红外吸收光谱分析法课件

合集下载

红外吸收光谱PPT课件

红外吸收光谱PPT课件

02
红外吸收光谱仪器
红外光谱仪的构造
01
02
03
04
光源
发射一定波长的红外光,常用 光源有碘、溴钨灯等。
单色器
将光源发出的红外光分成单色 光,常用单色器有棱镜和光栅

样品室
放置待测样品,样品可以是气 体、液体或固体。
检测器
检测透过样品的红外光,常用 检测器有热电偶、光电导和光
电二极管等。
红外光谱仪的工作原理
红外吸收光谱的应用
确定物质成分
结构分析
通过比较标准物质的红外吸收光谱,可以 确定未知物质的成分。
红外吸收光谱的峰位置和峰强度可以提供 物质分子的振动和转动信息,有助于分析 分子结构和化学键的类型。
定量分析
反应动力学研究
通过测量样品在不同波长下的透射率或反 射率,可以计算样品中目标成分的浓度。
红外吸收光谱可用于研究化学反应过程中 分子振动和转动能级的跃迁。
特点
具有高灵敏度、高分辨率和高选 择性,能够提供物质分子的振动 和转动信息,广泛应用于化学、 物理、环境和生物等领域。
红外吸收光谱的原理
原理
当红外光与物质分子相互作用时,分 子吸收特定波长的红外光,导致分子 振动和转动能级跃迁,产生红外吸收 光谱。
影响因素
分子结构和化学键的性质决定红外吸 收光谱的特征,不同物质具有独特的 红外吸收光谱。
敏度,适用于复杂样品分析。
微型化红外光谱仪
02
通过集成光学、微电子机械系统等技术,将红外光谱仪小型化,
方便携带和移动检测。
多光谱和超光谱红外光谱仪
03
结合多光谱技术和超光谱技术,可同时获取样品多个波段的红
外光谱信息,提高分析效率。

第10章 红外吸收光谱分析

第10章  红外吸收光谱分析
醛在2820和2720 cm-1附近的特征峰,后者尖锐易辨别。
醛:
特征1:醛羰基ν(C=O):~1725 cm-1。 特征2:2820 cm-1 和 2720 cm-1 弱的双峰。
酮:
酮羰基ν(C=O):1710~1715 cm-1。
脂类:C=O吸收峰:1725 ~ 1750 cm-1 ,强。
红外光谱信息区
常见的化学基团在4000 670 cm-1范围内有特征频率, 为便于记忆,常依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1 双键伸缩振动区

上述用经典力学的方法来处理分子的振动是为了得 到宏观的图像,便于理解并有一定性概念。但一个
真实的微观粒子需要用量子理论方法加以理解,如
能量量子化。

实际上,在一个分子中,基团与基团间,基团中的 化学键之间都相互有影响,因此基本振动频率除了
决定于化学键两端的原子质量、化学键的力常数外, 有关。
还与内部因素(结构因素)及外部因素(化学环境)
倍频、合频和差频统称为泛频。
二、红外光谱的特征性
红外光谱的最大特点是具有特征性。
大多有机物的红外光谱基本上是C、H、O、N等元素
所形成化学键的振动贡献的。
基团特征频率
与一定结构单元相联系的、固定在一定范围内出现的 化学键振动频率——基团频率(特征峰)。
例: 2800 3000 cm-1 —CH3 特征峰;
在该区域出现的峰较少。
(1)RC CH
(2100 2140 cm-1 )
RC CR' (2190 2260 cm-1 ) R=R' 时,无红外活性 (2)RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1 共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐; 有O原子存在时,O越靠近C N,峰越弱。

《红外光谱法》课件

《红外光谱法》课件

红外光谱的应用前 景
红外光谱技术在化学、工业 和环境领域有广泛应用,将 继续发展和创新。
红外光谱技术的发 展方向
红外光谱技术将逐步提高仪 器性能、扩大应用范围,并 与其他技术紧密结合进行研 究和创新。
基础理论知识
1 振动模式
物质分子在红外辐射作用下发生的振动现象,是红外光谱分析的基础。
2 红外辐射
红外辐射是一种波长较长的电磁辐射,它与物质相互作用产生能量的吸收和发射。
3 能量吸收
红外光谱通过测量物质在不同波长的红外辐射下吸收的能量量来分析物质的组成和结构。
红外光谱仪的组成
光源
红外光谱仪中使用红外光源产生红外辐射,常 用的包括热电偶和红外光管。
样品室
样品室是放置待测物质的空间,通过样品室中 的红外辐射与物质相互作用来进行光谱分析。
分光仪
分光仪用于将红外辐射分解成不同波长的光线, 常用的接收分光仪分离出的红外光谱信号,并 转化成电信号进行检测和分析。
红外光谱的应用
1
化学分析
红外光谱在化学领域广泛应用,可用于分析物质的组成、结构和化学变化。
红外光谱法的发展趋势
红外光谱技术的研究方向
开发更高分辨率的仪器、提升信号处理和数 据分析算法、拓展红外光谱的应用范围。
未来发展趋势
红外光谱技术将在医药、生物和环境领域得 到广泛应用,与其他技术相结合推动科学研 究和工业创新。
总结
红外光谱法的意义
红外光谱法是一种重要的分 析技术,可用于物质组成和 结构分析,推动科学研究和 工业发展。
《红外光谱法》PPT课件
欢迎来到《红外光谱法》的PPT课件!本课程将深入探讨红外光谱的基本概 念、理论知识、仪器组成、应用领域以及未来发展趋势,让您全面了解这一 重要领域。

红外吸收光谱法课件

红外吸收光谱法课件
*
红外吸收光谱法
在倍频峰中,二倍频峰还比较强,三倍频峰以上。因跃迁的几率很小。一般都很弱,常常观测不到。 4000~400cm-1间主要测基频峰,既使有倍频峰也很弱。 还有 合频峰(v1+v2 , 2 v1 + v2 ….) 差频峰( v1 - v2 , 2v1 -v2 …….) 很弱,不易辨认。 倍频峰,合频峰,差频峰通称泛频峰,分 子振动并不是严格的简谐振动。
*
红外吸收光谱法
(2)倍频峰: 在红外吸收光谱上除基频峰外,还有振动能级由基态(υ =0),跃迁至第二振动激发态(υ=2),第三振动激发态( υ=3)…..等等,所产生的吸收峰。这些吸收峰称为倍频峰。 二倍频峰: υ0→2 νL=△u·v=(2-0) ·v =2 v 三倍频峰: υ0→3 νL =△ u·v =(3-0) ·v =3v
*
红外吸收光谱法
4.基频峰数目减少的原因 (1)△μ=0 (2)o=c=o (3)仪器分辨率低 对一些频率很近的吸收峰分不开,一些 弱峰仪器灵敏度低,未捡出。 (4)波长超过了仪器的可测范围。 如 CO2只有两个峰。
*
红外吸收光谱法
图6-6二氧化碳的红外光谱图
*
红外吸收光谱法
*
红外吸收光谱法
2. 产生红外吸收的第二个条件 分子在振动,转动过程中必须有偶极矩 的净变化。即偶极矩的变化△μ≠0
图6~2:偶极子在交变电场中的作用示意图
*
红外吸收光谱法
(1)红外活性 分子振动引起偶极矩的变化,从而产生红外吸收的性质,称为红外活性。其分子称为红外活性分子。相关的振动称为红外活性振动。如H2O ,HCl ,CO为红外活性分子。 (2)非红外活性 若△μ=0,分子振动和转动时,不引起偶极矩变化。不能吸收红外辐射。即为非红外活性。其分子称为红外非活性分子。如 H2 ,O2 ,N2 ,Cl2….相应的振动称为红外非活性振动。

红外吸收光谱分析通用课件

红外吸收光谱分析通用课件
光转换为电信号。
光源和样品室
提供样品所需的红外光,并保 持样品在分析过程中的稳定性 。
检测系统
用于检测电信号并转换为光谱 数据。
控制和数据处理系统
控制仪器操作,处理和显示光 谱数据。
红外吸收光谱仪器的使用与维护
仪器操作
按照操作手册正确设置和使用仪 器,确保安全性和准确性。
样品准备
根据分析需求准备样品,注意样品 的纯度和浓度。
根据样品类型选择适当的 制样方法,并按照操作步 骤进行样品制备。
将制备好的样品放入光谱 仪的样品仓中,设置合适 的扫描参数,如扫描范围 、分辨率等。
对光谱数据进行处理和分 析,提取所需的信息。
开始扫描,记录红外光谱 数据。
实验数据分析方法
峰位分析
峰形分析
通过分析红外光谱的峰位,确定特定官能 团或化学键的振动频率。
傅里叶变换红外光谱仪
基于傅里叶变换技术,具有高分辨率和灵敏度,广泛应用于化学 、物理和材料科学等领域。
差分移动红外光谱仪
通过差分技术消除背景干扰,适用于气体和液体的分析。
光声红外光谱仪
利用光声效应,适用于痕量气体和低浓度样品的分析。
红外吸收光谱仪器的结构与原理
干涉系统
是傅里叶变换红外光谱仪的核 心部分,通过干涉原理将红外
通过分析药物与生物大分子相互作用时的红外光 谱变化,可以研究药物的作用机制。
生物活性分子结构分析
分析
红外光谱可以用于检测药物代谢产物的结构和性 质。
06
红外吸收光谱分析在环境科学中的应 用
大气污染物的红外吸收光谱分析
总结词
大气污染物种类繁多,红外吸收光谱分析能够快速准确地检测出不同污染物的 成分和浓度。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

红外吸收光谱PPT课件

红外吸收光谱PPT课件
红外光谱主要由分子的振动能级跃迁产生 分子的振动能级差远大于转动能级差 分子发生振动能级跃迁必然同时伴随转动能级跃迁
2. 产生条件
物质吸收红外辐射应满足两个条件:
辐射光具有的能量与发生振动跃迁时所需的能 量相等;
• 当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和外界红外辐射的频率一致
分子振动 方程
m = m1 m2
m1 m2
c —光速 k —键力常数 u —折合质量
=
N1/ 2 A
k
2c M
M = M1 M2 M1 M2
影响基本振动频率的直接因素是相对原子质量 和化学键的力常数
C-C k 4~6 σ 1190
C=C 8~12 1683
C≡C 12~18 N/cm 2062 cm-1
辐射与物质之间有偶合作用。 实质是外界辐射迁移它的能量到分子中去
偶极矩的变化
偶极矩μ
HCl
d
H
Cl
+q
-q
H2O
H +q
-q O
d
H +q
m=qd
由于分子内原子处于在其平衡位置不断地振动的状态, 在振动过程中d 的瞬时值亦不断地发生变化,因此分 子的μ也发生相应的改变,分子也就具有确定的偶极 矩变化频率;
图 亚甲基的伸缩振动
弯曲振动(或变形振动):基团键角发生周期变化 而键长不变的振动称为变形振动,用符号δ表示。 弯曲振动又分为面内和面外弯曲振动。
亚甲基的弯曲振动
基本振动的理论数
基本振动的数目称为振动自由度,每个振动自由度相 应于红外光谱图上一个基频吸收峰。
每个原子在空间都有三个自由度,如果分子由n 个原 子组成,其运动自由度就有3n 个;

红外光谱最全最详细明了分解ppt课件

红外光谱最全最详细明了分解ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.3.2 分子结构对基团吸收谱带位置的影响
(1)诱导效应(I效应):基团邻近有不同电负性的取代 基时,由于诱导效应引起分子中电子云分布的变化,从而 引起键力常数的改变,使基团吸收频率变化。
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm;
室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年; 硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
(2)共轭效应(C效应): 共轭效应要求共轭体系有共平面性。
(3)瞬间偶极矩大,吸收峰强;键两端原子电 负性相差越大(极性越大),吸收峰越强; (4)由基态跃迁到第一激发态,产生一个强的 吸收峰,基频峰; (5)由基态直接跃迁到第二激发态,产生一个 弱的吸收峰,倍频峰.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响。
同一种基团,由于其周围的化学环境不同,其特征吸 收频率会有所位移,不是在同一个位置出峰。
基团的吸收不是固定在某一个频率上,而是在一个范围 内波动。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

红外吸收光谱的表示法(课件)ppt实用资料

红外吸收光谱的表示法(课件)ppt实用资料
Company Logo
红外吸收光谱的表示法
随吸收强度的降低,曲线上移,无吸收部分的曲线在谱图的上部。 任务一:红外吸收光谱分析法基础 C随o吸mp收an强y 度Log的o降低,曲线上移,无吸收部分的曲线在谱图的上部。
随吸收强度的降低,曲线上移,无吸收 任务一:红外吸收光谱分析法基础
Company Logo 任Co务mp一an:y 红Log外o吸收光谱分析法基础 随知吸识收 点强:度红的外降吸低收光,曲谱线的上表移示,无法吸收部分的曲线在谱图的上部。
知识点:红外吸收光谱的表示法
情境三:红外分光光度法确定有机物的结构 任务一:红外吸收光谱分析法基础
课程:仪器分析
红外吸收光谱的表示法
红外分光光度计自动记录的红外光谱图, 它的横坐标 以波长(μm)或波数(cm-l)等间隔方式表示,红外光谱图的 纵坐标多以百分透光率表示,纵坐标自下而上由0%~ 100%。
团(或化学键)对红外光的吸收而产生的。 示随,吸纵收坐强标度自的下降而低上,由曲0线%上~移10,0无%吸。收部分的曲线在谱图的上部。
情境三:红外分光光度法确定有机物的结构 情境三:红外分光光度法确定有机物的结构
Company Logo
Thank You
部分的曲线在谱图的上部。所谓吸收“峰 Company Logo
所情谓境吸 三收:“红峰外”分实光际光是度向法下确的定“有谷机”物的,它结是构由分子中的基团(或化学键)对红外光的吸收而产生的。 情随境吸三 收:强红度外的分降光低光,曲度线法上确移定,无有吸机收物部的分结的构曲线在谱图的上部。 随任吸务收 一强:度红的外降吸低收光,曲谱线分上析移法,无基吸础收部分的曲线在谱图的上部。
”实际是向下的“谷”,它是由分子中的基 随知吸识收 点强:度红的外降吸低收光,曲谱线的上表移示,无法吸收部分的曲线在谱图的上部。

红外吸收光谱法课件PPT

红外吸收光谱法课件PPT

02 红外吸收光谱仪的组成与 操作
红外吸收光谱仪的组成
01
02
03
04
光源
发射特定波长的红外光,为样 品提供能量。
干涉仪
将红外光分成两束,分别经过 样品和参比,再合并形成干涉

检测器
检测干涉后的红外光,转换为 电信号。
数据处理系统
处理检测器输出的电信号,生 成红外吸收光谱。
红外吸收光谱仪的操作流程
多光谱融合
将红外光谱与其他光谱技 术进行融合,实现多维度、 多角度的物质成分和结构 分析。
云平台与大数据
利用云平台和大数据技术, 实现红外光谱数据的共享、 挖掘和分析,推动科研合 作与成果转化。
感谢您的观看
THANKS
检查部件
定期检查仪器各部件是否正常 工作,如光源、干涉仪、检测 器等。
定期校准
为保证测试结果的准确性,应 定期对仪器进行校准。
数据备份
对测试结果进行备份,以防数 据丢失。
03 红外吸收光谱法的实验技 术
样品的制备与处理
样品制备
将待测物质研磨成粉末,以便更 好地分散在测试介质中。
样品处理
根据实验需求,对样品进行纯化 、干燥等预处理,以消除干扰因 素。
用于检测大气和水体中 的污染物,如挥发性有 机化合物、重金属等。
用于研究生物大分子的 结构和功能,如蛋白质、
核酸等。
红外吸收光谱法的历史与发展
历史
红外吸收光谱法自19世纪中叶被发现以来,经历了多个发展阶段,不断完善和 改进。
发展
随着仪器的改进和计算机技术的发展,红外吸收光谱法的应用范围不断扩大, 分析精度和灵敏度也不断提高。未来,红外吸收光谱法将继续在各个领域发挥 重要作用。

第三章 红外吸收光谱完整版本ppt课件

第三章 红外吸收光谱完整版本ppt课件

解析完后,进行验证,不饱和度与计 算值是否相符,性质与文献值是否一致, 与标准图谱进行验证
谱图对照应注意:所用的仪器在分辨 率和精确度一致;测定的条件一致;杂质 引进的吸收带应仅可能避免。
.
三、红外光谱解析实例C8H16
例一:未知物分子式为C8H16,其红外图谱如 下图所示,试推其结构。
.
解:由其分子式可计算出该化合物不饱和度为1, 即该化合物具有一个烯基或一个环。
C C 2100
H 763 ,694(双峰)
CO 1638 C(C 芳环)1597 ,1495 ,1445
.

解:
U
2
29
1
7
7
可能含有苯环
2
1638cm1强吸收 为 CO 3270cm1有吸收 NH 1132353123003300ccccmmmm( ( 1111吸强 强收) ) C N含 含NHCCCH 13023608ccmm11 为CH H 1597 ,1495 和 1445cm(1 三峰) 为 C(C 芳环) 763 和 694cm(1 双峰) 为 H(单取代)
❖ 3387、3366 cm-1 :NH2的伸缩振动; ❖ 1624 cm-1 : NH2弯曲振动; ❖ 1274 cm-1 :C-N伸缩振动;
❖综合上述信息及分子式,可知该化合物为:
邻苯二胺
.
图谱解析实例 例1 某化合物,测得分子式为C8H8O,其红外
光谱如下图所示,试推测其结构式。
C8H8O红外光谱图
1查找基团时先否定以逐步缩小范围2在解析特征吸收峰时要注意其它基团吸收峰的干扰3350和1640cm1处出现的吸收峰可能为样品中水的吸收3吸收峰往往不可能全部解析特别是指纹区4掌握主要基团的特征吸收

红外吸收光谱分析(共27张PPT)

红外吸收光谱分析(共27张PPT)
这里弹簧的k值就的原子不是静止不动的,原子在其平衡位置做相 对运动,从而产生振动!原子与原子之间的相对运动无非有 两种情况,即:键长发生变化(伸缩振动),键角发生变化 (弯曲振动)
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 内部结构
Nicolet公司的 AVATAR 360 FT-
IR
2. 傅里叶变换红外光谱仪结构框图
干涉仪
样品室
检测器
光源
计算机
显示器 绘图仪
干涉图 FTS
光谱图
3. 傅立叶变换红外光谱仪的原理与特点
光源发出的辐射经干涉仪转变为干涉光,通 过试样后,包含的光信息需要经过数学上的傅立 叶变换解析成普通的谱图。 特点:(1) 扫描速度极快(1s);适合仪器联用;
非对称分子:有偶极矩,红 外活性。
偶极子在交变电场中的 作用示意图
三、分子中基团的基本振动形式 Basic vibration of the group in molecular
1.两类基本振动形式 伸缩振动 亚 Nhomakorabea基:变形振动 亚甲基
伸缩振动 甲基:
变形振动 甲基
对称 υs(CH3) 2870 ㎝-1
应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
第二节 红外吸收光谱仪器 Infrared absorption spectrophotometer
一、仪器类型与结构 Types and structure of instruments
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
2c
12 / 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
二、红外吸收光谱产生的条件 Condition of Infrared absorption spectroscopy
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐 射不能引起共振,无红外活 性。 如:N2、O2、Cl2 等。
2c
K化学键的力常数,与键能和键长有关,
为双原子的折合质量 =m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
表 某些键的伸缩力常数(毫达因/埃)
键类型 力常数 峰位
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
(2)峰数 峰数与分子自由度有关。无瞬间偶基距变 化时,无红外吸收。
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相 差越大(极性越大),吸收峰越强;
例2 CO2分子 (有一种振动无红外
活性)
(4)由基态跃迁到第一激发态,产生一个强的吸收峰,基 频峰; (5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰, 倍频峰;
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
2.峰位、峰数与峰强
(1)峰位 化学键的力常数K越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子 (非对称分子)
第四节 红外光谱应用 Application of Infrared spectrograph
第五节 激光拉曼光谱 Laser Raman spectrometry
第一节 红外光谱分析基本原理 Basic principle of IR
一 分子振动方程式——弹簧谐振子模型 双原子分子的简谐振动及其频率
化学键的振动类似于连接两个小球的弹簧
分子的振动能级(量子化):
E振=(V+1/2)h V :化学键的 振动频率; :振动量子数。
能级跃迁产生:振-转光谱 辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
近红外区 中红外区 远红外区
任意两个相邻的能级间的能量差为:
E h h k 2
1 1 k 1307 k
(2)不需要分光,信号强,灵敏度很高; (3)仪器小巧。
傅里叶变换红外光谱仪工作原理图
迈克尔干涉仪工作原理图
4. 色散型红外光谱仪主要部件 (1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm;
室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年;
吸收峰强度 偶极矩的平方
偶极矩变化——结构对称性; 对称性差偶极矩变化大吸收峰强度大
符号:s(强);m(中);w(弱) 红外吸收峰强度比紫外吸收峰小2~3个数量级;
红外光谱与有机化合物结构
红外光谱图: 纵坐标为吸收强度,
横坐标为波长λ ( m ) 和波数1/λ 单位:cm-1
可以用峰数,峰位, 峰形,峰强来描述。
环境监测与分析之七—红外光谱
红外吸收光谱分析法
Infrared absorption spectroscopy (IR)
第一节 红外基本原理 Basic principle of IR
第二节 红外吸收光谱仪器 Infrared absorption spectrophotometer
第三节 红外光谱与分子结构 IR and molecular structure
4.5 5.6
4.5m
6.0 m
7.0 m
化学键键强越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
例题: 由表中查知C=C键的K=9.5 9.9 ,令其为 9.6, 计算波数值。
v 1 1 k 1307 k 1307 9.6 1650cm1
硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
光栅;傅立叶变换红外光谱仪不需要分光;
(3) 检测器
真空热电偶;不同导体构成回路时的温差电现象
涂黑金箔接受红外辐射;
傅立叶变换红外光谱仪采用热释电(TGS)和碲镉 汞(MCT)检测器;
TGS:硫酸三苷肽单晶为热检测元件;极化效应 与温度有关,温度高表面电荷减少(热释电);
响应速度快;高速扫描;
C127H304cOm-1 O
1165cm-1
H
C
C
H
H 2720cm-1
H
(CH3)1460 cm-1,1375 cm-1。 (CH3)2930 cm-1,2850cm-1。
四、红外吸收峰强度
Intensity of Infrared absorption bend
问题:C=O 强;C=C 弱;为什么? 吸收峰强度跃迁几率偶极矩变化
相关文档
最新文档