晶闸管开环直流调速系统的仿真
晶闸管直流调速系统参数和环节特性的测定
§5-1 晶闸管直流调速系统参数和环节特性的测定一、 实验目的(1) 熟悉晶闸管直流调速系统的组成及其基本结构(2) 掌握晶闸管直流调速系统参数及反馈环节测定方法二、 实验原理晶闸管直流直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g 作为触发器的移相控制电压U ct ,改变U g 的大小α即可改变控制角,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理如图5-1所示。
1V L d三相电源输出A M A V G VT 4VT 1VT 3VT 5VT 6VT 2I 1给定触发电路正桥功放U f G 1K 1G 2K 2G 3K 3G 4K 4G 5K 5G 6K 6励磁电源I 2U 2R U ct图5-1 晶闸管直流调速实验系统原理图三、 实验内容(1)测定晶闸管直流调速系统主电路总电阻值R 。
(2)测定晶闸管直流调速系统主电路电感值L 。
(3)测定直流电机-直流发电机-测速发电机组的飞轮惯量GD 2。
(4)测定晶闸管直流调速系统主电路电磁时间常数Td 。
(5)测定直流电动机电势常数C e 和转矩常数C M 。
(6)测定晶闸管直流调速系统机电时间常数T M 。
(7)测定晶闸管触发及整流装置特性U d =f (U ct )。
(8) 测定测速发电机特性U TG =f (n )。
四、 实验仿真晶闸管直流调速实验系统的原理如图5-1所示。
该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。
图5-2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。
下面介绍各部分建模与参数设置过程。
图5-2 晶闸管开环调速系统的仿真模型1.系统的建模和模型参数设置系统的建模包括主电路的建模和控制电路的建模两部分。
(1)主电路的建模和参数设置由图5-2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。
基于晶闸管直流双闭环调速系统的研究与仿真
P设计 『
双闭环
Maa/ i l k ̄真 db S i 4 mun
引言
本文 以双 闭环调速 系统为例。 建立双闭环调速 系统, 并以提 高系统 稳定性、快速响应及带负载的能力为 目标研究 。再 因电机本 身复杂, 加上 电压反馈、 电流反馈、P 校正器设计。 I 整个调速过程 、参数选择 都须 花大量时间。本文利 用工程设计方法和采用M ta/i uik a lb m l  ̄具 S n 建立 电机可视化模型 。 对整个 调速过程进行动 态仿 真和系统分析 。
( 接 第47 ) 上 页
[1 2 张传伟. 直流 电机 双闭环调速 系统的仿真研 究『 . _ 机床 与液压, 1 1 20 ( 05 2):2 —19 18 2. f1 3 薛定 余 , 馈 控 制 系统 设 计 与分 析 一 一 MAT A 反 L B语 言 应 用 『 . M1
清 华 大 学 出版社 ,0 0 2 0
参 考 文 献 [ 张 小强 , 放 春 一种 基 于GP S 术 的 无线 监 控 系统 【 .中国 1 】 杨 I技  ̄ J】
数 据通 信 , 0 4 (1 9 2 0 , 1 ): 2— 9 5.
建议采 ̄Wn osSr r 0 0 i w ev 0 ̄为应用服务器的操作系统 应用服务 d e 2 为IS采用S LS re 00 I, Q e vr20 作为生 产运行管理信息系统的数据库平台。
pr(Y ) e f , t: 2, 如图1 所示:
% 求二阶性 能指标的函数
s 去 +
式中, K为比例系觌 K为积分系数: T:KK。 n 上述P I 调节器的传递函数直接调# M t b i uik 的传递函数模  ̄ al / m l d aS n ̄ 块。调节的器饱和限幅输出值 在Mt b i u n中str 1 模块设定。 al/ m lk aJt n aS i 』a o
实验一 晶闸管直流调速系统主要单元的调试
实验二晶闸管直流调速系统主要单元的调试一、实验目的(1)熟悉直流调整系统主要单元部件的工作原理及调速系统对其提出的要求。
(2)掌握直流调速系统主要单元部件的调试步骤和方法。
二、实验所需挂件及附件三、实验内容(1)速度调节器的调试(2)电流调节器的调试(3)“零电平检测”及“转矩极性鉴别”的调试(4)反号器的调试(5)逻辑控制器的调试四、实验方法将DJK04挂件的十芯电源线与控制屏连接,打开电源开关,即可以开始实验。
220(1)速度调节器的调试①调节器调零将DJK04中“速度调节器”所有输入端接地,再将DJK08中的可调电阻120K接到“速度调节器”的“4”、“5”两端,用导线将“5”、“6”短接,使“电流调节器”成为P (比例)调节器。
调节面板上的调零电位器RP3,用万用表的毫伏档测量电流调节器“7”端的输出,使调节器的输出电压尽可能接近于零。
②调整输出正、负限幅值把“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,然后将DJK04的给定输出端接到转速调节器的“3”端,当加一定的正给定时,调整负限幅电位器RP2,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP1,观察调节器输出正电压的变化。
③测定输入输出特性再将反馈网络中的电容短接(将“5”、“6”端短接),使速度调节器为P (比例)调节器,在调节器的输入端分别逐渐加入正负电压,测出相应的输出电压,直至输出限幅,并画出曲线。
④观察PI特性拆除“5”、“6”短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。
改变调节器的放大倍数及反馈电容,观察输出电压的变化。
(2)电流调节器的调试①调节器的调零将DJK04中“电流调节器”所有输入端接地,再将DJK08中的可调电阻13K接“速度调节器”的“8”、“9”两端,用导线将“9”、“10”短接,使“电流调节器”成为P(比例)调节器。
实验一晶闸管直流调速系统主要单元调试
uT
uu
uv
uw
uu
1# 2# 3# 4# 5# 6#
如何调准90°?
二、单闭环系统的调试步骤
1、各单元的调试
(2)转速调节器ASR的调试
R0 RP1
R0
R1 C1
+ +
ASR
Rbal
+15V
RP1
Uct
RP2
-15V
限幅值和参数
二、单闭环系统的调试步骤
1、各单元的调试 (3)主电路的调试
直流电流表 B1 A
(3)按测得数据,画出两个电平检测器的 回环。
4.反号器(AR)的调试
测定输入输出比例,输入端加+5V电压, 调节RP,使输出端为-5V
5.逻辑控制器(DLC)的调试
测试逻辑功能,列出真值表,真值表应符合下表:
UM 输入
UI
1 1 0 0 01 1 0 0 1 00
Uz(Ublf) 0 0 0 1 1 1 输出
2 测取静特性时,须注意主电路电流不许超过电机的 额定值(1.1A).
3 双踪示波器的两个探头地线通过示波器外壳短接, 故在使用时,必须使两探头的地线同电位(只用一根 地线即可),以免造成短路事故。
四、思考题
1.闭环系统的调试原则是什么? 2.如何整定系统的零位? 3.如何整定反馈系数α? 4 . 如果发现闭环后,转速很高且不可控,
3、系统的闭环调试
(2)系统闭环运行;(3)闭环静特性测试 +
R1
C1
~
G
-
-15V
RP1
U
* g
R0
R0
++ +
ASR
开环直流调速控制系统与仿真
《计算机仿真及应用B》答卷学号:姓名:班级:任课老师:开环直流调速控制系统的仿真1、开环直流调速控制系统的组成开环控制系统是根据给定的控制量进行控制,而被控制量在整个控制过程中对控制量不产生任何影响。
对于被控制量相对于其预期值可能出现的偏差,开环控制系统不具备修正能力。
而直流调速开环控制系统通常是采用调节电枢电压方案,具体实现在20世纪60年代晶闸管整流器的应用而采用由晶闸管整流器和电动机(V-M )系统实现开环或闭环控制调速系统。
2、开环直流调速控制系统仿真(1)基于数学模型的开环直流调速系统仿真。
①开环直流调速控制系统数学模型。
开环直流调速控制系统主要包括给定信号、晶闸管触发装置及整流环节、平波电抗器和直流电动机等4个环节。
这里所说的基于数学模型的系统仿真主要是指基于传递函数的matlab 下的Simulink 下的实现,再通过机理法可以建立开环直流调速控制系统动态结构图,如图1-1所示。
然后,根据系统I 直接给出各个环节的传递函数及参数。
可以得到系统I 开环控制的动态结构图,如图1-2所示。
②开环直流调速系统仿真实现。
图1-1 开环直流调速控制系统动态结构图图1-2 系统I 的开环系统动态结构图根据系统I 的开环系统动态结构图及其参数值,在matlab 的Simulink 环境可以轻松的建立系统的仿真结构,如图1-3所示。
电动机的转速输出动态曲线,如图1-4所示。
I L (S) — n(s) U *n (s) 一 1/R a T d S+1 R a C e T m SC e K s T s S+1 U d (s) I d (s) I L (S) — n(s) U *n (s) 一1/0.08 0.025s+1 0.08 0.185×0.8s 0.185 23 0.0017s+1 U d (s) I d (s)图1-3 系统I仿真模型图1-4 电动机转速输出曲线通过改变给定信号的大小,来实现对电机输出转速的控制与调节的目的。
《MATLAB工程应用》---晶闸管开环直流调速系统仿真实验
《MATLAB工程应用》
晶闸管开环直流调速系统仿真
一、选题背景
本课程是在《电机学》《单片机》等课程上,独立设计的一门综合实验课程。
课程主要目的是培养学生分析问题,解决问题能力,提高学生自主学习,分工协作以及课程设计报告撰写水平。
二、方案论证(设计理念)
设计一个晶闸管直流调速系统仿真模型,通过改变触发器移相控制信号来调节晶闸管的触发角,而从获得可调的直流电压,以该直流输出为直流电机供电。
要求完成仿真模型图和仿真波形图,其中波形图包括直流电机的转速波形,电枢电流波形,转矩波形,改变触发角后的转速波形。
三、过程论述
直流电动机电枢由晶闸管整流电路经平波电抗器供电,通过改变触发器移相控制信号调节晶闸管的控制角,从而获得可调的直流电压,以实现直流电动机的调速。
移相控制信号,在实际调速时,给定信号是在一定范围内变化的,可通过仿真实践,确定给定信号允许的变化范围。
图1:构建的simulink仿真结构图
图2:参数设置
图3:波形
五、课程设计总结
仿真可得到闸管直流调速系统的输出波形。
电机转速波形,电枢电流波形,二者变化基本一致。
若将触发角改为30°,则转速波形发生明显改变,转速提高,这是因为直流电压增大的原因。
经过这段时间队MATLAB的学习,学会了对知识的汇总与运用,能够熟练使用相关软件,收获较大。
运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真
运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真双闭环直流调速系统仿真对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。
具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。
电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。
额定转速时的给定电压(U n *)N =10V,调节器ASR ,ACR 饱和输出电压U im *=8V,U cm =7.2V 。
系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。
试求:(1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。
(2)试设计电流调节器ACR.和转速调节器ASR 。
(3)在matlab/simulink 仿真平台下搭建系统仿真模型。
给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。
(4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。
并与仿真结果进行对比分析。
(5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。
(6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。
(一)实验参数某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: • 直流电动机:220V ,136A ,1460r/min ,C e=0.132Vmin/r ,允许过载倍数λ=1.5; • 晶闸管装置放大系数:K s=40; • 电枢回路总电阻:R =0.5Ω ; • 时间常数:T i=0.03s , T m=0.18s ;• 电流反馈系数:β=0.05V/A (≈10V/1.5I N )。
开环直流调速系统
实验一开环直流调速系统一、实验目的1.了解晶闸管直流调速系统实验装置的组成。
2.熟悉直流调速系统的组成及基本结构。
3.掌握晶闸管直流调速系统参数及开环系统调速特性的测定。
二、实验所需挂件及附件三、实验线路及原理图1-1是最简单的晶闸管—直流电动机开环调速系统。
其中,U C是系统的给定输入信号,经过触发电路控制晶闸管整流电路,使外界交流电源整流出直流电压U do供给直流电动机,使电动机以一定的速度旋转。
改变控制电压U C就可触发器的脉冲控制角及整流电压U do,相应改变电动机的转速,从而达到调速的目的。
这时电动机的机械特性为:n n C R I U C KC R I U K C R I U n o e d c e tr e d c tr e d do ∆-=-=-=-=∑∑∑φφφφ (6-1)其中 φe d C R I n ∑=∆ ——系统的开环稳态速降。
开环系统当给定输入信号一定时,经过触发电路控制晶闸管整流电路,使交流电源整流出直流电压U do 也是恒定的,电动机就以恒定的速度旋转。
但当外界有扰动(例如负载波动)时,转速就有较大的波动,而开环系统不能自动进行补偿四、实验内容(1)学习DJK01“电源控制屏”的使用方法。
(2)DJK04上的基本单元的调试。
(3)U c 不变时直流电动机开环特性的测定。
(4)U d 不变时直流电动机开环特性的测定。
五、预习要求(1)复习自动控制系统(直流调速系统)教材中有关晶闸管开环直流调速系统、闭环反馈控制系统的内容。
(2)根据实验原理图,能画出实验系统的详细接线图,并理解各控制单元在调速系统中的作用。
图1-1 开环直流调速系统六、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。
电力电子技术及自动控制系统实验指导书:晶闸管直流调速系统的调试
实验三 晶闸管直流调速系统的调试一、实验目的1.分析晶闸管半控桥式整流电路电机负载(反电动势负载)时的电压、电流波形。
2.熟悉典型小功率晶闸管直流调速系统的工作原理,掌握直流调速系统的整定与调试。
3.测定直流调速系统的机械特性。
二、实验设备高自EAD —I 型电力电子与自控系统实验装置 万用表 双踪示波器 滑动变阻器直流电机机组,带涡流制动和机械制动负载,并有光电数字测速计及转速反馈模拟量输出。
机组的直流电机为SZD01型稀土高性能永磁直流电动机,电机的额定值为P nom =100W ,U nom =90V ,I nom =1.5A ,n nom =1000,T nom =1Nm ,Ω=11a R 。
三、实验电路实验电路具体接线如图3-1所示 四、实验原理此调速系统是小容量晶闸管直流调速装置,适用于4kW 以下直流电动机无级调速。
装置的主回路采用单相半控桥式晶闸管可控整流电路,触发电路采用电压控制的单结晶体管移相触发电路。
具有电压负反馈和电流正反馈及电流截止负反馈环节,电路均为分离元件,用于要求不太高的小功率传动调速场合。
1.晶闸管直流调速系统的基本工作原理虽然采用转速负反馈可以有效地保持转速的近似恒定,但安装测速发电机比较麻烦,费用也多。
所以在要求不太高的场合,往往以电压负反馈加电流正反馈来代替转速负反馈。
这是由于当负载转矩变化(设转矩增加)而使转速降低时,电动机的电枢电流将增加,而电流的增加,整流装置的内阻和平波电抗器上的电压降落也成正比地增加,这样,电动机电枢两端的电压将减小,转速也因此要下降,因而可考虑引入电压负反馈,使电压保持不变。
另一方面,电枢电流(d I )的大小也间接地反映了负载转矩l T (扰动量)的大小(d T m l I K T T Φ=≈),因此可考虑采用扰动顺馈补偿,引入电流正反馈,以补偿因负载转矩l T (扰动)增加而形成的转速降。
电压负反馈不能弥补电枢压降所造成的转速降落,调速性能不太理想。
晶闸管-直流电动机开环调速仿真
《计算机仿真及应用B》答卷题目名称:晶闸管-直流电动机开环调速系统仿真班级:电气本科一班学号: 201240220102 姓名:付超勇指导教师:陈学珍命题说明:此门课程主要考核学生的实际动手能力,掌握用MATLAB建立系统仿真模型的方法,为了对每个学生进行考核,一人一题,雷同率不能超过50%,由学生自己确定题目。
要满足以下几点要求:1、详细描述所做题目的工作原理及所用电机参数;2、直流电机参数要有计算步骤;3、画出仿真原理图,子系统要一一展开;4、仿真结果分析;5、用A4纸打印,在规定时间内交上来。
成绩评定标准:1.原理描述清楚得20分。
2.仿真原理图正确得30分。
3.子系统展开得20分。
4、仿真结果正确及有分析得30分。
实验名称晶闸管-直流电动机开环调速1.1仿真原理图图1-1 直流开环调速系统电气原理图1-2 直流电动机开环调速系统结构图1.2仿真参数明细根据实验原理图在MATLAB软件环境下查找器件、连线,接成入上图所示的线路图。
仿真具体步骤1)所用元器件及其参数设置A)三相交流电源A、B、C首先从Simpowersystes 中的Electrical sources 电源模块组中选取一个交流电压源模块 AC Voltage Source,再用复制的方法得到三相电源的另两个电压源模块,用 Format(格式设定)菜单中 Rotate block(Ctrl +R)将模块水平放置,并点击模块标题名称,将模块标签分别改为“Ua”、“ Ub”、“ Uc”,然后从连接器模块 Connectors 中选取“Ground (output)”元件,按下图进行连接。
(1)Ua(2)Ub(3)Uc图1-4 三相电源参数设置设置三相电压都为220V,两两之间相位差为120,分别为0、-120、-240。
a)6-Pulse Generator同步脉冲触发器包括同步电源和 6 脉冲触发器两部分。
6 脉冲触发器从Simpowersystes中选取 Extra Libray 中的 Contral Blocks 中取获得。
直流调速控制系统的分析及仿真
当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。
7.1.4系统的性能分析
代入图7-1-5中,由图可见,它是一个二阶系统,已知 二阶系统总是稳定的。但若考虑到晶闸管有延迟,晶 闸管整流装置的传递函数便为
相反。
5.电流截止负反馈环节
当 时,(亦即 ),则二极管VD截止,电流截止负反馈不起作用。当 时,(亦即 ),则二极管VD导通, [此处略去二极管的死区电压],电流截止负反馈环节起作用,它将使整流输出电压 下降,使整流电流下降到允许最大电流。 的数值称为截止电流,以 表示。调节电位器RP3即可整定 ,亦即整定 的数值。一般取 〔 为额定电流〕。 由于电流截止负反馈环节在正常工作状况下不起作用,所以系统框图上可以省去。
在图7-1-1中,主电路中串联了一个阻值很小的取样电阻
(零点几欧)。电阻
上的电压
与
成正比。比 较阈值电压
是由一个辅助电源经电位器RP3提供的。电 流反馈信号(
图7-1-7调速系统的“挖土机”机械特性
当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。 机械特性很陡下垂还意味着,堵转时(或起动时)电流不是很大。 这是因为在堵转时,虽然转速n=0,反电动势E=0,但由于电流 截止负反馈的作用,使
大大下降,从而
不致过大。此时 电流称为堵转电流
⑥ 晶闸管整流电路的调节特性为输出的 平均电压
与触发电路的控制电压
之间的关系,即
图7-1-4为晶闸管整流装置的调节特性。
由图可见,它既有死区,又会饱和。 (当全导通以后,
再增加, 也不会再 上升了),且低压段还有弯曲段。面对 这非线性特性,常用的办法是讲它“看 作”一条直线,即处理成
为
开环直流调速系统的动态建模与仿真.
开环直流调速系统的动态建模与仿真学院:电气与控制工程学院班级:学号:姓名:设计题目:开环直流调速系统的动态建模与仿真设计目的:1.掌握开环直流调速系统的建模方法2.熟悉MATLAB/Simulink的使用方法MATLAB的概述:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB是目前国际上最流行,应用最广泛的科学与工程计算软件,它由MATLAB语言,MATLAB工作环境,MATLAB图像处理系统,MATLAB数据函数库,MATLAB应用程序接口五大部分组成的集数值计算,图形处理,程序开发为一体的功能强大的系统.它应用于自动控制,数学计算,信号分析,计算机技术,图像信号处理,财务分析,航天工业,汽车工业,生物医学工程,语音处理和雷达工程等各行业,也是国内高校和研究部门进行许多科学研究的重要工具。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。
MATLAB是以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的需求。
与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。
《MATLAB工程应用》---晶闸管开环直流调速系统仿真一
《MATLAB工程应用》晶闸管开环直流调速系统仿真一、选题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。
二、原理分析(设计理念)说明设计原理(理念)并进行方案选择,阐明为什么要选择这个设计方案以及所采用方案的特点。
包括:重点说明要实现的功能及其要求、系统的安全性、数据的完整性、应用的运行环境及其性能等要求。
直流开环调速系统的电气原理如图1所示。
直流电动机电枢由三相晶闸管整流电路经平波电抗器L供电,并通过改变触发器移相控制信号Uc调节晶闸管的控制角,从而改变整流器的输出电压实现直流电动机的调速。
图1原理图三、过程论述仿真模型图仿真模型图2 三相电源参数三相电源参数图3同步脉冲触发器参数图4三相整流桥参数图5电机参数及电感图6四、结果分析电机转速:(触发角60)电机转速波形图7 电枢电流:电枢电流图8转矩:转矩波形图9改变触发后的转速:触发角50电机转速图10由图像对比可知降低触发角后的电机最大转速变大五、课程设计总结刚拿到题目的时候完全不知道如何下手,一下子就蒙了,似乎熟悉,似乎有模糊。
然后图是画起来啦,但是运行起来后,输出的波形总感觉不对。
因为要对元件进行参数设置,才能输出需要的的波形效果。
通过本次的课程设计,不仅让自己学习到了专业知识,而且也对matlab 这个软件有了进一步的熟悉,可以说是受益良多。
晶闸管开环直流调速系统的仿真
晶闸管开环直流调速系统的仿真一、工作原理晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理如图1所示。
图1 晶闸管开环直流调速实验控制原理图二.设计步骤1主电路的建模和参数设置开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。
由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。
①三相对称交流电压源的建模与参数设置。
首先从电源模块中选取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C相”,然后从连接器模块中选取,按图1主电路图进行连接。
为了得到三相对称交流电压源,其参数设置方法及参数设置如下。
双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。
由此可以得到三相对称交流电源。
②晶闸管整流桥的建模和参数设置。
首先从电力电子模块组中选取中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。
当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。
参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。
晶闸管—直流电动机调速系统
7.1 晶闸管—直流电动机调速系统采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。
这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。
可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。
直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。
如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。
为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。
这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。
8.1.1 电流连续时如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。
图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。
由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值(7-1)式中U为电源相压有效值,为移相触发角。
电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。
再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。
电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。
这样,根据图7-2等效电路,可以列写出电压平衡方程式为(7-2)式中,Ce为直流电机电势常数,φ为直流电机每极磁通。
求出电机转速为(7-3)可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随负载电流Id的增加而下降,下降斜率为。
当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。
实验一、晶闸管直流调速系统环节特性及单元调试
实验一、晶闸管直流调速系统环节特性及单元调试一、实验目的1、了解晶闸管直流调速系统的组成及主要单元部件的工作原理。
2、掌握晶闸管直流调速系统的环节特性及测定方法。
3、掌握晶闸管直流调速系统的主要单元的调试方法。
二、实验内容1、主控制屏DK01调试2、晶闸管直流调速系统基本组成及连接3、晶闸管直流调速系统开环运行4、晶闸管触发及整流装置特性Ud=f(Uct)和测速发电机特性UTG=f(n)的测定5、调节器的调试三、实验设备1、DKSZ-1型实验装置主控制屏DK012、DK02、DK03、DK153、TD4652型双踪慢扫描示波器4、万用电表四、实验方法1、主控制屏调试及开关设置2、实验系统组成及连接三相全控桥式整流电路供给直流电动机M可调的电枢电压,直流发电机G作为电动机的负载,通过测速发电机TG测量转速,并获得转速反馈电压。
直流电动机、发电机的励磁绕组接220V励磁电源。
给定器G输出可调的移相控制电压Uct,触发器输出的六路脉冲经过功放级AP1驱动输出,六路脉冲已连结到对应的六只晶闸管。
图1-1 实验系统原理图3、晶闸管直流调速系统开环运行控制电压Uct由给定器直接接入,反馈电压未引入控制的系统为开环系统。
应先接通励磁电源,并调节控制电压Uct为零,然后才能接通三相交流主电源,否则电动机起动电流过大引起过流冲击。
调节给定电压Uct,即可调节直流电动机转速。
调节发电机负载电阻Rg,即可改变直流电动机的负载电流。
5、晶闸管触发及整流装置特性Ud=f(Uct)和测速发电机特性UTG=f(n)的测定从零逐渐增加控制电压Uct,转速不超出额定转速(1500rpm)的1.2倍,分别读取对应的Uct、Ud、UTG、n的数值若干组,即可描绘出特性Ud=f(Uct)和UTG=f(n)。
6、调节器的调试合上低压直流电源开关,对调节器ASR(或ACR)进行单元调试。
零速封锁端应连接,并置零速封锁解除状态。
五、实验报告1、简述各电路单元的调试要点。
直流调速系统及其仿真.ppt
二、调压调速的关键装置--可控直流电源
常用的可控直流电源有以下三种:
1、旋转变流机组
2、静止可 控整流器
3、直流斩波 器和脉宽调制
变换器
1、旋转变流机组----用交流电动机拖动直流发电 机,以获得可调的直流电压(G-M系统)。
+ 励 磁 电 源
+
-
~
GE
~M n +(-) n
放
大 装
If
G
U
M
晶闸管整流器的内阻 要求D=20,s≤5%
Rrec=0.13Ω
问题
问若采用开环V-M系统能否满足要求? 若采用α=0.015V·min/r转速负反馈闭环系统,问放大 器的放大系数为多大时才能满足要求?
解(1)设系统满足D=20,检验系统是否满足s≤5%?
nmin
nn D
1000 20
50(r / min)
n-
+
+
RP2
U tg
IG
-
-
V-M闭环系统原理框图
(a)给定环节——产生控制信号:由高精度直流 稳压电源和用于改变控制信号的电位器组成。
(b)比较与放大环节——信号的比较与放大;由P、I、 PI运放器组成
(c)触发器和整流装置环节(组合体)--功率放大 GT:单结晶体管、锯齿波、正弦波触发器; 整流装置:单相、三相、半控、全控.
U
* n
, 则n
改变
(2)对负载波动等扰动信号的调节——稳速过程:
n基本不受负载波动等扰动输入的影响
例如:
TL
n
Un
U n
(U
* n
Un )
Uct Ud 0 ( Id Te ) n
开环直流调速系统的仿真
共 阴 极 组 —— 阴 极连接在一起的 3 个晶闸管( VT1 , VT3,VT5)
导通顺序:
VT1-VT2
-VT3- VT4
-VT5-VT6
图 三相桥式全控整流电路原理图
共阳极组 —— 阳 极连接在一起的 3个晶闸管(VT4, VT6,VT2)
带电阻负载
时,各晶闸 管均在自然换相点处换 相,各自然换相点既是 相电压的交点,同时也 是线电压的交点。 输出整流电压ud为 这两个相电压相减,是 线电压中最大的一个, 因此输出整流电压ud波 形为线电压在正半周期 的包络线。
开环直流调速系统的仿真
直流调速系统控制方案 根据电动机的转速表达式:
ud id Rd n Ce
可以看出,直流电动机调节转速有以下三种 方法: (1)调节电枢电压调速; (2)改变电动机励磁调速; (3)改变电枢回路电阻调速。
晶闸管直流调速系统电器原理图
晶管触发与整流装置动态结构图
三相桥式全控整流电路
调节Un*→改变移相角α→改变U d→ n改变 在仿真中,直流电动机励磁由直流电源直接供电。触 发器的控制角通过移相控制环节,移相控制模块的输入是 移相控制信号Uc,输出是控制角,移相控制信号Uc由常数 模块设定。
开环直流调速系统的仿真模型
基于电气原理图的直流电动机
电动机模型位于SimPowerSystems工具箱下machines库中的DC machines 和DiscreteDC machines分别是直流电动机和离散直流 电动机模型
Field resistance and inductanceRf (ohms) 和Lf(H): 励磁回路电阻和电感
Field-armature mutual inductanceLaf (H): 电枢与励磁回路互感; Total inertia J (kg.m^2) :电机转动惯量(kg.m^2) ; Viscous friction coefficient Bm (N.m.s):粘滞摩擦系数(N.m.s); Coulomb friction torque Tf (N.m): 静摩擦转矩(N.m); Initial speed (rad/s):初始速度。
《MATLAB工程应用》转速单闭环直流调速系统仿真
《MATLAB工程应用》转速单闭环直流调速系统仿真一、选题背景晶闸管开环直流调速系统启动电流大,转速随负载变化而变化,负载越大,转速降落越大,因此,无法在负载变动时保持转速的稳定,影响生产。
为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(单闭环或双闭环)。
对调速指标要求不高的场合,采用单闭环系统;对调速指标要求高的场合,采用双闭环系统。
按反馈的方式不同,可分为转速反馈、电流反馈、电压反馈。
在单闭环系统中,般采用转速反馈。
二、原理分析转速单闭环直流调速系统原理如图 1 转速单闭环直流调速系统原理图所示。
图 1 转速单闭环直流调速系统原理图中将反映转速变化的电压信号作为反馈信号,经过速度变换后接到电流调节器的输入端,与给定的电压U;相比较经放大后,得到移相控制电压信号Uc,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变整流桥的输出电压,这就构成了速度负反馈闭环系统。
图 1 转速单闭环直流调速系统原理图该系统在电机负载增加时,转速n将下降,转速反馈U n减小,导致转速的偏差ΔU n。
将增大(ΔU n=U n∗−U n),U C增加,并经移相触发器使整流器输出电压U增加,电枢电流1。
也就增加了,从而使电动机电磁转矩增加,转速n也随之升高,补偿了负载增加造成的转速降。
在MATLAB仿真中,通常省略AD采样中的变换环节,直接用测量模块得到实际物理量。
三、过程论述利用Simulink建立有静差的转速单闭环直流调速系统仿真模型。
该系统由给定信号、速度调节器、晶闸管整流桥、平波电抗器、直流电动机、速度反馈等部分组成。
与开环直流调速系统相比,二者的主电路就基本相同,系统的差别主要在控制电路上。
图 2 有静差的转速单闭环直流调速系统仿真模型图 2 有静差的转速单闭环直流调速系统仿真模型中的二极管桥模块参数设置如图 3 二极管参数设置。
在整流桥后面并一个二极管桥,主要是为了加快电动机的减速过程,同时避免在整流桥输出端出现负电压而使波形畸变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管开环直流调速系统的仿真
一、工作原理
晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理如图1所示。
图1 晶闸管开环直流调速实验控制原理图
二.设计步骤
1主电路的建模和参数设置
开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。
由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。
①三相对称交流电压源的建模与参数设置。
首先从电源模块中选
取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C
相”,然后从连接器模块中选取,按图1主电路图进行连接。
为了得到三相对称交流电压源,其参数设置方法及参数设置如下。
双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。
由此可以得到三相对称交流电源。
②晶闸管整流桥的建模和参数设置。
首先从电力电子模块组中选取
中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。
当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。
参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。
若仿真结果理想,就认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。
这一参数设置原则对其他环节的参数设置也是实用的。
图2 A相电源参数设置图3 整流桥参数设置
③平波电抗器的建模和参数设置。
首先从元件模块组中选取
,并将标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图4所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。
④直流电动机的建模和参数设置。
首先从电动系统模块中选取
,并将模块标签改为“直流电动机”。
直流电动机的励磁绕组“F+ —F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源
模块,即,并将电压参数设置为220V,电枢绕组“A+ —A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流Ia、励磁电流If、电磁转矩Te,通过“示波器”模块观察仿真输出
图形。
电动机的参数设置步骤如下,双击直流电动机图标,打开直流电动机的参数设置对话框,直流电动机的参数设置如图5所示。
参数设置的原则与晶闸管整流桥相同。
图4 平波电抗器参数设置图5直流电动机参数设置
⑤同步脉冲触发器的建模和参数设置。
同步脉冲触发器用于触发三相全控整流桥的6个晶闸管,同步6脉冲触发器可以给出双脉冲,双脉冲间隔为60°,触发器输出的1~6号脉冲依次送给三相全控整流桥对应编号的6个晶闸管.同步脉冲触发器包括同步电源和六脉冲触发器两个部分alpha_deg:此端子为脉冲触发角控制信号输入;a, b, c:三相电源的三相线电压输入即Va, Vb, and Vc:触发器控制端,输入为“0”时开放触发器,输入大于零时封锁触发器;
Pulses:6脉冲输出信号。
alpha_deg为30度时双6脉冲同步触发器的输入输出信号
6脉冲同步触发器参数设置步骤如下,双击6脉冲同步触发器的图标,打开6脉冲同步触发器的参数对话框,6脉冲同步触发器的参数设置如图6所示。
参数设置的原则与晶闸管整流桥相同。
图6 6脉冲同步触发器参数设置图7 constant参数设置
2控制电路的建模与参数设置
晶闸管直流调速系统的控制电路只有一个给定环节,它可从常用模块组
中选取,并将模块标签改为“给定信号”,然后双击该模块图标,打开参数设置对话框,参数设置如图7所示。
实际调速时,给定信号是在一定范内变化的,可通过仿真时间,确定给定信号允许的变化范围。
3系统的仿真参数设置
在MATLAB的模型窗口打开“Simulation”菜单,单击“Configuration parameters…”菜单后,得到仿真参数对话框,参数设置如图8所示,仿真中所选择的算法为ode23s。
由于实际系统的多样性,不同的系统需要采用不同的仿真算法,到底采用哪一种算法,可通过仿真时间进行比较,仿真“Start time”一般设为0,“Stop time”根据实际需要而定。
图8 仿真参数设置对话框及参数设置
三.直流电动机参数计算(直流电机才有参数计算)
直流电动机固有参数是以某电动机铭牌标示的电动机数据计算而获得,这些数据是建立电动机模型的基础。
已知某直流电动机调速系统(简称系统I),控制系统主回路与直流电动机的主要参数如下。
●电动机:P nom=150kW;n nom=1000r/min;I nom=700A;R a=0.05Ω。
●主回路:R d=0.08Ω;L d=2mH;全控桥式整流m=6。
●负载及电动机转动惯量:GD2=125kg*m2。
计算得到此直流电动机的相关参数如下。
●电势常数:C e= = =0.185V/(r*min-1)。
●转矩常数:C m= = =0.18kg*mA。
●电磁时间常数:T d= = =0.025s。
U nom—
n no
220—
100
C e
1.0
0.18
1.0
L d
R
2*10-
0.0
晶闸管开环直流调速系统的仿真原理图及子系统图分别如图9和图10所示。
图9 晶闸管开环直流调速系统的仿真图
Uct In2Out1
Ua Ub Uc
同步6脉冲触发器平流电抗器励磁电源
g A
B
C +-晶闸管整流桥
50
给定信号1
触发器开关w
Vc
Vb
Va Te
Scope3
Ia TL m
A+F+A-F-dc DC Machine 50Constant
1
Out13Uc 2
Ub
1Ua
v +
-Voltage Measurement2v +-Voltage Measurement1
v +-Voltage Measurement alpha_deg AB
BC CA Block
pulses Synchronized 6-Pulse Generator
2
1
Uct。