物理化学课后参考答案热力学定律

合集下载

第五版物理化学课后习题答案

第五版物理化学课后习题答案

第五版物理化学课后习题答案第五版物理化学课后习题答案物理化学是一门综合性的学科,涉及到物理学和化学的交叉领域,对于学习者来说,掌握习题的解答方法是非常重要的。

本文将为大家提供第五版物理化学课后习题的答案,帮助大家更好地理解和掌握物理化学知识。

第一章:热力学1. 根据热力学第一定律,ΔU = q + w,其中ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外界做的功。

2. 热容量C = q/ΔT,其中C表示热容量,q表示系统吸收的热量,ΔT表示温度变化。

3. 热力学第二定律表明,热量不会自发地从低温物体传递到高温物体,热量的传递总是从高温物体向低温物体传递。

4. 熵的变化ΔS = q/T,其中ΔS表示熵的变化,q表示吸收的热量,T表示温度。

5. 熵是一个系统无序程度的度量,熵的增加意味着系统的无序程度增加。

第二章:量子力学1. 波粒二象性是指粒子既可以表现出波动性质,也可以表现出粒子性质。

2. 波函数描述了量子力学系统的状态,波函数的平方表示在某个位置上找到粒子的概率。

3. 薛定谔方程描述了量子力学系统的演化。

4. 波函数的归一化要求波函数的平方在整个空间上的积分等于1。

5. 量子力学中的不确定性原理表明,无法同时精确测量粒子的位置和动量,精确测量其中一个属性,另一个属性的测量结果就会变得模糊。

第三章:电化学1. 电化学反应可以分为两类:氧化还原反应和非氧化还原反应。

2. 氧化还原反应中,氧化剂接受电子,被还原,而还原剂失去电子,被氧化。

3. 电解质溶液中的电解质会在电解过程中分解成离子。

4. 电解过程中,阳极是发生氧化反应的电极,阴极是发生还原反应的电极。

5. 电解质溶液中的电导率与电解质浓度成正比,与温度成反比。

第四章:动力学1. 反应速率可以通过反应物浓度的变化率来表示。

2. 反应速率与反应物浓度的关系可以由速率方程来描述。

3. 反应级数表示反应速率与反应物浓度的关系,可以是零级、一级或二级反应。

大学物理化学1-热力学第一定律课后习题及答案

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。

1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的∆f H(800 K) = 0。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。

3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。

7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 热力学第一定律2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。

解:体系压力保持恒定进行升温,即有P 外=P ,即反抗恒定外压进行膨胀,JT nR nRT nRT pV pV V V p W amb 314.8)(121212-=∆-=+-=+-=--=2-2 系统由相同的始态经过不同途径达到相同的末态。

若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。

求W b 。

解:应用状态函数法。

因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-3 4mol 某理想气体,温度升高20℃,求△H -△U 的值。

解: 方法一: 665.16J208.3144 )20()( 2020,,20,20,=⨯⨯=-+==-=-=∆-∆⎰⎰⎰⎰++++T K T nR nRdT dT C C n dTnC dT nC U H K T TKT Tm V m p KT Tm V K T T m p方法二:可以用△H=△U+△(PV)进行计算。

2-4 某理想气体, 1.5V m C R =。

今有该气体5 mol 在恒容下温度升高50℃,求过程的W ,Q ,△H 和△U 。

解:恒容:W=0;kJJ K nC T K T nC dT nC U m V m V K T Tm V 118.33118503145.823550 )50(,,50,==⨯⨯⨯=⨯=-+==∆⎰+kJJ KR C n T K T nC dT nC H m V m p KT Tm p 196.55196503145.8255 50)()50(,,50,==⨯⨯⨯=⨯+==-+==∆⎰+根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5 某理想气体, 2.5V m C R =。

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。

(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程。

(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。

A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

物理化学课后答案 第三章 热力学第二定律

物理化学课后答案 第三章 热力学第二定律

第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。

求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。

今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。

解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7已知水的比定压热容。

今有1 kg,10 ︒C的水经下列三种不同过程加热成100 ︒C的水,求过程的。

(1)系统与100 ︒C的热源接触。

(2)系统先与55 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。

(3)系统先与40 ︒C,70 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此, g)的摩尔定压热容与温度的函数关系为3.8已知氮(N2(g)臵于1000 K的热源中,将始态为300 K,100 kPa下1 mol的N2求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。

解:在恒压的情况下在恒容情况下,将氮(N, g)看作理想气2体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。

解:(1)对理想气体恒温可逆膨胀, U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。

第五版物理化学课后习题答案 (2)

第五版物理化学课后习题答案 (2)

第三章 热力学第二定律3-1 卡诺热机在T 1=600K 的高温热源和T 2=300K 的低温热源间工作。

求: (1) 热机效率η;(2) 当向环境做功-W =100kJ 时,系统从高温热源吸收的热Q 1与Q2 解:(1) 卡诺热机的效率为: η=121T T T - =600300600-(2) η=1WQ - Q 1=2×100=200 kJ -Q 2=Q 1+W =200-100=100kJ3-2 某地热水的温度为65℃,大气温度为20℃。

若分别用一可逆热机和一不可逆热机从地热水中取出1000J 的热量。

(1) 分别计算两热机对外所做的功。

已知不可逆热机效率是可逆热机效率的80%; (2) 分别计算两热机向大气中放出的热。

解:(1) ∵ 1211338.15293.15338.15R W T T Q T ---==∴ W R =451000338.15-⨯J W IR =80% W R J (2) ∵ Q 1=-W -Q 2∴ 可逆热机 Q 1=133.1-1000=-866.9 J不可逆热机 Q 1=106.5-1000=-893.5 J3-3 卡诺热机在T 1=900K 的高温热源和T 2=300K 的低温热源间工作。

求: (1) 热机效率η;(2) 当向低温热源放热-Q 2=100kJ 时,系统从高温热源吸热Q 1及对环境作的功-W 。

解:(1) 卡诺热机的效率为: η=121T T T - =900300900-(2) η=1-21Q Q Q 1=122TQ T -=900100300⨯=21Q η-=1000.66671--kJ -W =ηQ 1×300=Q 1+Q 2=300.03-100=200.03 kJ3-4 冬季利用热泵从室外0℃的环境吸热,向室内18℃的房间供热。

若每分钟100 kJ 的功开动热泵,试估算热泵每分钟最多能向室内供热多少? 解: η=121T T T - =273.15291.15273.15--Q 2=1000.06950Wη-=kJ3-5 高温热源温度T 1=600K ,低温热源温度T 2=300K 。

大学物理化学2-热力学第二定律课后习题及答案

大学物理化学2-热力学第二定律课后习题及答案

热力学第二定律课后习题答案习题1在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。

求整个过程的S 为若干?已知C V m A = 15 R ,C V m B = 2 5 R[题解] ⎪⎩⎪⎨⎧B(g)2mol A(g)2mol ,,纯态 3001001K kPa,()−→−−−− 混合态,,2mol A 2mol B 100kPa 300K1+==⎧⎨⎪⎪⎩⎪⎪p T 定容()−→−−2 混合态,,2mol A 2mol B 600K 2+=⎧⎨⎪⎩⎪T S = S 1 + S 2,n = 2 molS 1 = 2nR ln ( 2V / V ) = 2nR ln2 S 2 = ( 15nR + 25nR ) ln (T 2 / T 1)= 4nR ln2所以S = 6nR ln2= ( 6 2 mol 8314 J ·K 1·mol 1 ) ln2 = 6915 J ·K 1[导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。

习题22 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405 2 kPa 的始态,依次经历下列过程:(1)恒外压202 6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101 3 kPa ; (3)最后定容加热至500 K 的终态。

试求整个过程的Q ,W ,U ,H 及S 。

[题解] (1)Q 1 = 0,U 1 = W 1,nC V m (T 2-T 1))(1122su p nRT p nRT p --=, K400546.2022.405)(5.11221211212====-=-T T kPa p kPa p T p T p T T ,得,代入,(2)Q 2 = 0,T T p p 3223111535325=-=-=--()γγγγ,, T T 320.42303==-()K(3)V = 0,W 3 = 0,Q U nC T T V 3343232831450030314491==-=⨯⨯⨯-=∆,()[.(.)].m J kJp p T T 434350030310131671==⨯=(.).kPa kPa 整个过程:Q = Q 1 + Q 2+ Q 3 =491kJ ,U = 0,H = 0,Q + W = U ,故W =-Q =-491 kJ∆S nR p p ==⨯=--ln (.ln ..).141128314405616711475J K J K ··[导引]本题的变化过程为单纯pVT 变化,其中U 、H 和S 是状态函数,而理想气体的U 和H 都只是温度的函数,始终态温度未变,故U = 0,H = 0。

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案

第二章 热力学第一定律2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。

解:体系压力保持恒定进行升温,即有P外=P ,即反抗恒定外压进行膨胀,JT nR nRT nRT pV pV V V p W amb 314.8)(121212-=∆-=+-=+-=--=2-2 系统由相同的始态经过不同途径达到相同的末态。

若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。

求W b 。

解:应用状态函数法。

因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+ 所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-3 4mol 某理想气体,温度升高20℃,求△H -△U 的值。

解: 方法一: 665.16J208.3144 )20()( 2020,,20,20,=⨯⨯=-+==-=-=∆-∆⎰⎰⎰⎰++++T K T nR nRdT dT C C n dTnC dT nC U H K T TKT Tm V m p KT Tm V K T T m p方法二:可以用△H=△U+△(PV)进行计算。

2-4 某理想气体, 1.5V m C R =。

今有该气体5 mol 在恒容下温度升高50℃,求过程的W ,Q ,△H 和△U 。

解:恒容:W=0; kJJ K nC T K T nC dT nC U m V m V K T Tm V 118.33118503145.823550 )50(,,50,==⨯⨯⨯=⨯=-+==∆⎰+kJJ KR C n T K T nC dT nC H m V m p KT Tm p 196.55196503145.8255 50)()50(,,50,==⨯⨯⨯=⨯+==-+==∆⎰+根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5 某理想气体, 2.5V m C R =。

(完整版)物理化学课后答案-热力学第一定律

(完整版)物理化学课后答案-热力学第一定律

欢迎共阅第二章热力学第一定律【复习题】【1】判断下列说法是否正确。

(1)状态给定后,状态函数就有一定的值,反之亦然。

(2)状态函数改变后,状态一定改变。

(3)状态改变后,状态函数一定都改变。

(4)因为△ U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。

(5)恒温过程一定是可逆过程。

(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。

(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。

(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0 ,则Q=0 ,无热量交换。

(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。

(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR 。

(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q 有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。

(12)某一化学反应在烧杯中进行,放热Q1,焓变为△ H 1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△ H2,则△ H1=△H 2。

【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。

相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。

(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。

(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。

(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H 的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。

ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。

大学物理化学1-热力学第一定律课后习题及答案

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。

1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的∆f H(800 K) = 0。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。

3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。

7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案第二章热力学第一定律2-1 1mol 理想气体于恒定压力下升温「C,试求过程中气体与环境交换的功 W 解:体系压力保持恒定进行升温,即有P 外=P ,即反抗恒定外压进行膨胀,W P amb (V 2 M) pV 2 pV t nRT 2 nR 「 nR T 8.314J2-2系统由相同的始态经过不同途径达到相同的末态。

若途径a 的Q a =2.078kJ,W a = -4.157kJ;而途径 b 的 Q b = -0.692kJ 。

求 W b 。

解:应用状态函数法。

因两条途径的始末态相同,故有△U b ,则 Q a W a Q b W b2-4某理想气体C V,m 1.5R 。

今有该气体5 mol 在恒容下温度升高50C ,求过程的W ,Q ,A H 和厶U 。

所以有,W b Q a W a Q2.078 4.157 0.6921.387kJ2-3 4mol 某理想气体,温度升高20C ,求厶H -△ U 的值。

解:方法一:T 20KU T n C p,m dTT 20Kn (Cp,mCV,m )dT方法二:可以用T 20KTn C V,m dT_ T 20KT r-p,m-v,m ;二T n RdT nR(T4 8.314 20 665.16J20K T)△ H=A U+A (PV)进行计算。

8.3145 50 5196J 5.196kJ根据热力学第一定律,:W=0故有Q=A U=3.118kJ 2-5某理想气体C V m 2.5R 。

今有该气体5 mol 在恒压下温度降低50C ,求过程的W ,Q ,A H 和厶U 。

解:恒容:W=0T 50KUT nC v,m dT nCV,m(T 50K T)nCV ,m 50K 5 38.3145 5023118J3.118kJT 50KT nC p,m dTH nC p,m (T 50K T) n(C V,m R) 50K H 7.275kJ U Q 5.196kJ( 7.725kJ) 2.079kJC Pm 7R 。

物理化学答案第三章热力学第二定律

物理化学答案第三章热力学第二定律

物理化学答案第三章热⼒学第⼆定律第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。

求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.5 ⾼温热源温度,低温热源。

今有120 kJ的热直接从⾼温热源传给低温热源,龟此过程的。

解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。

求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。

3.7 已知⽔的⽐定压热容。

今有1 kg,10 °C的⽔经下列三种不同过程加热成100 °C的⽔,求过程的。

(1)系统与100 °C的热源接触。

(2)系统先与55 °C的热源接触⾄热平衡,再与100 °C的热源接触。

(3)系统先与40 °C,70 °C的热源接触⾄热平衡,再与100 °C的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(N2, g)的摩尔定压热容与温度的函数关系为将始态为300 K,100 kPa下1 mol的N2(g)置于1000 K的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。

解:在恒压的情况下在恒容情况下,将氮(N2, g)看作理想⽓体将代替上⾯各式中的,即可求得所需各量3.9 始态为,的某双原⼦理想⽓体1 mol,经下列不同途径变化到,的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却⾄使压⼒降⾄100 kPa,再恒压加热⾄;(3)先绝热可逆膨胀到使压⼒降⾄100 kPa,再恒压加热⾄。

解:(1)对理想⽓体恒温可逆膨胀,D U = 0,因此(2)先计算恒容冷却⾄使压⼒降⾄100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压⼒降⾄100 kPa时系统的温度T:根据理想⽓体绝热过程状态⽅程,各热⼒学量计算如下2.12 2 mol双原⼦理想⽓体从始态300 K,50 dm3,先恒容加热⾄400 K,再恒压加热⾄体积增⼤到100 dm3,求整个过程的。

物理化学 课后答案-热力学第二定律

物理化学 课后答案-热力学第二定律

第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力.(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程. (5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡.A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆〈0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

物理化学热力学第一定律习题答案

物理化学热力学第一定律习题答案

第二章 热力学第一定律2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。

解:体系压力保持恒定进行升温,即有P 外=P ,即反抗恒定外压进行膨胀,JT nR nRT nRT pV pV V V p W amb 314.8)(121212-=∆-=+-=+-=--= 2-2 系统由相同的始态经过不同途径达到相同的末态。

若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。

求W b 。

解:应用状态函数法。

因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+ 所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-3 4mol 某理想气体,温度升高20℃,求△H -△U 的值。

解: 方法一: 665.16J208.3144 )20()( 2020,,20,20,=⨯⨯=-+==-=-=∆-∆⎰⎰⎰⎰++++T K T nR nRdT dT C C n dT nC dT nC U H KT T K T T m V m p K T T m V KT Tm p方法二:可以用△H=△U+△(PV)进行计算。

2-4 某理想气体, 1.5V m C R =。

今有该气体5 mol 在恒容下温度升高50℃,求过程的W ,Q ,△H 和△U 。

解:恒容:W=0;根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5 某理想气体, 2.5V m C R =。

今有该气体5 mol 在恒压下温度降低50℃,求过程的W ,Q ,△H 和△U 。

解: kJ J K nC T K T nC dT nC U m V m V KT T m V 196.55196503145.8255)50( )50(,,50,-=-=⨯⨯⨯-=-⨯=--==∆⎰-2-6 1mol 某理想气体,R C m P 27,=。

物理化学答案——第二章-热力学第二定律

物理化学答案——第二章-热力学第二定律

第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。

物理化学课后习题与答案

物理化学课后习题与答案

逆过程。设气体的
Cv,m

3 2
R
。试计算各个状态的压力
p
并填下表。
V/dm3•mol-1
44.8 C B
22.4 A
273
546
T/K
1
步骤
A B C
过程的名称
等容可逆 等温可逆 等压可逆
Q/J W/J △U/J
8. 一摩尔单原子理想气体,始态为 2×101.325kPa、11.2dm3,经 pT = 常数的可逆过程(即过
(1) 298K 时的“平衡常数”; (2) 正、逆反应的活化能; (3) 反应热;
(4) 若反应开始时只有 A,pA,0=105Pa,求总压达 1.5×105Pa 时所需时间(可忽略逆反应)。
8.有一反应,其速率正比于反应物浓度和一催化剂浓度。因催化剂浓度在反应过程中不变, 故表现为一级反应。某温度下,当催化剂浓度为 0.01 mol·dm-3 时,其速率常数为 5.8×10-6 s-1。 试问其真正的二级反应速率常数是多少?如果催化剂浓度为 0. 10 mol·dm-3,表现为一级反应
4. 固体 CO2 的饱和蒸汽压在 -103℃ 时等于 10.226kPa,在 -78.5℃ 时等于 101.325 kPa,求: (1)CO2 的升华热;(2)在 -90℃ 时 CO2 的饱和蒸汽压。
5. 设你体重为 50kg,穿一双冰鞋立于冰上,冰鞋面积为 2cm3,问温度需低于摄氏零下几 度,才使冰不熔化?已知冰的 ΔfusHm = 333.4kJ·kg-1,水的密度为 1000 kg·m3,冰的密度为 900kg·m3。
(2) 1mol 水在 100℃恒 温下于真 空容器中 全部蒸发 为蒸气, 而且蒸气 的压力恰 好为

大学物理化学1-热力学第一定律课后习题及答案

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“”,错误的画“”。

1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。

( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。

( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。

( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。

( )5. 稳定态单质的f H(800 K) = 0。

( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。

(A)Q > 0;(B)U < 0;(C)W < 0;(D)H = 0。

2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。

( A ) Q; ( B ) Q+W; (C ) W( Q = 0 ); ( D ) Q( W = 0 )。

3. pV = 常数( = C p,m/C V,m)适用的条件是:( )(A)绝热过程; ( B)理想气体绝热过程;( C )理想气体绝热可逆过程; (D)绝热可逆过程。

4. 在隔离系统内:( )。

( A ) 热力学能守恒,焓守恒; ( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒; ( D) 热力学能、焓均不一定守恒。

5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。

( A )可以到达同一终态; ( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。

6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。

( A )焓总是不变; (B )热力学能总是增加;( C )焓总是增加; (D )热力学能总是减少。

7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为r H(T),下列说法中不正确的是:()。

物理化学(天津大学第四版)课后答案 第二章 热力学第一定律

物理化学(天津大学第四版)课后答案 第二章 热力学第一定律
燃烧成 CO2(g)和 H2O(l)。过程放热 401.727 kJ。求 (1)
(2)


(3)


解:(1)C10H8 的分子量 M = 128.174,反应进程 。
(2)

(3)
2.34 应用附录中有关物资在 25 °C 的标准摩尔生成焓的数据,计算下列反应
在 25 °C 时的


(1)
(2)

,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水(H2O, l)及二氧
化碳(CO2, g)的标准摩尔生成焓
分别为


°C 时下列反应的标准摩尔反应焓。
、 。应用这些数据求 25
解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
课 后 答 案 网
2.39 对于化学反应
(3)
课 后 答 案 网
解:查表知
NH3(g) -46.11 NO2(g) 33.18
NO(g) 90.25
H2O(g)
H2O(l)
-241.818 -285.830
HNO3(l) -174.10
Fe2O3(s) -824.2
CO(g) -110.525
(1) (2) (3) 3.35 应用附录中有关物资的热化学数据,计算 25 °C 时反应
通电缓慢加热左侧气体 A,使推动活塞压缩右侧气体 B 到最终压力增至 200 kPa。
求:
课 后 答 案 网
(1)气体 B 的末态温度 。 (2)气体 B 得到的功 。 (3)气体 A 的末态温度 。
(4)气体A从电热丝得到的热 。 解:过程图示如下
由于加热缓慢,B 可看作经历了一个绝热可逆过程,因此 功用热力学第一定律求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章热力学第一定律2.5 始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。

途经a先经绝热膨胀到 -28.47 ︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。

途径b为恒压加热过程。

求途径b的及。

解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 ︒C,求的值。

解:根据焓的定义2.10 2 mol某理想气体,。

由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。

求整个过程的。

解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。

求20 ︒C,液态乙醇的。

解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。

今利用加热器件使器内的空气由0 ︒C加热至20 ︒C,问需供给容器内的空气多少热量。

已知空气的。

假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。

这是因为,从小孔中排出去的空气要对环境作功。

所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。

2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol 的Ar(g)及150 ︒C,2 mol的Cu(s)。

现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。

已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。

解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则(g)的摩尔2.16 水煤气发生炉出口的水煤气的温度是1100 ︒C,其中CO(g)和H2分数均为0.5。

若每小时有300 kg的水煤气由1100 ︒C冷却到100 ︒C,并用所收回的热来加热水,是水温由25 ︒C升高到75 ︒C。

求每小时生产热水的质量。

CO(g)和H(g)的摩尔定压热容与温度的函数关系查本书附录,水的2比定压热容。

解:300 kg的水煤气中CO(g)和H(g)的物质量分别为2300 kg的水煤气由1100 ︒C冷却到100 ︒C所放热量设生产热水的质量为m,则2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。

今该混合气体绝热反抗恒外压膨胀到平衡态。

求末态温度及过程的。

解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。

因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 ︒C 的单原子理想气体A及5 mol,100 ︒C的双原子理想气体B,两气体的压力均为100 kPa。

活塞外的压力维持在100 kPa不变。

今将容器内的隔板撤去,使两种气体混合达到平衡态。

求末态的温度T及过程的。

解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.20 在一带活塞的绝热容器中有一固定的绝热隔板。

隔板靠活塞一侧为2 mol,0 ︒C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 ︒C的双原子理想气体B,其体积恒定。

今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。

解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。

求末态温度T及整个过程的及。

解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。

而第一步为恒温可逆2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

证明:根据理想气体绝热方程,得,因此。

因此绝热线在处的斜率为恒温线在处的斜率为。

由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

2.25 一水平放臵的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。

两气体均为0 C,100 kPa。

A气体内部有一体积和热容均可忽略的电热丝。

现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。

求:(1)气体B的末态温度。

(2)气体B得到的功。

(3)气体A的末态温度。

(4)气体A从电热丝得到的热。

解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W= 0,因此2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。

始态温度,压力。

今以气体B为系统,求经可逆膨胀到时,系统的及过程的。

解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。

作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体BO, l)在100 ︒C的饱和蒸气压,在此温度、压2.26 已知水(H2力下水的摩尔蒸发焓。

求在在100 ︒C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。

设水蒸气适用理想气体状态方程式。

解:该过程为可逆相变2.28 已知 100 kPa 下冰的熔点为 0 °C,此时冰的比熔化焓热J·g-1. 水的平均定压热容。

求在绝热容器内向1 kg 50 °C 的水中投入 0.1 kg 0 °C 的冰后,系统末态的温度。

计算时不考虑容器的热容。

解:经粗略估算可知,系统的末态温度T应该高于0 °C, 因此2.29 已知 100 kPa 下冰的熔点为0 °C,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。

今在绝热容器内向1 kg 50 °C 的水中投入 0.8 kg 温度 -20 °C 的冰。

求:(1)末态的温度。

(2)末态水和冰的质量。

解:1 kg 50 °C 的水降温致0 °C 时放热0.8 kg -20 °C 的冰升温致0 °C 时所吸热完全融化则需热因此,只有部分冰熔化。

所以系统末态的温度为0 °C。

设有g的冰熔化,则有系统冰和水的质量分别为2.30 蒸汽锅炉中连续不断地注入 20 °C的水,将其加热并蒸发成 180 °C,饱和蒸汽压为 1.003 MPa 的水蒸气。

求生产 1 kg 水蒸气所需要的热量。

已知:水在 100 °C的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气的摩尔定压热容与温度的函数关系见附录。

解:将过程看作是恒压过程(),系统的初态和末态分别为和。

插入平衡相变点,并将蒸汽看作理想气体,则过程的焓变为(注:压力对凝聚相焓变的影响可忽略,而理想气体的焓变与压力无关)查表知因此,2.31 100 kPa下,冰(HO, s)的熔点为0 ︒C。

在此条件下冰的摩尔融化热2O, l)和。

已知在-10 ︒C ~ 0 ︒C范围内过冷水(H2冰的摩尔定压热容分别为和。

求在常压及-10 ︒C下过冷水结冰的摩尔凝固焓。

解:过程图示如下平衡相变点,因此2.33 25 ︒C下,密闭恒容的容器中有10 g固体奈C10H8(s)在过量的O2(g)中完全燃烧成CO2(g)和H2O(l)。

过程放热401.727 kJ。

求(1)(2)的;(3)的;解:(1)C10H8的分子量M = 128.174,反应进程。

(2)。

(3)2.34应用附录中有关物资在25 ︒C的标准摩尔生成焓的数据,计算下列反应在25 ︒C时的及。

(1)(2)(3)解:查表知(1)(2)(3)3.35 应用附录中有关物资的热化学数据,计算 25 ︒C时反应的标准摩尔反应焓,要求:(1)应用25 ︒C的标准摩尔生成焓数据;(2)应用25 ︒C的标准摩尔燃烧焓数据。

解:查表知因此,由标准摩尔生成焓由标准摩尔燃烧焓2.37已知25 ︒C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓为,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水(H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓分别为、、及。

应用这些数据求25 ︒C时下列反应的标准摩尔反应焓。

解:显然要求出甲酸甲脂(HCOOCH, l)的标准摩尔生成焓32.39对于化学反应应用附录中4种物资在25 ︒C时的标准摩尔生成焓数据及摩尔定压热容与温度的函数关系式:(1)将表示成温度的函数关系式(2)求该反应在1000 ︒C时的。

解:与温度的关系用Kirchhoff公式表示因此,1000 K时,2.40甲烷与过量50%的空气混合,为使恒压燃烧的最高温度能达到2000 C,求燃烧前混合气体应预热到多少摄氏度。

物资的标准摩尔生成焓数据见附录。

空气组成按,计算。

各物资的平均摩尔定压热容分别为:;;;;。

解:燃烧为恒压绝热过程。

化学反应式设计途径如下在下甲烷燃烧的摩尔反应热为,则可由表出(Kirchhoff公式)设甲烷的物质量为1 mol,则,,,最后得到。

相关文档
最新文档