芳环上的亲电和亲核取代反应

合集下载

c-f键芳香亲核取代反应

c-f键芳香亲核取代反应

c-f键芳香亲核取代反应
C-F键芳香亲核取代反应是一种化学反应,其中芳香环(如苯环)中的碳-氟键在亲核试剂的作用下被取代。

这个反应通常需要一个具有足够
强亲核性的反应物(如醇、硫醇、酚或羧酸)和一个适当的芳香亲电
试剂(如卤代芳烃或硝基芳烃)。

这个反应的主要步骤包括:
1. 芳香亲电试剂进攻芳香环,使芳香环发生电子云密度分布的改变。

2. 氟原子从质子中释放出来,并从溶液中捕捉电子形成氟化物。

3. 亲核试剂(如醇)与氟原子进行交换,并在进攻邻近碳的同时提供
电子。

C-F键芳香亲核取代反应的主要应用是化学合成中的氟化物的引入。

这种反应的机理使得氟化物通常比其他卤素更容易发生亲核取代反应,
因为氟原子具有很高的电负性和共价键的稳定性。

需要注意的是,这个反应通常需要一定的条件,如酸催化剂或加热等,并且可能会产生副产物。

因此,在实际应用中,需要考虑到这些因素
并采取适当的措施。

芳环的取代反应

芳环的取代反应

芳环上的取代反应:(1)亲电取代反应(2)亲核取代反应 一、芳环的亲电取代反应 A 、芳环上的亲电取代历程:芳香族与亲电试剂作用时,亲电试剂先与离域的π电子结合,生成π络合物,接着亲电试剂从苯环的π体系中得到两个π电子与苯环的一个碳原子形成σ键,生成σ络合物。

此时这个碳原子由sp2杂化变成sp3杂化,苯环中的六个碳原子形成的闭合共轭体系被破环,变成四个π电子离域在五个碳原子上。

根据共轭共振论的观点,σ络合物是三个碳正离子共振结构的共振杂化体,其能量比苯环高,不稳定。

它很容易从sp3杂化碳原子上失去一个质子,碳原子由sp3杂化变成sp2杂化,再形成六个π电子离域的闭合共轭体系——苯环,从而降低了苯环的能量,产物比较稳定,生成取代苯。

1、亲电试剂的产生HNO 3+2H 2SO4NO 2++H 3O ++2HSO 4-亲电试剂2、π-络合物的形成+NO 2π-络合物23、σ-络合物的形成NO 2+HNO2σ-络合物硝基所在碳为sp 3杂化 4、消去-H ++NO 2H NO 2快B 、苯环上亲电取代反应的定位规律:从反应速度和取代基进入的位置进行考虑1、 第一类定位基(邻,对位定位基):(除卤素外,卤素对芳环有致钝作用)具有+I 或是+C 效应,其作用是增大芳环的电子云密度。

致活基NH 2NHR2OHORNHCROPhR致钝基F Cl BrI2、 第二类定位基(间位定位基):具有-I 或-C 效应,使芳环上的电子云密度降低,均为致钝基NO 2NR 3COOHCOORSO 3HCNCHOCROCCl 3C 、影响亲电取代的因素:(1)芳环上取代基对于E +进入芳环位置的影响第一类定位基-邻对位定位基第二类定位基-间位定位基共振式越多, 正电荷分散程度越大,芳正离子越稳定。

(2) 动力学控制与热力学控制: α位取代-动力学控制产物; β位取代-热力学控制产物。

(3) 邻位和对位定向比:a 亲电试剂的活性越高,选择性越低。

高等有机第七章+芳环上的取代反应.

高等有机第七章+芳环上的取代反应.

7.1.3 π-络合物
HE
E+Nu- fast
E+ slow
p-络合物
HE
E
fast
+ H+
决定反应 速度步骤
动力学同位素效应可以证明此步反应速度较快
7.1.4 动力学同位素效应
用氘或氚标记苯环进行亲电取代,kH/kD或kH/kT的数值
接近1,说明C——H键断裂的步骤不是决定反应速率的
步骤。 例如:
-CF3具有强烈的-I
使苯环钝化
进攻邻位
CNFO32
H E
CNFO32
H E
CNOF23
H E
CNFO32
+ E+
对位
NCOF23
NCOF23
不稳定
CNOF32
间位
HE
CNFO32
HE
NCOF23
HE 不稳定
CNOF23
H
H
H
E
E
E
进攻邻位
NH2 H E
NH2 + E+
对位 间位
NH2 HE
NH2
加成-消除机理(Ar-SE)进行的:
HE
E
E+Nu-
k1 k-1
k2
σ-络合物
芳正离子,Wheland络合物
一般地,k2>k1,k-1,所以, σ-络合物生成步骤是决定反应 速度步骤。
7.1.1 σ-络合物存在的证明
一、分离鉴定
Me
Me Et
EtF, BF 3
- 80 oC
H
BF4
Me
Me
Me
Me
NO2+ 本位进攻生成的σ-络合物可以发生几种反应:

第四章_芳环上的取代反应解析

第四章_芳环上的取代反应解析
苯甲醚: fp ≈ fo >> fm
-OCH3 对邻、对位具有+C, +I效应,+C > +I 对间位,只有+I, 而无+C效应。
6、定位效应的应用
1) 两个取代基定位效应一致
CH3
CH3 位阻大
Cl NO2
两个取代基定位效应不一致
CH3
NO2
NHCOCH3

NH2
COOH
NO2
COOH OH
COOH Cl
CH2 O CH3 CH2
NO2 O NO2-NO3-
CH2 OCH3
CH2
69%(邻)
NO2 28%(对)
CH2 CH2
O
CH3
NO2
CH2 O CH3
CH2
H -H+ NO2
产物
能够发生螯合效应的条件: 1〕杂原子能与试剂螯合; 2)所形成环为五元环或六元环。
6)原位取代 (Ipso取代):
O2N
CH3 +
CH3
I
I
NO 2
➢实验结果表明,在原位取代中,离去基团的离去能
力由大到小的次序为:
H+ >> I+ > Br+ > NO2+ > Cl+
5. 取代基的定量关系
取代基效应与化学活性之间存在一定的定量关系。
1) 分速度因数:是一种定量表示定位效应的方法,它是 一取代苯进行再取代时,在其中一个位置进行取代的 速率与苯进行取代的速率之比。
a-位取代-动力学控制产物; b-位取代-热力学控制产物。
4 邻、对位定向比
1)亲电试剂的活性 亲电试剂活性越高,选择性越低。

有机化学中的芳香亲核取代与芳香亲电取代

有机化学中的芳香亲核取代与芳香亲电取代

有机化学中的芳香亲核取代与芳香亲电取代芳香亲核取代和芳香亲电取代是有机化学中的两个重要反应类型。

这两种反应是有机芳香化合物中的氢原子被置换为另一种原子或基团的过程。

本文将详细介绍芳香亲核取代和芳香亲电取代的原理、机理和应用。

一、芳香亲核取代芳香亲核取代反应是指芳香化合物中的氢原子被一个亲核试剂取代的过程。

亲核试剂可能是氢氧根离子、卤素离子、芳基负离子等。

这种反应一般需要在碱性条件下进行。

芳香亲核取代反应的机理是由共轭碳氢键的特殊性质决定的。

芳香环中的π电子可以共享给亲核试剂,而由于环上的π电子非常稳定,取代反应的活性较低,因此需要在碱性条件下进行。

常见的芳香亲核取代反应有苯酚的溴化反应、苯的硝化反应等。

苯酚的溴化反应以环境中的溴离子为亲核试剂,生成溴苯和溴化氢。

苯的硝化反应以硝酸为亲核试剂,生成硝基苯和水。

这些反应在有机合成中具有重要意义,可以用于合成药物、香料等化合物。

二、芳香亲电取代芳香亲电取代反应是指芳香化合物中的氢原子被一个亲电试剂取代的过程。

亲电试剂可能是正离子、电子不足的分子等。

这种反应一般需要在酸性条件下进行。

芳香亲电取代反应的原理是由共轭芳香体系的特殊稳定性决定的。

共轭芳香体系能够吸引亲电试剂的正电荷,使其参与反应。

芳香环上的π电子提供了稳定性和活性中心,使得亲电试剂能够与芳香化合物反应。

常见的芳香亲电取代反应有苯的硝化反应、苯的磺化反应等。

苯的硝化反应以浓硝酸为亲电试剂,在酸性条件下发生取代反应,生成硝基苯和水。

苯的磺化反应以浓硫酸为亲电试剂,生成苯磺酸和水。

这些反应在有机合成中也具有重要意义,可以用于合成各种化合物。

三、芳香亲核取代与芳香亲电取代的比较芳香亲核取代和芳香亲电取代在机理和反应条件上有明显的区别。

芳香亲核取代需要在碱性条件下进行,而芳香亲电取代需要在酸性条件下进行。

此外,芳香亲核取代的亲核试剂通常是负离子,而芳香亲电取代的亲电试剂通常是正离子或电子不足的分子。

两种反应类型在有机合成中有着不同的应用。

第九章 芳环上的取代反应

第九章 芳环上的取代反应

以Cl+形式存在,故不易离去。
CH 3 HNO3 / H2 SO4 O2N + I NO 2 CH 3 CH 3
I
CH 3 H 3 O+ CH3 SO3H
CH 3 + CH 3 H H2SO4
实验结果表明,在原位取代中,离去基团的离去能 力由大到小的次序为: H+ >> I+ > Br+ > NO2+ > Cl+
中间体的稳定性-共振论
CH
CH
CH2 + E
邻对位
CH2 H E
CH
CH2 H E
CH
CH2 H E
CH
CH2 H E
间位
CH
CH2 CH H E
CH2 H E
CH
CH2 H E
共振式越多,正电荷分散程度越大,芳正离子越稳定。
Cl
Cl
Cl H E H E
Cl H E
Cl H E
进攻邻位
Cl + E+
Z E

Z + E+
Z

E Z 间 E
定位基:苯环上原有取代基能指定新导入基团的位置, 则原有取代基成为定位基。这种效应叫定位基效应。
2、定位基分类
Z= 硝 化 产 物
o (%) p(%) m (%)
OH 40 60 <1
CH3 56 40 4
>1
Cl 30 70 <1
NO2 6 <1 >93
<1
H
SO3 H
H
SO3 H
a-位取代-动力学控制产物; b-位取代-热力学控制产物。

大二有机化学课件芳环上的取代反应

大二有机化学课件芳环上的取代反应

CH3 + CO + HCl CH2Cl2-AlCl3
CH3
CHO
24
芳基重氮盐的偶联反应
芳基重氮离子也是一种亲电试剂,由于它的亲电进 攻能力弱,只能进攻高度活化的芳环,如酚和N,N-二 取代芳胺。
偶合发生在活泼基团的对位
25
3 芳环上的亲核取代
芳环上的亲核取代也是一类重要反应,有许多实际应用。芳环 上亲核取代反应的机理比较多样,有些反应机理还不十分清楚。
Br
CH3
+
56% NH2
CH3 NH2
+
22%
CH3 NH2 22%
35
如卤素的两个邻位都被甲基取代,则不起反应
Br
Br
Br
CH3
CH3 CH3
CH3 CH3O
CH3
CH3
36
1953年J.D.Roberts 用14C同位素标记的 底物做氨化反应揭示 了这类反应可能是先 消除卤化氢成苯炔、 再由氨负离子对苯炔 进行加成:
磺化是可逆反应,不上的某些位置不被取 代;或提纯某些有机化合物。
占座
下课
19
Friedel—Crafts烃化
Friedel-Crafts烃化反应的催化剂是Lewis酸,常用的有 AlCl3(活性最强),FeCl3,ZnCl2,BF3, H2SO4, H3PO4等,卤 代烃、烯烃、醇都可以用作烃化剂。
NH2
CH3
CH3
NO2
NO2
同理,下列两个化合物的活性很小,与氯苯相似:
NO2
CH3
CH3
NO2
CH3
CH3
Cl
CH3
CH3
Cl

芳香族化合物的取代反应

芳香族化合物的取代反应
在芳基正离子机理中,C-H键的断裂不在决速步骤发 生,无同位素效应; 在芳环硝化反应中证实无同位素效应。
(D)H (D)H NO2 H(D) HNO3/H2SO4 H(D) H(D) kH/kD = 1.05 (D)H (D)H NO2 H(D) NO2 H(D)
容易观察到较小的同位素效应 (kH/kD = 1-3,而非正常的6-7): 第一步具有可逆性及由此引起 的分配效应所产生的。
:
:
:
:OMe
+
H
E
H
E :
H
E : :OMe H E
H
E
:OMe
+
:
:OMe
+
H E
H E
+
化学
-I > +C ,钝化苯环:X
Cl
Cl E H H E
B间位定位基 的定位能力次序大致为(从强到弱) 2.
-NR3, -NO2, -CF3, -CCl3, -CN, -SO3H, -CHO, -COR,-COOH, -CONH2。
反 应 进 程
化学
2. 同位素效应 当一个反应进行时,在决定反应速率的步骤中发生 了反应物分子的同位素键的断裂,将显示初级动力 学同位素效应。最常见的是,反应物分子中的氢被 氘取代后,反应时有速率上的不同,这种变化称为 氘同位素效应,用kH/kD表示。 例如下列反应有 动力学同位素效 应,说明质子是 在决速步的失去 的:
CH2CH3 H
CH3CH2 + [AlCl3Br]
CH2CH3
H+
+
HBr AlCl3
化学
特点: 1°常用的催化剂是无水AlCl3,此外 FeCl3、BF3、 无水HF、SnCl4、ZnCl2、H3PO4、H2SO4等都有催 化作用。

亲核取代和亲电取代机理

亲核取代和亲电取代机理

亲核取代和亲电取代机理亲核取代和亲电取代是有机化学中两种常见的取代反应机理。

它们分别指的是通过亲核试剂和亲电试剂进行的取代反应。

亲核取代是指以亲核试剂作为反应物,亲核试剂中的亲核原子攻击原有化合物的电子,将其替代出来的反应。

亲核试剂通常是带有孤对电子或具有亲电子云的化合物,如氢氧根离子(OH-)、氯离子(Cl-)等。

在亲核取代反应中,亲核试剂攻击原有化合物中具有较高反电子密度的原子,如卤素原子、烷基碳原子等。

亲核取代反应中,亲核试剂中的亲核原子与原有化合物中的原子形成新的化学键,使原有化合物中的原子被替代掉。

这种反应机理常见于醇的酯化反应、卤代烃的取代反应等。

亲电取代是指以亲电试剂作为反应物,亲电试剂中的亲电子云攻击原有化合物的电子,将其替代出来的反应。

亲电试剂通常是带有正电荷或具有亲电子云的化合物,如卤代烃、酸酐等。

在亲电取代反应中,亲电试剂中的亲电子云与原有化合物中的原子形成新的化学键,使原有化合物中的原子被替代掉。

亲电取代反应中,亲电试剂中的正电荷或亲电子云攻击原有化合物中的电子密度较高的原子,如孤对电子、芳环上的π电子等。

这种反应机理常见于卤代烃的取代反应、酯的水解反应等。

亲核取代和亲电取代机理之间存在一定的区别。

首先,在反应物的选择上,亲核取代需要选择具有亲核性的试剂,而亲电取代需要选择具有亲电性的试剂。

其次,在反应过程中,亲核取代是通过亲核试剂攻击原有化合物中的电子实现的,而亲电取代是通过亲电试剂攻击原有化合物中的电子实现的。

此外,在反应速率上,亲电取代的速率通常较快,而亲核取代的速率较慢。

另外,反应的产物也有所不同,亲核取代反应通常会产生亲核试剂中的原子或基团替代原有化合物中的原子或基团,而亲电取代反应通常会产生亲电试剂中的原子或基团替代原有化合物中的原子或基团。

总结起来,亲核取代和亲电取代是有机化学中常见的取代反应机理。

亲核取代通过亲核试剂攻击原有化合物中的电子,亲电取代通过亲电试剂攻击原有化合物中的电子。

亲电取代和亲核取代例子

亲电取代和亲核取代例子

亲电取代和亲核取代例子以亲电取代和亲核取代是有机化学中的两个重要概念,它们描述了在化学反应中发生的两种取代反应。

亲电取代是指一个亲电子试图取代一个离子或亲核物质中的一个原子或基团的反应。

亲核取代是指一个亲核试图取代一个分子中的一个原子或基团的反应。

下面将分别列举亲电取代和亲核取代的例子。

亲电取代的例子:1. 酸催化的醇酯化反应:酸催化下,醇和酸发生酯化反应,醇中的亲电子攻击酸中的羰基碳,形成酯。

2. 酮和醛的氧化还原反应:还原剂(如金属氢化物)提供亲电子,被酮或醛中的亲电子接受,形成醇。

3. 烯烃的电子亲加反应:亲电试剂(如卤素)攻击烯烃的π电子,形成加成产物。

4. 亲电芳香取代反应:亲电试剂(如卤素)攻击芳香化合物的芳环,取代芳环上的氢原子。

5. 酰氯酯化反应:酰氯作为亲电试剂,攻击醇中的亲电子,形成酯。

6. 羟基磺酸酯化反应:羟基磺酸作为亲电试剂,攻击醇中的亲电子,形成磺酸酯。

7. 酰基氯醇酯化反应:酰基氯作为亲电试剂,攻击醇中的亲电子,形成酯。

8. 亲电取代的氯化反应:亲电试剂(如氯化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。

9. 亲电取代的溴化反应:亲电试剂(如溴化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。

10. 亲电取代的碘化反应:亲电试剂(如碘化氢)攻击有机物中的亲电子,取代有机物中的原子或基团。

亲核取代的例子:1. 醇的亲核取代反应:亲核试剂(如卤代烃)攻击醇中的醇氧原子,形成醚。

2. 醛和酮的亲核取代反应:亲核试剂(如胺)攻击醛或酮中的羰基碳,形成亲核加合物。

3. 烯烃的亲核加成反应:亲核试剂(如水或醇)攻击烯烃的π电子,形成加成产物。

4. 亲核取代的碱性水解反应:碱催化下,亲核试剂(如水或醇)攻击酯或酰氯中的羰基碳,形成醇或酸。

5. 亲核取代的酸性水解反应:酸催化下,亲核试剂(如水或醇)攻击酯或酰氯中的羰基碳,形成醇或酸。

6. 亲核取代的酸性醇酯化反应:酸催化下,亲核试剂(如醇)攻击酯中的羰基碳,形成醚和酸。

有机化学_ 芳环上的取代反应_

有机化学_ 芳环上的取代反应_

1. 冰盐浴0-5oC,搅拌快,防止局部过热 2. HCl过量,一般2.5:1(芳胺),水溶液 3. 应是定量反应,产率接近100% 4. T↑,易分解,随做随用,不溶物过滤后直接用 5. 重氮盐晶体,遇热、光易发生爆炸,在水溶液中低
温保存
共轭使其稳定 —N+≡N 好的L:
N N X-
稳定
二、重氮盐的反应: 1、取代反应(除氮反应): 1) 热分解:
NN 慢 + N2
H2O
Cl-
OH
Cl
措施:
H2SO4 ——→ H+ + HSO4-
N N HSO4-
OH
H2O
——酚的一种制备方法
2) N2X
G
OH H2O
G CN
CuCN
G
Br CuBr
G
Cl CuCl
G
I KI
G
F HBF4
G
NaNO2
NO2
G
H H3PO2
G
2、应用:
1) 制备氟苯、碘苯:
芳环上的各种 取代反应
目录
Contents
1
芳环上的亲电取代反应
2
芳环上的亲核取代反应
3
芳环重氮盐反应
芳环上的亲电取代
1、苯环上亲电取代反应机理:
E+ H
E
E
E
H
H
H
E
E
E
H
H
H
+ H+ E
2、定位规则的理论依据:
共振杂化体的稳定性决定,共振杂化体稳定性越大,此 取向在产物中的比例越大。
例: CH3
N2 BF4-
F

理论有机第九章-芳环上的亲电和亲核取代反应

理论有机第九章-芳环上的亲电和亲核取代反应

L Nu-
L Nu Nu

F 》Cl,Br, I
OCH3
H3CO OC2H5
OC2H5
O2N
NO2 KOC2H5 O2N
NO2 OCH3 O2N
NO2
NO2
NO2
NO2
L δ+
L Nu
Nu
+ Nu-
L-
δ+


NO2
NO2
NO2
CH3O OCH3
又称为SNAr2历程
K+ NO2
NO2 Meisenheimer络合物已被分离出
Zn-Hg HCl
CH3CH2CH2CH2
O
R C Cl + AlCl3
O R C Cl AlCl3
O R C Cl AlCl3
RCO
R C O + AlCl4
R
+C
O
H CR
O + AlCl4
H CR O
CR
O + HCl + AlCl3
O
+
H2C
C O
AlCl3
H2C C
CH2 CH2
Cl C O
-H+
NH2
N2+Cl-
I
NaNO2
KI
HCl
NN
+ CuCN
Zn +HCl
N2Cl
CN NH2 + NH3
NaNO2/HCl ArNH2 ArNH2 NaNO2/HCl
ArN2Cl HBF4 CuX
ArN2Cl
ArF ArX (X=Cl,Br)
合成???

第七章 芳环上亲电和亲核取代反应反应

第七章 芳环上亲电和亲核取代反应反应


磺化反应及苯磺酸衍生物的重要性
亲油端
NaOH C12H25 SO3H C12H25 SO3Na
• 合成苯磺酸衍生物
C12H25 H2SO4 (浓)
亲水端
合成洗涤剂
H3C H2SO4 (浓) H3C SO3H
(有机强酸,固体)
TsOH,对甲基苯磺酸
• 由磺酸转化为其它衍生物
Ar SO3H POCl3 Ar SO2Cl
芳环上的卤代在合成上的重要性
• 是芳环引入卤素(Cl、Br)的主要方法之一(Ar-X是合成
其它类型的化合物的重要中间体,
芳环的氟代和碘代方法
I2 +

HNO3 H Cl I -H+ I
I
(I2 + Cl2) HF / CCl4 + XeF2 (自由基型反应) F
3. 苯环上的硝化反应
取代甲氧基
NaOCH3
取代硝基
NH3 100 C
o

其它底物的类似取代反应
X + Nu Nu + X
W
W
W: 吸电子基
各类吸电子基对反应速率的促进作用比较:
W: N2
>
O CR
Nபைடு நூலகம்3
>
CN
NO
>
NO2 >
CF3
>
>
>
COOH
例:
N H NC Cl NaOR Cl Cl Cl Cl Cl F DMSO, Cl OR + NaCl NC N H F
p键
(sp2-sp2) 未参与环的共振

苯炔的性质:
活泼、易反应(不能分离、可捕获)

芳环的亲电取代、亲核取代反应及芳环取代基的反应

芳环的亲电取代、亲核取代反应及芳环取代基的反应
19
二、取代基对芳环亲电取代反应的影响
2. The effect of substituents on reactivity
20
二、取代基对芳环亲电取代反应的影响
Relative reactivity:
Strongly activating substituents
致活基 Moderately activating substituents
14
一、芳环的亲电取代反应及机制
2.5 Friedel-Crafts Acylation (傅氏酰基化)
没有重排问题 注意使用不同的酰化试剂时,催化剂的用量是不同的
>1.0 eq
>2.0 eq
15
一、芳环的亲电取代反应及机制
思考题:如何从苯合成正丁基苯?
16
二、取代基对芳环亲电取代反应的影响
A study of the chemistry of aromatic compounds(芳 香化合物) leads to deeper understanding of the effects of electronic and steric factors (电子和空间 因素)on reactivity, which will be of benefit in the further study of chemistry and biochemistry.
Nitration
R
NO2
SO3H
7
一、芳环ห้องสมุดไป่ตู้亲电取代反应及机制
以上几种亲电取代反应的亲电试剂如下: --- Cl-Cl+ - -AlCl3 --- Br-Br+ - -FeBr3 --- I+ (obtained by I2 + HNO3) --- +NO2 (obtained by HNO3 + H2SO4) --- +SO3H (from H2SO4) or SO3 --- R+ (obtained by R-Cl + AlCl3) --- RC+=O (obtained by RCOCl + AlCl3)

第七章 芳环上的亲电和亲核取代反应

第七章  芳环上的亲电和亲核取代反应

付氏酰基化反应的特点: 不发生重排反应 不生成多元取代产物(酰基钝化苯环) 催化剂需要量增多
O CH3C OH + SOCl2
80°C
O CH3C Cl + SO2 + HCl
付氏反应的禁忌:
钝化基团(硝基、酰基等)连在芳环上时, 不能进行付氏反应
不能用三氯化铝催化苯胺(苯酚)进行付氏 反应。因三氯化铝与其生成络合物,Lewis酸失 去活(Cl3Al:NH2-) 。解决方法?
②重氮盐与活性芳烃(芳胺或酚类化合物) 在适当酸、碱条件下反应,生成有色的偶氮 化合物的反应 —— 偶联反应
+ N2Cl + H NaOH/ H2O OH 0°C CH3CO2Na /H2O N(CH3)2 0°C N N OH
对羟基偶氮苯(橘红色) + N2Cl H + N N
N(CH3)2
对二甲氨基偶氮苯
例:C6H5X的硝化
X 产物 (%) oF 12 O N 硝化 NO2 NO2 + NO2 -C 10.0% 1.5% 88.5% NO2 + NO2
NO2
例:
CH3 硝化 CH3 NO2 + NO2 +I 56.3% 41.1% 2.6% CH3 + NO2 CH3
三、芳基重氮离子的单分子亲核取代反应 芳基正离子历程: SNAr1 第一步,重氮盐首先分解产生芳基正离子, 其正电荷处在sp2轨道,不能与苯环π轨道共 轭,很不稳定,反应速度慢,是速控步骤。 反应为什么能发生?
第二步,非常活泼的芳正离子很快与亲核试 剂反应生成产物。
特点: 1、重氮盐之所以能分解生成很不稳定的芳 基正离子,是由于-N2+是一个很好的离去基 团,且离去后生成稳定的氮气分子。 2、芳环上的供电基使反应加速(稳定芳基 正离子)

芳香族化合物的取代反应

芳香族化合物的取代反应

氯磺化反应包括两个反应步骤,即先由芳环化合物与 氯磺酸作用生成芳基磺酸,后者再与第二分子氯磺酸作 用生成芳磺酰氯化合物。
第一步反应由于有氯化氢放出而易于完成; 第二步为可逆反应,需用过量试剂(为理论量的2~5 倍),才能保证所生成的芳磺酰氯有较好产率。
磺化反应机理尚未彻底了解,一般而言,磺化是 SO3或HSO3+对芳环的进攻,和硝化反应的机理相同。 但是随所用磺化剂的种类和浓度不同,甚至作用物种 类不同,进攻试剂的形式也不尽相同。
CH 3
+ Br2
FeBr3
CH 3 Br
+
Δ
CH 3
Br
有烷基侧链的芳烃,在光照条件下,卤代反应发生在侧 链上。
CH 3
+ Cl2
CH2 Cl

某些含卤素化合物具有生理作用,同时卤化物又 是制备某些药物的重要中间体,如灭癣酚 (tribromocresol)为局部抗真菌药,双碘喹啉 (diiodohydroxyqulnoline)为治疗阿米巴痢疾药物,盐 酸氨溴索(ambroxol)为镇咳药,其他还有降胆固醇药 物氯贝特(dofibrate)、安定药氟哌啶醇(haloperidol)和 照影剂碘必乐(iodipamide)等,这些都为含卤素药物, 其中的卤原子可能为具有生理活性的部分结构。
含有磺酸基的药物比较少,但是有许多药物都含有磺 酰氨基,如磺胺类抗菌药、磺酰脲类降血糖药物等。 乙酰苯胺的氯磺化产物与各种杂环氨基物反应,生成 磺酰胺衍生物。水解后得到各种磺胺类抗菌药。
降糖药格列美脲(glimepiride)的中间体是由氯磺酸经下 列反应而生成。
其他磺酰脲类降糖药物和含有磺酸基的药物也都可以用 类似方法制备:
• 混酸配制注意事项 (1) 混合温度要控制在30~40℃。温度过高会使硝酸分解, 发生爆炸。

6 芳香性及芳环上的取代反应

6 芳香性及芳环上的取代反应

CH3
Br
(1)
+ KNH2 / NH3
CH3 CH3
CH3
CH3
(2)
KNH2 / NH3
a
+
Br
b
b
CH3
+ NH2
c (b)
56%
OCH3
OCH3
(3)
KNH2 / NH3
KNH2 / NH3
CF3COOH
OH CH2CH2C
O
Tl(OCOCF3)3
(3)铊化反应时可逆的
CH(CH3)2
CH2CH2COOH Tl(OCOCF3)2
CH(CH3)2 + Tl(OCOCF3)3 / CF3COOH
25°C 73oC
73oC
速度控制,对位94%
Tl(OCOCF3)2 CH(CH3)2
平衡控制,间位85%
③ 钝化苯环的邻对位定位基。
仅由取代基对环上电子云密度分布的影响(基础课程中已讲)来解释苯环的活泼
性及取代基的定位效应是很不够的。因为这种方法只是建立在静态反应理论的基
础上,而未考查反应过程(动态)过渡状态的性质。
(1) 反应活泼性
亲电取代反应的 rds 是 σ 络合物的形成,其过渡状态的结构按哈蒙假设相似
第六章 芳香性及芳环上的取代反应
学习要求: 1.熟悉芳环上亲电取代反应的历程,定位效应及重要的芳环亲电取代反应。 2.掌握芳环活性及取代基定位效应的动态理论解释。 3.掌握芳环上亲核取代反应的三种重要历程。
一、芳香性及其理论 (略)
二、芳环上的亲电取代反应 现在认为,芳环上亲电取代反应绝大部分是经过芳基正离子,即 σ 络合物实
Tl(OCOCF3)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH2
NO2 O NO2-NO3-
CH2 OCH3
CH2
69%(邻)
NO2 28%(对)
能够发生螯合 效应的条件: 1〕杂原子能与
CH2 CH2
O
CH3
NO2
试剂结合;
2)所形成环为
五员环或六员
环。
CH2 O CH3
CH2
H -H+
NO2
产物
原位取代 (Ipso取代):
+
N(CH3)3
NO2 CN
SO3H CHO
+
COCH3
COOH COOR CONH2 NH3
具有-I或-C效应 使芳环上的电子云密度降低。
定位效应 (Orientation):
芳环上取代基对于E+进入芳环位置的影响。
第一类定位基-邻对位定位基 第二类定位基-间位定位基
CH CH2 H
CH CH2 邻对位
邻位和对位定向比:
1)亲电试剂的活性越高,选择性越低:
CH3
相对速率 o%
NHON2O+B3 FH42-/SCOH43CN
17
2.3
60 69
m% p%
3 37
2 29
2) 空间效应越大,对位产物越多:
C(CH3)3
C(CH3)3
H2SO4
100%
SO3H
极化效应:
X
X o% p% m%
F 12 88 0
在芳环上已有取代基的位置上,发生取代作用- Ipso效应:
CH3
NO2OAc Ac2O
CH(CH3)2
CH3 NO2 +
CH(CH3)2 82%
CH3
CH3
+ NO2 CH(CH3)2 NO2
8% 10%
取代基消除的难易程度取决于其容纳正电荷
的能力。+CH(CH3)2比较稳定,异丙基容易作为 正离子消除。
Hammett 方程:
lg(kkXH)=ρ σ x
σx-取代基常数 ρ- 直线斜率
lg
kX kH
底物不同,ρ不同; 反应条件不同, ρ不同。
ρ只与反应性质相关, 称为反应常数。
σ x ρ 表示了取代基对反应



63%
34%
3%
fo
(6) (2)
(23) × (1)
×
(0.63)
43.5
fm
(6) (2)
(23) × (1)
×
(0.03)
2.1
fp
(6) (1)
(23) × (1)
× (0.34)
46.9
氯苯和苯甲醚进行硝化反应时,分速度因数分别为:
Cl 0.029
OCH3 2.3× 104
0.1307.0009
第八章 芳环上的亲电和亲核取代反应
一. 亲电取代反应
1. 反应机理 芳正离子的生成 加成-消除机理
2. 反应的定向与反应活性 a. 反应活性与定位效应 b. 动力学控制与热力学控制 c. 邻、对位定向比 亲电试剂活性 空间效应。 极化效应
溶剂效应 螯合效应 原位取代 (Ipso attack) 3. 取代效应的定量关系 a. 分速度因数与选择性 b. Hammett 方程
Cl 30 69 1
I 32 60 8
X 具有-I效应,使邻位的电子云密度降低。
F 电负性 -I
Cl 依次
效应
Br 降低
依次
I
减小
电子云密度 降低的位置 是不利于E+ 进攻的。
溶剂效应:
O CH3C Cl
AlCl3
CS2 PhNO2
O CCH3
O CCH3
E+被硝基苯溶剂化,体积增大。 较大的空间效应使它进入1位。
Br
R
Br Br FeBr R
H + Br + FeBr3
生成芳正离子
Br
Br
R
HR
+H
脱去质子
实验已经证实芳正离子的存在:
H3C
CH3 C2H5F/BF3
-80℃
CH3
H C2H5
H3C
CH3 BF4-
CH3 m. p: -15℃
(二) 亲电取代反应的特性与相对活性
反应活性
致活效应:取代基的影响使芳环的反应活性提高;
E
CH CH2 H
CH CH2 H
E
E
CH CH2 H E
+E
间位 CH CH2
共振式越多,
H
正电荷分散
E
程度越大,芳正离子越稳定。
CH CH2
H E
CH CH2
H E
动力学控制与热力学控制
H
80℃
+ H2SO4
H
165℃
SO3H
165℃
SO3H
α位取代-动力学控制产物; β位取代-热力学控制产物。
0.25 5.5× 10 4
氯苯的三个分速度因数均小于1,卤素是致钝基团,
且 fm << fp, E+进入间位的可能性很小。
苯甲醚:
fp ≈ fo >> fm
-OCH3 对于邻、对位具有+C, +I效应,+C > +I 对于间位,只有+I, 而无+C效应。
2)Hammett 方程
描述分子结构和化学活性的定量关系的表示。
fo=
kPhZ/2 kPhH/6
×
o
异构体 100
fm=
kPhZ/2 × kPhH/6
m
异构体 100
fp=
kPhZ/1 kPhH/6
×
p 异构体
100
当 f > 1 时,该位置的活泼性比苯大, 否则比苯小。
例如:
在硝酸与乙酸酐的体系中 甲苯的硝化速度是苯进行硝化反应的23倍,
取代产物的百分比为:
二. 芳环上亲核取代反应
1. 加成-消除机理 2. SN1机理 3. 消除-加成机理 (苯炔机理)
三. 芳环上的取代反应及其应用
1. Friedel - Crafts 反应 2. Rosenmund - Braun 反应
H C
HC C
H
H C
CH C
H
芳环上离域的π电子的作用,易于发生 亲电取代反应,只有当芳环上引入了强吸电 子基团,才能发生亲核取代反应。
3. 取代基效应的定量关系
取代基效应与化学活性之间存在一定的定量关系
1) 分速度因数与选择性
从定量关系上考虑邻、对、间位取代难易程度
(6) (k取代)(z产物的百分比)
分速度因数 (f) =
y (k苯)
y-位置的数目
通过每一个位置取代苯的活性与苯比较,把总的 速率乘以邻位、间位或对位产物的百分比,再除以 苯的取代速率的结果。
致钝效应:取代基的影响使芳环的反应活性降低。
Y
第一类定位基:
N(CH3)2, NH2, OH, OCH3, NHCOCH3, OCOCH3,Cl, Br, I, CH3, CH2COOCH3
卤素对芳环有致钝作用
第一类取代基 (除卤素外)具有+I, 或是+C效应, 其作用是增大芳环的电子云密度。
第二类定位基:
一. 亲电取代反应
(一) 加成-消除机理
HE
E
E+Nu-
σ-络合物 芳正离子
HNO3 H2SO4
NO2
2H2SO4 HNO3
NO2+
H3O+ 2HSO4- NO2+
NO2 H
芳正离子生成的 一步是决定反应 速率的一步
卤代反应:
Br2 + FeBr3 Bδr Brδ FeBr3
溴分子在FeBr3的作用下发生极化
相关文档
最新文档