冲刺2019年华师大二附中自主招生数学真题及答案解析
上海市华东师范大学第二附属中学2019-2020学年高二上学期10月月考数学试题(原卷+解析版)
对④,当 , 时,不总存在单位向量 和单位向量 ,使 ,故④错误.
故答案为:①②.
【点睛】本题考查的知识点是平面向量的基本定理和应用,注意运用向量的加减运算性质和单位向量的概念,难度中档.
12.已知 内一点 是其外心, ,且 ,则 的最大值为________.
10.已知边长为1 正八边形的8个顶点依次为 、 、 、 、 、 、 、 ,点 为该八边形边上的动点,则 的取值范围是________.
【答案】
【解析】
【分析】
如图所示,根据向量数量积的几何意义知,当点 在 位置时, 取得最小值,当点 在 位置时, 取得最大值,建立直角坐标,利用向量的坐标运算,即可得答案.
【答案】
【解析】
【分析】
利用向量的数量积大于0,且向量不共线,得到关于 的不等式,解不等式即可得答案.
【详解】∵ 与 的夹角为锐本题考查向量夹角的计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意把向量共线的情况去掉,才不会出现错解.
②存在 为第二象限角,角 为第四象限角;
则下列选项中,正确的是()
A. ①正确②正确B. ①正确②错误C. ①错误②正确D. ①错误②错误
三.解答题
17.在△ 中,三个内角 、 、 所对 边分别为 、 、 .
(1)若 , ,求△ 面积的最大值;
(2)若 ,试判断△ 的形状,并说明理由.
18.已知 ( )
【详解】设 ,则 ,∴ ,
∴ ,
∴ .
故答案为: .
【点睛】本题考查三角形的重心坐标公式、向量模的求解,考查运算求解能力,属于基础题.
【新】2019-2020华南师范大学附属中学初升高自主招生数学【4套】模拟试卷【含解析】
第一套:满分120分2020-2021年华南师范大学附属中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线33y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
上海市华师大二附中2019届高三综合练习数学10试题
上海市华师大二附中高三年级综合练习[10]数学一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1、已知集合A={(x ,y)|y=sinx ,∈x (0,2π)},B={(x ,y)|y=a ,∈a R},则集合A∩B 的子集个数量多有 个.2、若函数)(x f =x 21log 2的值域是[-1,1],则函数)(1x f-的值域为 .3、(文)若⎩⎨⎧≥+≤≤222y x y x , ,则目标函数y x z 2+=的取值范围是 . (理)将曲线 )(sin cos R y x ∈⎩⎨⎧==θθθ,上所有点的横坐标扩大到原来的2倍,纵坐标缩小到原来的21倍后,得到的曲线的焦点坐标为 .4、在等差数列{}n a 中,中若01<a ,n S 为前n 项之和,且177S S =,则n S 为最小时的n 的值为 .5、函数x x x x f cos sin 42sin )(3-=的图象上相邻二条对称轴之间的距离是 . 6、设1e 和2e 是互相垂直的单位向量,且212143,23e e b e e a +-=+=,则b a ⋅= .7、若复数z 满足211=-++z z ,则1-+i z 的最小值是 .8、在正三棱锥S -ABC 中,D 为AB 中点,且SD 与BC 所成角为︒45,则SD 与底面所成角的正弦值为 .9、一动圆与两圆(x+4)2+y 2=25和(x-4)2+y 2=4都外切,则动圆圆心M 的轨迹方程是 .10、)(x f 是偶函数,且)(x f 在(0,+∞)上是增函数,若∈x [21,1]时,不等式)2()1(-≤+x f ax f 恒成立,则实数a 的取值范围是 .11、在三位数中,如果十位数字比个位和百位数字都小,则称这个三位数为凹数,如402,745等,那么各数位无重复数字的三位凹数共有 个.12、对于正整数n 和m(m<n)定义!m n =(n-m)(n-2m)(n-3m)┈(n -km)其中k 是满足n>km 的最大整数,则!20!1864=________.二、选择题 (本大题满分16分) 本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号,选对得4分,不选、错选或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
上海市华东师范大学第二附属中学2019届高三年级第二学期开学考数学试卷(简略答案)
华二附中2019届高三年级第二学期开学考数学试卷注意事项:1. 答卷前,考生务必将自己的班级、姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,用黑色墨水签字笔在答题卡上书写作答。
写在本试卷上的答案无效。
3. 考试结束后,将答题卡上交。
一、填空题: 1. 行列式1958的值为 2. 设集合{1,2,3,4}A =,{2,0,2}B =-,则AB =3. 已知向量{1,5,7}a =-,{2,1,5}b =,则||a b +=4. 如果复数z 满足2220z z -+=,那么||z = 5. 椭圆2221x y +=的焦距是6. 掷一颗均匀的骰子,所得点数为质数的概率是 (结果用最简分数表示)7. 若圆锥的侧面积与底面积之比为2,则其母线与轴的夹角大小为8. 从5名男教师和4名女教师中选出4人参加“组团式援疆”工作,且要求选出的4人中 男女教师都有,则不同的选取方法的种数为 (结果用数值表示)9. 若两直线1:2l y kx k =++,2:24l y x =-+的交点在第一象限,则正整数k =10. 若321()nx x-的二项式展开式中,常数项为正数,则正整数n 的最小值是 11. 已知122x x ay b++=+(,a b ∈R )既是奇函数,又是减函数,则a b +=12. 已知坐标平面上的曲线Γ和直线l ,称l 为Γ的一条“基线”,若l 与Γ有且仅有一个公 共点P ,且Γ除P 之外的所有点都在l 的同侧,则下列曲线中:①arcsin y x =;②y =③211y x =+;④1y x x=-;没有“基线”的是 (写出所有符合要求的曲线编号)二、选择题:13. 已知数列{}n a 的极限是A ,如果数列{}n b 满足66210310n n n a n b a n ⎧≤=⎨>⎩,那么数列{}n b 的 极限是( )A. 3A B. 2A C. A D. 不存在14. 已知,x y ∈R ,则“1x >或1y >”是“2x y +>”的( )条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分也非必要 15.《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”,则以正方体1111ABCD A B C D -的顶点为顶点的鳖臑的个数为( )A. 12 B. 24 C. 48 D. 5816. 称()y f x =(x D ∈)“有界”,若存在实数m M ≤,使得对所有x D ∈,都有()m f x M ≤≤,设1()y f x =(x ∈R )是增函数,2()y f x =(x ∈R )是周期函数,且对所有x ∈R ,1()0f x >,2()0f x >,已知12()()h f x f x =,下列命题中真命题是( )A. 若()h x 是周期函数,则1()f x 有界B. 若()h x 是周期函数,则2()f x 有界C. 若1()f x 有界,则()h x 不是周期函数D. 若2()f x 有界,则()h x 不是周期函数 三、 解答题:17. 如图,正三棱柱111ABC A B C -底面三角形的周长为6,侧棱长1AA 长为3. (1)求正三棱柱111ABC A B C -的体积; (2)求异面直线1AC 与AB 所成角的大小.18. 已知函数2()sin cos sin f x x x x =-. (1)求()f x 的最小正周期;(2)设△ABC 为锐角三角形,角A B 的对边长()0f A =,求△ABC 的面积.19. 某地自2014年至2019年每年年初统计所得的人口数量如表所示.(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数 量的变化趋势;(2)研究人员用函数0.6544450()2000 4.48781t P t e -=++拟合该地的人口数量,其中t 的单位是年,2014年初对应时刻0t =,()P t 的单位是千人,设()P t 的反函数为()T x ,求(2400)T的值(精确到0.1),并解释其实际意义.20. 设常数m ,在平面直角坐标系xOy 中,已知点F ,直线:l y m =,曲线:x Γ=0y m ≤≤),l 与y 轴交于点A ,与Γ交于点B ,P 、Q 分别是曲线Γ 与线段AB 上的动点.(1)用m 表示点B 到点F 的距离;(2)若0AP FQ ⋅=且FA FP FQ +=,求m 的值;(3)设m =P 、Q ,使得△FPQ 是等边三角形,求△FPQ 的边长.21. 已知*n ∈N 和31n +个实数1231n x x x +≤≤⋅⋅⋅≤,若有穷数列{}k a 由数列{}k x 的项重新排列而成,且下列条件同时成立:① 3n 个数1||k k a a +-,1||k n k a a ++-,21||k n k a a ++-(1k n ≤≤)两两不同;② 当1k n ≤≤时,2111||||||k n k k n k k k a a a a a a +++++->->-都成立,则称{}k a 为{}k x 的一个 “友数列”.(1)若1n =,121x x ==,32x =,43x =,写出{}k x 的全部友数列;(2)已知{}k a 是通项公式为k x k =(131k n ≤≤+)的数列{}k x 的一个友数列,且131n a x +=,求31n a +(用n 表示);(3)设2n ≥,求所有使得通项公式为kk a q =(131k n ≤≤+)的数列{}k a 不能成为任何数列{}k x 的友数列的正实数q 的个数(用n 表示).华二附中2019届高三年级第二学期开学考数学试卷参考答案2019.03 一. 填空题1. 37-2. {2}3. 134.5.6.12 7. 6π 8. 2021 9. 1 10. 10 11.1- 12. ②④二. 选择题13. A 14. C 15. B 16. C 三. 解答题17.(1)(2)18.(1)T π=;(2)S =19.(1)2015201453f f -=,2016201568f f -=,2017201673f f -=,2018201763f f -=,2019201846f f -=,2014年至2018年每年该地人口的增长数量呈先增后减的趋势,每一年 人口总数呈逐渐递增的趋势;(2)(2400) 5.5T =,其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,即经过半年时间,该地人口数量总人数即增长到2400人.20.(1)||1BF =-;(2)1m =;(3. 21.(1)1、1、2、3;(2)31121n a n +≤≤-,31n a +∈*N ;(3)略.。
2019年上海华东师范大学第二附属中学高三数学文模拟试题含解析
2019年上海华东师范大学第二附属中学高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等比数列满足,则的值为()A.B.C.D.参考答案:B略2. 已知集合M={x|x+1≥0},N={x|﹣2<x<2},则M∩N=()A.(﹣∞,﹣1] B.(2,+∞)C.(﹣1,2] D.[﹣1,2)参考答案:C【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求解一元一次不等式化简M,然后利用交集运算得答案.【解答】解:∵M={x|x+1≥0}=[﹣1,+∞),N={x|﹣2<x<2}=(﹣2,2),则M∩N=[﹣1,+∞)∩(﹣2,2)=[﹣1,2).故选:C.【点评】本题考查交集及其运算,考查了一元一次不等式的解法,是基础题.3. 已知向量=(1,λ),=(2,1),若2+与=(1,﹣2)共线,则在方向上的投影是()A.B.﹣C.﹣D.﹣参考答案:【考点】平面向量数量积的运算.【专题】对应思想;综合法;平面向量及应用.【分析】根据向量共线求出λ,再代入平面向量的投影公式计算.【解答】解:2+=(4,2λ+1),∵2+与=(1,﹣2)共线,∴﹣8﹣(2λ+1)=0,解得λ=﹣.∴, =2﹣=﹣.∴在方向上的投影为||×==﹣.故选:D.【点评】本题考查了平面向量的数量积运算,向量共线与数量积的关系,属于基础题.4. 过点且在轴上的截距和在轴上的截距相等的直线方程为()(A)(B)(C)或(D)或参考答案:D若直线过原点,设直线方程为,把点代入得,此时直线为,即。
若直线不经过原点,在设直线方程为,即。
把点代入得,所以直线方程为,即,所以选D.5. 设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i参考答案:【考点】A6:复数代数形式的加减运算.【分析】根据已知求出复数z,结合共轭复数的定义,可得答案.【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C6. 设集合,若,则的取值范围是A. B. C. D.参考答案:C7. “2a>2b”是“log2a>log2b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【分析】分别解出2a>2b,log2a>log2b中a,b的关系,然后根据a,b的范围,确定充分条件,还是必要条件.【解答】解:2a>2b?a>b,当a<0或b<0时,不能得到log2a>log2b,反之由log2a>log2b即:a>b>0可得2a>2b成立.故选B.8. cos(﹣300°)的值是( )A.﹣B.C.﹣D.参考答案:【考点】三角函数的化简求值.【专题】计算题.【分析】利用诱导公式可得cos(﹣300°)=cos(﹣300°+360°)=cos60°.【解答】解:cos(﹣300°)=cos(﹣300°+360°)=cos60°=,故选 B.【点评】本题考查应用诱导公式化简三角函数式,把要求的式子化为cos(﹣300°+360°),是解题的关键.9. 奇函数在上的解析式是,则在上的函数解析式是()A. B.C. D.参考答案:B10. 已知函数是奇函数,当时,则的值等于()A. C. D .-参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 若实数x,y满足则的最大值为。
上海市华东师范大学第二附属中学2019届高三年级第二学期开学考数学试卷(简略答案)
华二附中2019届高三年级第二学期开学考数学试卷2019.03时间:120分钟;满分150分一、填空题: 1. 行列式1958的值为 2. 设集合{1,2,3,4}A =,{2,0,2}B =-,则AB =3. 已知向量{1,5,7}a =-,{2,1,5}b =,则||a b +=4. 如果复数z 满足2220z z -+=,那么||z = 5. 椭圆2221x y +=的焦距是6. 掷一颗均匀的骰子,所得点数为质数的概率是 (结果用最简分数表示)7. 若圆锥的侧面积与底面积之比为2,则其母线与轴的夹角大小为8. 从5名男教师和4名女教师中选出4人参加“组团式援疆”工作,且要求选出的4人中 男女教师都有,则不同的选取方法的种数为 (结果用数值表示)9. 若两直线1:2l y kx k =++,2:24l y x =-+的交点在第一象限,则正整数k =10. 若321()nx x -的二项式展开式中,常数项为正数,则正整数n 的最小值是 11. 已知122x x ay b++=+(,a b ∈R )既是奇函数,又是减函数,则a b +=12.已知坐标平面上的曲线Γ和直线l ,称l 为Γ的一条“基线”,若l 与Γ有且仅有一个公 共点P ,且Γ除P 之外的所有点都在l 的同侧,则下列曲线中:①arcsin y x =;②y =③211y x =+;④1y x x=-;没有“基线”的是 (写出所有符合要求的曲线编号) 二、选择题:13. 已知数列{}n a 的极限是A ,如果数列{}n b 满足66210310n n na nb a n ⎧≤=⎨>⎩,那么数列{}n b 的 极限是( )A. 3A B. 2A C. A D. 不存在14. 已知,x y ∈R ,则“1x >或1y >”是“2x y +>”的( )条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分也非必要 15.《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”,则以正方体1111ABCD A B C D -的顶点为顶点的鳖臑的个数为( )A. 12 B. 24 C. 48 D. 5816. 称()y f x =(x D ∈)“有界”,若存在实数m M ≤,使得对所有x D ∈,都有()m f x M ≤≤,设1()y f x =(x ∈R )是增函数,2()y f x =(x ∈R )是周期函数,且对所有x ∈R ,1()0f x >,2()0f x >,已知12()()h f x f x =,下列命题中真命题是( )A. 若()h x 是周期函数,则1()f x 有界B. 若()h x 是周期函数,则2()f x 有界C. 若1()f x 有界,则()h x 不是周期函数D. 若2()f x 有界,则()h x 不是周期函数 三、 解答题:17. 如图,正三棱柱111ABC A B C -底面三角形的周长为6,侧棱长1AA 长为3. (1)求正三棱柱111ABC A B C -的体积; (2)求异面直线1A C 与AB 所成角的大小.18. 已知函数2()sin cos sin f x x x x =-. (1)求()f x 的最小正周期;(2)设△ABC 为锐角三角形,角A B 的对边长()0f A =,求△ABC 的面积.19. 某地自2014年至2019年每年年初统计所得的人口数量如表所示.(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数 量的变化趋势;(2)研究人员用函数0.6544450()2000 4.48781t P t e -=++拟合该地的人口数量,其中t 的单位是年,2014年初对应时刻0t =,()P t 的单位是千人,设()P t 的反函数为()T x ,求(2400)T的值(精确到0.1),并解释其实际意义.20. 设常数m ≥xOy 中,已知点F ,直线:l y m =,曲线:x Γ=0y m ≤≤),l 与y 轴交于点A ,与Γ交于点B ,P 、Q 分别是曲线Γ 与线段AB 上的动点.(1)用m 表示点B 到点F 的距离;(2)若0AP FQ ⋅=且FA FP FQ +=,求m 的值;(3)设m =P 、Q ,使得△FPQ 是等边三角形,求△FPQ 的边长.21. 已知*n ∈N 和31n +个实数1231n x x x +≤≤⋅⋅⋅≤,若有穷数列{}k a 由数列{}k x 的项重新排列而成,且下列条件同时成立:① 3n 个数1||k k a a +-,1||k n k a a ++-,21||k n k a a ++-(1k n ≤≤)两两不同;② 当1k n ≤≤时,2111||||||k n k k n k k k a a a a a a +++++->->-都成立,则称{}k a 为{}k x 的一个 “友数列”.(1)若1n =,121x x ==,32x =,43x =,写出{}k x 的全部友数列;(2)已知{}k a 是通项公式为k x k =(131k n ≤≤+)的数列{}k x 的一个友数列,且131n a x +=,求31n a +(用n 表示);(3)设2n ≥,求所有使得通项公式为kk a q =(131k n ≤≤+)的数列{}k a 不能成为任何数列{}k x 的友数列的正实数q 的个数(用n 表示).华二附中2019届高三年级第二学期开学考数学试卷参考答案2019.03 一. 填空题1. 37-2. {2}3. 134.5.6.12 7. 6π 8. 20219. 1 10. 10 11. 1- 12. ②④ 二. 选择题13. A 14. C 15. B 16. C 三. 解答题17.(1)(2)1318.(1)T π=;(2)S =19.(1)2015201453f f -=,2016201568f f -=,2017201673f f -=,2018201763f f -=,2019201846f f -=,2014年至2018年每年该地人口的增长数量呈先增后减的趋势,每一年 人口总数呈逐渐递增的趋势;(2)(2400) 5.5T =,其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,即经过半年时间,该地人口数量总人数即增长到2400人.20.(1)||1BF =-;(2)1m =;(3.21.(1)1、1、2、3;(2)31121n a n +≤≤-,31n a +∈*N ;(3)略.。
2019华东师范大学第二附属中学数学自主招生试卷
第1页共3页
9. ABC 中,a、b、c 均为自然数且 a b c , a2 b2 c2 ab ac bc 13 ,求周长小 于 30 的 ABC 有多少个?
x, 若x为无理数
10.
f
(x)
q
1 , 若x p
q p
,
p, q
N*,
且p, q互质, q
第3页共3页
参考答案
1. a 3 , b 6 , a b 2 3 6
3
6
6
2. (a b 1)2 2c2 , | a b 1| 2 | c | , a b 1 , c 0 , a b c 1
3. a 1 , b 0 , c 1 ,答案为 0 或 2
4. 设直径为 d, (d 40)2 3d 2 13.75 240 d 20 ,边长为 60 4
,求
4x
4z
1
.
第2页共3页
14. 锐角 ABC 中,D、E 是 BC 上的点, ABC 、 ABD 、 ADC 外心为 O、P、Q, 求证:(1) APQ ∽ ABC ;(2)若 EO⊥PQ,则 QO⊥PE. 15. 函数 4x 5 y 20 与 x、y 轴相交于 A、B,l 与 AB、OA 交于 C、D 且平分 SAOB ,求 CD2 的最小值.
2019 年华二附中自招数学试卷
1.
f (x)
1x 2
x
1 3
,函数最大值为
a
,最小值为 b ,求
a
b
.
2. 有理数 a、b、c, a2 b2 1 2(c2 ab b a) ,求 a b c .
3. a 是最大负整数,b 是绝对值最小的有理数,c 的倒数是 c,求 a2017 2018b c2019 .
2019届华二附中初升高自招数学(附简析)
2019年华二附中自招数学试卷1. ()f x =a ,最小值为b ,求a b +.2. 有理数a 、b 、c ,22212()a b c ab b a ++=++-,求a b c --.3. a 是最大负整数,b 是绝对值最小的有理数,c 的倒数是c ,求201720192018a b c ++.4. 有一块正方形田地,中间有一圆池,池与田间间隙有13.75亩,方田四边到圆的最近距离都是20步,求边长和直径. (2402=步1亩,3π=)5. 一个人输密码,输了4次,3406、1630、7364、6173,每个数中都对了两个数字,但位置不正确,求正确密码.6. ,0()(),C x A f x C B x A x A<≤⎧=⎨+->⎩(煤气收费标准),当使用34m 时,缴费4元,当使用325m 时,缴费14元,当使用335m 时,缴费19元. 问:当使用320m ,缴费多少元?7. 半径为r 的圆在边长为a 的等边三角形中随意移动()a ≥,求圆扫不到的面积.8. 有一个数n ,若n 为偶数,则取2n ,若n 为奇数,则取31n +,多次后得1,求8次后能得到1的数有几个?(1可重复出现)9. ABC 中,a 、b 、c 均为自然数且a b c ≥≥,22213a b c ab ac bc ++---=,求周长小于30的ABC 有多少个?10. ,()1,,,,,,x x f x q q x p q p q q p p p ⎧⎪=+⎨=∈<⎪⎩*N 若为无理数若且互质,求()f x 在78(,)89区间内最大值.11. a 、b 、c 均为正整数,关于x 的方程20ax bx c ++=的两实根的绝对值都小于13,求a b c ++的最小值.12. x y xy +=,x y z xyz ++=,求z 的范围.13. 5422x y z x y z ++=⎧⎨+-=⎩,求441x z -+.14. 锐角ABC 中,D 、E 是BC 上的点,ABC 、ABD 、ADC 外心为O 、P 、Q , 求证:(1)APQ ∽ABC ;(2)若EO ⊥PQ ,则QO ⊥PE .15. 函数4520x y +=与x 、y 轴相交于A 、B ,l 与AB 、OA 交于C 、D 且平分AOB S ,求 2CD 的最小值.参考答案1. a =b =a b +=2. 22(1)2a b c -+=,|1||a b c -+=,1a b -=-,0c =,1a b c --=- 3. 1a =-,0b =,1c =±,答案为0或2-4. 设直径为d ,223(40)13.75240204d d d +-=⨯⇒=,边长为60 5. 因为位置不正确,∴没有3和6,所以密码由0、1、4、7构成,结合“位置不正确”分析讨论可得,密码为0741或40176. 4,05()0.5 1.5,5x f x x x <≤⎧=⎨+>⎩,(20)11.5f =7. 22r π-8. 逆推,有4、5、6、32、40、42、256共7个数9. 222()()()26a b b c a c -+-+-=,a b c ≥≥,∴4a c -=,讨论可得有11个10. 若为无理数,8()9f x <,若为有理数,||p q -要最小,而77888899+<<+,∴17p =, 15q =,此时max 16()17f x = 11. 由判别式、韦达定理得到限定条件,然后分析讨论,若两根可以相等,则最小值为 168125++=,若两根不等,则最小值为199129++= 12. 1x y x =-,代入x y z xyz ++=,∴221x z x x =-+,判别式法求值域,403z ≤≤ 13. 1x z -=-,4413x z -+=-14.(1)正弦定理可得::AB AP AC AQ =,得到相似,或者结合圆的相关知识(圆心角、圆周角、垂径定理、等弧对等角)得到APQ B ∠=∠,AQP C ∠=∠,从而相似(2)略.15. 面积公式可得2AC AD ⋅=222525CD AC AD ≥⋅-=。
2019年自主招生数学模拟试卷含答案解析(已核已印)
2019年高中学校自主招生数学试卷一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或205.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.27.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是.12、=.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为.18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求t的取值范围.参考答案与试题解析一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】先判断出共有6种颜色,再根据与白相邻的颜色有黑、绿、黄、红判断出白的对面是蓝,与绿相邻的有白、黑、蓝、红判断出绿的对面是黄,与红相邻的有绿、蓝、黄、白判断出红的对面是黑,从而得解.【解答】解:由图可知,共有黑、绿、白、红、蓝、黄六种颜色,与白相邻的颜色有黑、绿、黄、红,所以,白的对面是蓝,与绿相邻的有白、黑、蓝、红,所以,绿的对面是黄,与红相邻的有绿、蓝、黄、白,所以,红的对面是黑,综上所述,涂成绿色一面的对面的颜色是黄.故选:C.2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或20【分析】由于实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则a,b 可看着方程x2﹣8x+5=0的两根,根据根与系数的关系得a+b=8,ab=5,然后把通分后变形得到,再利用整体代入的方法计算.【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.【分析】y=x2﹣x+=(x﹣)(x﹣),可求抛物线与x轴的两个交点坐标,所以|A n B n|=﹣,代入即可求解;【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2017B2017|=+++…+=1﹣=,故选:C.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.2【分析】根据平行线间的距离处处相等得到:△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.7.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【分析】由勾股定理可求BC,AC的值,通过证明△ACB∽△PCQ,可得,可得CQ=,当PC是直径时,CQ的最大值=×5=.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c 的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条【分析】联立直线y=px与直线y=x+10,求出p的取值范围即可求得结果.【解答】解:联立直线y=px与直线y=x+10,,得px=x+10,x=,∵x为整数,p也为整数.∴P的取值范围为:﹣9≤P≤11,且P≠1,P≠0.而.10=2×5=1×10,0<P≤11,有四条直线,P≠0,﹣9≤P<0,只有三条直线,那么满足条件的直线有7条.10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形CMGN,易求后者的面积.四边形BCDG③过点F作FP∥AE于P点.根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S=2S△CMG,四边形CMGN∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2.③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选:D.二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是4037x2019.【分析】根据题目中的式子可以系数为连续的奇数,未知数x的次数从1次、2次依次递增,从而可以得到第2019个单项式,本题得以解决.【解答】解:∵x,3x2,5x3,7x4,9x5,11x6,…∴第n个式子是(2n﹣1)x n,当n=2019时,对应的式子为4037x2019,故答案为:4037x2019.12.=612.5 .【分析】仔细观察,知原式还可以是.又+=1,(+)+(+)=2,+=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为.【解答】解:设s=,①又s=,②①+②,得2s=1+2+3+4+…+49,③2s=49+48+47+…+2+1,④③+④,得4s=50×49=2450,故s=612.5;故答案为:612.5.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为(256,0).【分析】先根据伸长的变化规律求出OP8的长度,再根据每8次变化为一个循环组,然后确定出所在的位置,再根据等腰直角三角形的直角边等于斜边的倍解答即可.【解答】解:由题意可得,OP0=1,OP1=2×1=2,OP=2×2=22,2OP=2×22=23,3OP=2×23=24,4…OP=2×27=28=256,8∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,∴P8在x4的正半轴上,P8(256,0),故答案为(256,0).14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为y=(x>0)【分析】由于t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解答】解:∵t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,∴t1+t2=2,而x=10t1,y=10t2,∴xy=10t1×10t2=10t1+t2=102=100,∴y=(x>0).故答案为:y=(x>0).15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO =∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为13 .【分析】通过化简解析式能确定直线经过定点(﹣5,12),原点与定点的距离是原点到直线的最大距离;【解答】解:y=kx+5k+12=k(x+5)+12,∴直线经过定点(﹣5,12),∴原点与定点的距离是原点到直线的最大距离13;故答案为13;18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 6 .【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【解答】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z =(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.【分析】将括号里通分,除法化为乘法,约分,代值时,a的取值不能使原式的分母、除式为0.【解答】解:原式=••=a+3,当a=﹣3时,原式=﹣3+3=.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.【分析】(1)根据根与系数的关系可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,,代入可得关于p的方程,解方程即可;(2)由方程有三个不同的实数根x1、x2、x3,可得x3=﹣p,x1、x2是方程x2+2px ﹣3p2+5=q的两根;由根与系数的关系可得x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,进而得到关于p的方程,解出p即可求出q的值.【解答】解:(1)若q=0,则方程为x2+2px﹣3p2+5=0.因该方程有两个不同的实数x1、x2,可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,解得p2>;由,得,解得p=5或.(注意5﹣3p2≠0)因为p2>,所以p=5.(2)显然q>0.方程可写成x2+2px﹣3p2+5=±q.因该方程有三个不同的实数根,即函数与y2=±q的图象有三个不同的交点,∴可得:,即q=4p2﹣5.x1、x2是方程x2+2px﹣3p2+5=q的两根,即x2+2px﹣7p2+10=0.则x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,解得p2>.由,得,解得p2=2>,所以,q=4p2﹣5=3.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.【分析】作辅助线,构建全等三角形和平行四边形,先证明四边形ACFD是平行四边形,得DF=AC=BD,DF∥AC,再证明△BDF是等边三角形,证明△ABC ≌△BAF(SAS),可得结论.【解答】证明:延长AP至点F,使得PF=AP,连结BF,DF,CF,∵P是CD中点,∴CP=DP,∴四边形ACFD是平行四边形,∴DF=AC=BD,DF∥AC,∴∠FDB=∠BAC=60°,∴△BDF是等边三角形,∴BF=DF=AC,∠ABF=60°,∴∠ABF=∠BAC,在△ABC和△BAF中,∵,∴△ABC≌△BAF(SAS),∴AF=BC,∴AP=AF=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【分析】(1)由DC2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到,再利用比例的性质可计算出r的值.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4,即⊙O的半径为4.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P ≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P点坐标.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,试求t的取值范围.【分析】(1)根据“梦之点”的定义得出m的值,代入反比例函数的解析式求出n的值即可;(2)根据梦之点的横坐标与纵坐标相同,可得关于x的方程,根据解方程,可得答案;(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2得到﹣2<x1<0时,根据0≤x1<2得到﹣2≤x2<4;由于抛物线y=ax2+(b﹣1)x+1的对称轴为x=,于是得到﹣3<<3,根据二次函数的性质即可得到结论.【解答】解:(1)∵点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,∴m=2,∴P(2,2),∴n=2×2=4,∴这个反比例函数的解析式为y=;(2)由y=3kx+s﹣1得当y=x时,(1﹣3k)x=s﹣1,当k=且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=且s≠1时,方程无解,此时的“梦之点”不存在;当k≠,方程的解为x=,此时的“梦之点”存在,坐标为(,);(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2,又﹣2<x1<2得:﹣2<x1<0时,﹣4<x2<2;0≤x1<2时,﹣2≤x2<4;∵抛物线y=ax2+(b﹣1)x+1的对称轴为x=,故﹣3<<3,由|x1﹣x2|=2,得:(b﹣1)2=4a2+4a,故a>;t=b2﹣b+=(b﹣1)2+,y=4a2+4a+=4(a+)2+,当a>﹣时,t随a的增大而增大,当a =时,t=,∴a>时,t>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年华二自主招生试卷
一、 填空题(每题4分)
1.已知关于x 的多项式75212ax bx x x ++++(a 、b 为常数),且当2x =时,该多项式的值为8-,则当2x =-时,该多项式的值为 .
2.已知关于x 的方程2(2)10x a x a +-++=的两实根1x 、2x 满足22124x x +=,则实数a = .
3.已知当船位于处A 时获悉,在其正东方向相距10海里的B 处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应该朝北偏东 度的方向沿直线前往B 处救援.
4.关于x 、y
的方程组1
x y x y x y -+⎧=⎪⎨=⎪⎩有 组解.
5.已知a ,b ,c 均大于零,且222420a ab ac bc +++=则a b c ++的最小值是 .
6.已知二次函数225y x px =-+,当2x ≥-时,y 的值随x 的值增加而增加,那么x p =对应的y 值的取值范围是 .
7.如图所示,正方形ABCD 的面积设为1,E 和F 分别是AB 和BC 的中点,则图中阴影部分的面积是 .
8.在直角梯形ABCD 中,90ABC BAD ∠=∠=,16AB =,对角线AC 与交BD 于点E ,过E 作EF AB ⊥于点F ,O 为边AB 的中点,且8FE EO +=,则AD BC +的值为 .
冲刺2019年华师大二附中自主招生真题及答案解析
9.以下是面点师一个工作环节的数学模型:如图,在数轴上截取从0到1对应的线段,对折后(坐标1所对应的点与原点重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标13,44变成12,原来的12变成1,等等),那么原数轴从0到1对应的线段上(除两个端点外)的点,在第n 次操作完成后((1)n ≥,恰好被拉到与1重合的点所对应的坐标为 .
10.定义{}m i n ,,a b c 表示实数,,a b c 中的最小值,若,x y 是任意正实数,则
11min ,,M x y y
x ⎧⎫=+⎨⎬⎩⎭的最大值是 .
二、 计算题(20分)
11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.(10分)
12.如图,已知PA 切O 于A , 30=∠APO ,AH PO ⊥于H ,任作割线PBC 交O 于点B 、C ,计算
BC
HB HC -的值.(10分)
11年华二答案。