P ,又C .利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.函数的性质即可得出.解答: 解:(I )由⊙C 的极坐标方程为ρ=2sin θ. ∴ρ2=2,化为x 2+y 2=,配方为=3.(II )设P ,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P (3,0).点评: 本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.能力与计算能力,属于中档题.15.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B 两点.两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;的极坐标方程转化为直角坐标方程; (Ⅱ)求弦AB 的长度.的长度.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得曲线C 2及曲线C 1的直角坐标方程.的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度.长度.解答:解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ 所以x 2+y 2=6x 即(x ﹣3)2+y 2=9 本题考查了直线的参数方程、圆的本题考查了直线的参数方程、圆的极坐标极坐标方程、直线与圆相交弦长问题,属于中档题.方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙C 的直角坐标方程;的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.的直角坐标.(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==. ∴弦AB 的长度.考点: 简单曲线的极坐标方程;直线与圆的位置关系.专题: 计算题.计算题.分析: (1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,本关系,消去θ可得曲线C 的普通方程,得出圆心的直角坐标后再化面极坐标即可.的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线l 的距离的最大值,最后列出关于r 的方程即可求出r 值.值.解答: 解:(1)由)由 ρsin (θ+)=,得,得 ρ(cos θ+sin θ)=1,∴直线l :x+y ﹣1=0.由 得C :圆心(﹣,﹣).∴圆心C 的极坐标(1,).(2)在圆C :的圆心到直线l 的距离为:的距离为:∵圆C 上的点到直线l 的最大距离为3,∴. r=2﹣∴当r=2﹣时,圆C 上的点到直线l 的最大距离为3. 点评: 本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程:坐标系与参数方程 点评: 本小题主要考查圆和直线的本小题主要考查圆和直线的极坐标极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.基本方法,属于基础题.16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin (θ+)=,圆C 的参数方程为,(θ为参数,r >0)(Ⅰ)求圆心C 的极坐标;的极坐标;(Ⅱ)当r 为何值时,圆C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线的参数方程.计算题;压轴题.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.的公共弦的参数方程.的公共弦的参数方程. 解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1 从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。
极坐标与参数方程高考题(含答案)

极坐标与参数方程高考题1。
在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I)求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12。
2。
已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.解:(1)曲线C 的参数方程为(θ为参数)。
直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ—6|, 则|PA|==|5sin(θ+α)—6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,当sin (θ+α)=1时,|PA|取得最小值, 3。
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1)。
极坐标与参数方程含答案

极坐标系与参数方程一.高考真题1.设b a b a b a +=+∈则,62,,22R 的最小值( C )A .22-B .335-C .-3D .27-2.在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A.ρθ=22cosB.ρθ=-22c o sC.ρθ=22sinD.ρθ=-22s i n3.极坐标方程ρ=cos θ与ρcos θ= 12的图形是( B )A.C.D.4.极坐标方程ρ2cos2θ=1所表示的曲线是( D )A .两条相交直线B .圆C .椭圆D .双曲线5.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 2 .6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( B )(A )0 (B )1 (C )2 (D )27.在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t t y t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 (0,2) ,圆心到直线l 的距离为22.二.极坐标与参数方程 知识点回顾及练习(一)极坐标1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在平面直角坐标系中,方程1y x 22=+所对应的图形经过伸缩变换⎩⎨⎧='='3y y 2x,x 后的图形所对应的方程是19422='+'y x .例2: 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy 3x,x 后,曲线C 变为曲线9y 9x 22='+',则曲线C 的方程是122=+y x例3:在同一平面直角坐标系中,使曲线2sin3x y =变为曲线sinx y =的伸缩变换是⎪⎩⎪⎨⎧='='y y x x 2132.极坐标系的概念如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对( , )叫做点M 的极坐标.例1:极坐标系中,点M )4,4(π表示的意思是 在正方向45°处的距极点距离为4的点。
极坐标与参数方程测试题及答案

极坐标与参数方程测试一、选择题(每题 4 分)1.点 M 的极坐标 (5,2) 化为直角坐标为(C )3A . (5 , 5 3 ) B .(5, 53) C .(5,5 3) D .(5,5 3)222222222.点 M 的直角坐标为 (3, 1) 化为极坐标为(B )A . (2, 5 )B. (2, 7 ) C .(2,11 ) D . (2, )66663.已知曲线 C 的参数方程为x 3t(t 为参数 ) 则点 M 1 (0,1), M 2 (5,4) 与曲线 Cy 2t21的地点关系是( A )A . M 1 在曲线 C 上,但 M 2不在。
B . M 1不在曲线C 上,但 M 2 在。
C . M 1 , M 2都在曲线 C 上。
D. M 1, M 2 都不在曲线 C 上。
4.曲线 5 表示什么曲线( B)A .直线B.圆C.射线D .线段5.参数方程x t 1(t 为参数 ) 表示什么曲线(C )y1 2 tA .一条直线B.一个半圆C .一条射线D .一个圆x 3 cos)6.椭圆1( 为参数 ) 的两个焦点坐标是 (By5sinA . (-3 , 5) , (-3 , -3)B .(3 ,3) ,(3,-5)C .(1 ,1), (-7 , 1)D .(7 ,-1) , (-1 ,-1)7.曲线的极坐标方程 ρ=4sin θ 化 成直角坐标方程为 ( A)A . x 2+(y+2) 2=4B . x 2+(y-2) 2=4C . (x-2) 2+y 2=4D . (x+2) 2+y 2=48.极坐标方程 4sin2θ=3 表示曲线是 (D)A.两条射线 B .抛物线C.圆D.两条订交直线x 2 cosD ) 9.直线: 3x-4y-9=0 与圆:,( θ为参数 ) 的地点关系是 (y2sinA.相切 B .相离C.直线过圆心 D .订交但直线可是圆心10.双曲线x2tanC ) y 1( θ为参数 ) 的渐近线方程为 (2 secA.y 11( x2) B .y 1 x 22C.y 12( x 2) D .y 12(x 2)二、填空题(每题 5 分,共 20 分)x t 12 t11.双曲线y t11tx cos12.参数方程1cosy sin1cos 的中心坐标是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学极坐标与参数方程专题测试题含答案(120分钟 每小题10分,共15小题,总分150分)1.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.2. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值。
3.【2017课标3,理22】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.4.【2015高考陕西,理23】在直角坐标系x y O 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I )写出C 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.5.【2015高考新课标2,理23】在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.6. 【2014全国2,理20】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.7. 【2014课标Ⅰ,理23】已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数).(I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.8.【2015高考新课标1,理23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积.9.【2016高考新课标3理数】在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.10.【2016高考新课标1卷】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .11.【2016高考新课标2理数】在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.12.【2018年全国卷Ⅲ理】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围; (2)求中点的轨迹的参数方程.13.【2018年理数全国卷II】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.14.【贵州省凯里市2018届四模】在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,以轴非负半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程;(2)设直线(为任意锐角)、分别与曲线交于两点,试求面积的最小值.15.【辽宁省葫芦岛市2018年二模】直角坐标系中,直线的参数方程为 (为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点,若点的坐标为,求的最小值.参考答案1.解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-.…………5分 (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a ≥-时,d=8a =; 当4a <-时,d=16a =-. 综上,8a =或16a =-.…………10分【考点】极坐标与参数方程仍然考查直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,直线与曲线的位置关系.【名师点睛】化参数方程为普通方程主要是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.2.解析:(1)设P 的极坐标为()(),>0ρθρ,M 的极坐标为()()11,>0ρθρ,由题设知cos 14=,=ρρθOP OM =。
由16OM OP ⋅=得2C 的极坐标方程()cos =4>0ρθρ。
因此2C 的直角坐标方程为()()22240x y x -+=≠。
…………5分(2)设点B 的极坐标为()(),0B B ραρ>,由题设知2,4cos B OA ρα==,于是OAB △面积1sin 24cos sin 332sin 23223B S OA AOB ρπααπα=⋅⋅∠⎛⎫=⋅- ⎪⎝⎭⎛⎫=--⎪⎝⎭≤+。
当12πα=-时,S 取得最大值23+。
所以OAB △面积的最大值为23+。
…………10分【考点】 圆的极坐标方程与直角坐标方程;三角形面积的最值。
【名师点睛】本题考查了极坐标方程的求法及应用。
重点考查了转化与化归能力。
遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解。
要结合题目本身特点,确定选择何种方程。
3.【解析】设(),p x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.…………5分(2)C 的极坐标方程为()()222cos sin 402,ρθθθπθπ-=<<≠ .联立()()222cos sin 4,cos sin 20ρθθρθθ⎧-=⎪⎨+-=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-,从而2291cos ,sin 1010θθ== .代入()222cos sin 4ρθθ-=得25ρ=,所以交点M 5…………10分【考点】 参数方程与直角坐标方程互化;极坐标中的极径的求解【名师点睛】本题考查了极坐标方程的求法及应用.重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. 4.【解析】试题解析:(I )由3ρθ=,得23sin ρρθ=,从而有22+23x y =,所以(22+33x y -=.…………5分(II)设13(32P +,又3),则22213|PC |331222t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭故当0t =时,C P 取最小值,此时P 点的直角坐标为()3,0.…………10分考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.【名师点晴】本题主要考查的是极坐标方程化为直角坐标方程、参数的几何意义和二次函数的性质,属于容易题.解决此类问题的关键是极坐标方程或参数方程转化为平面直角坐标系方程,并把几何问题代数化. 5.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为2230x y x +-=.联立222220,230,x y y x y x ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33()2.…………5分 (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为(23,)αα.所以2sin 23AB αα=-4in()3s πα=-,当56πα=时,AB 取得最大值,最大值为4.…………10分【考点定位】1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值.【名师点睛】(Ⅰ)将曲线2C 与1C 的极坐标方程化为直角坐标方程,联立求交点,得其交点的直角坐标,也可以直接联立极坐标方程,求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立2C 与1C 和3C 与1C 的极坐标方程,求得,A B 的极坐标,由极径的概念将AB 表示,转化为三角函数的最大值问题处理,高考试卷对参数方程中参数的几何意义和极坐标方程中极径和极角的概念考查加大了力度,复习时要克服把所有问题直角坐标化的误区. 6.【考点定位】参数方程化成普通方程.【名师点睛】本题考查参数方程的运用,中点坐标公式,两点间的距离公式,学生分析解决问题的能力,正确运用参数方程是解决问题的关键. 7.【解析】(I )曲线C 的参数方程为2cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数).直线l 的普通方程为260x y +-=.5分(II )曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为53sin 65d θθ=+-.则 025)6sin 305d PA θα==+-.其中α为锐角,且4tan 3α=. 当sin()1θα+=-时,PA 225. 当sin()1θα+=时,PA 25.…………10分 【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.【名师点睛】本题考查普通方程与参数方程的互化,考查了点到直线的距离公式,熟练掌握普通方程与参数方程的互化公式是解决本题的关键,体现了数学转化思想和方法,同时考查了学生的综合分析问题的能力和计算能力.8.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12.…………10分 【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.9.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. ……5分 当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.10分 考点:1、椭圆的参数方程;2、直线的极坐标方程.【技巧点拨】一般地,涉及椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.10.【解析】⑴cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程…………5分…………10分考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.11.【解析】(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=…………5分 (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos ,tan 83αα==±, 所以l 的斜率为153或153-.…………10分 考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式.【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性. 12【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.………………5分(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.……10分点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题。