三角函数公式总结)
三角函数公式大全
三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。
下面为大家带来一份三角函数公式大全。
一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。
即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。
2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。
即 cosA = b / c (其中 b 为 A 的邻边)。
3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。
即 tanA = a / b 。
二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。
2、商数关系:tanA = sinA / cosA 。
三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。
2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。
3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。
4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。
5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。
四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。
2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。
3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。
4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。
完整三角函数公式表
完整三角函数公式表三角函数公式表是数学中常用的一个工具,用于计算三角函数的数值。
它包含了各种三角函数的定义和性质,能够帮助我们在解决三角函数相关问题时,快速找到所需的公式和计算方法。
以下是一个完整的三角函数公式表,包含了常见的正弦、余弦、正切、余切、正割和余割函数的公式:1. 正弦函数(sin):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的y坐标。
- 基本关系:sin θ = y/r,其中θ是角度,y是对应的y坐标,r是单位圆的半径(常为1)。
- 周期性:sin (θ + 2π) = sin θ。
- 奇偶性:sin (-θ) = -sin θ。
2. 余弦函数(cos):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的x坐标。
- 基本关系:cos θ = x/r,其中θ是角度,x是对应的x坐标,r是单位圆的半径(常为1)。
- 周期性:cos (θ + 2π) = cos θ。
- 奇偶性:cos (-θ) = cos θ。
3. 正切函数(tan):- 定义:tan θ = sin θ / cos θ。
- 周期性:tan (θ + π) = tanθ。
- 奇偶性:tan (-θ) = -tan θ。
4. 余切函数(cot):- 定义:cot θ = 1 / tan θ = cos θ / sin θ。
- 周期性:cot (θ + π) = cot θ。
- 奇偶性:cot (-θ) = -cot θ。
5. 正割函数(sec):- 定义:sec θ = 1 / cos θ。
- 周期性:sec (θ + 2π) = sec θ。
- 奇偶性:sec (-θ) = sec θ。
6. 余割函数(csc):- 定义:csc θ = 1 / sin θ。
- 周期性:csc (θ + 2π) = csc θ。
- 奇偶性:csc (-θ) = -csc θ。
此外,三角函数还有一些重要的性质:1. 三角函数的范围:sin、cos、csc、sec的值在[-1, 1]之间,tan、cot的值在整个实数范围内。
三角函数积分常用公式
三角函数的积分常用公式如下:
1.正弦函数的积分:
∫sin(x) dx = -cos(x) + C
2.余弦函数的积分:
∫cos(x) dx = sin(x) + C
3.正切函数的积分:
∫tan(x) dx = -ln|cos(x)| + C
4.余切函数的积分:
∫cot(x) dx = ln|sin(x)| + C
5.正割函数的积分:
∫sec(x) dx = ln|sec(x) + tan(x)| + C
6.余割函数的积分:
∫csc(x) dx = ln|csc(x) - cot(x)| + C
7.正弦的幂函数积分:
∫sin^n(x) dx = -1/n * sin^(n-1)(x) * cos(x) + (n-1)/n * ∫sin^(n-2)(x) dx,其中n ≠1
8.余弦的幂函数积分:
∫cos^n(x) dx = 1/n * cos^(n-1)(x) * sin(x) + (n-1)/n * ∫cos^(n-2)(x) dx,其中n ≠1
9.正切的幂函数积分:
∫tan^n(x) dx = 1/(n-1) * tan^(n-1)(x) + ∫tan^(n-2)(x) dx,其中n ≠1
10.反正切函数的积分:
∫arctan(x) dx = x * arctan(x) - 1/2 * ln(1+x^2) + C
这些是一些常见的三角函数积分公式。
需要注意的是,在使用这些公式时,可能需要考虑定义域、常数项、积分限等因素,以确保正确计算积分。
同时,积分中的常数C 表示积分常数。
三角函数公式大全
三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A+tan(2A )=AA cos 1cos 1+- cot(2A )=AAcos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb =21[cos(a+b)+cos(a-b)] sinacosb =21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -a acosh(a)=2e e -a a tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosαcos (2π+α)= -sinα tan (2π+α)= -cotαcot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinαπ-α)= cotα tan(2π-α)= tanα cot(23π+α)= -cosα sin(23π+α)= sinα cos(23π+α)= -cotα tan(23π+α)= -tanα cot(23π-α)= -cosα sin(23π-α)= -sinα cos(23π-α)= cotα tan(23π-α)= tanα cot(2(以上k∈Z)。
三角函数有关公式
三角函数有关公式三角函数是数学中重要的一类函数,以正弦、余弦、正切、余切等为主要代表。
在解决三角函数方程、计算三角函数值、分析波动现象等领域都起到了重要的作用。
本文将介绍三角函数的一些重要公式,包括基本关系、和差角公式、倍角公式、半角公式、和降幂公式等,帮助读者更好地理解和应用于实际问题中。
一、基本关系在直角三角形中,正弦、余弦、正切的定义如下:正弦:sinθ = 对边 / 斜边余弦:cosθ = 邻边 / 斜边正切:tanθ = 对边 / 邻边根据勾股定理可得到以下重要关系:sin²θ + cos²θ = 11 + tan²θ = sec²θ(sec表示 secant)1 + cot²θ = cosec²θ(cosec表示cosecant)二、和差角公式1、sin(A ± B) = sinAcosB ± cosAsinB2、cos(A ± B) = cosAcosB ∓ sinAsinB3、tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA·tanB)三、倍角公式1、sin2θ = 2sinθcosθ2、cos2θ = cos²θ - sin²θ= 2cos²θ - 1 = 1 - 2sin²θ3、tan2θ = 2tanθ / (1 - tan²θ)四、半角公式1、sin(θ/2) = ±√((1 - cosθ) / 2)2、cos(θ/2) = ±√((1 + cosθ) / 2)3、tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))其中正负号的选择根据θ的范围确定。
五、和降幂公式1、sin³θ = 3sinθ - 4sin³θ2、cos³θ = 4cos³θ - 3cosθ3、tan²θ = sec²θ - 14、cot²θ = cosec²θ - 15、cos²θ =(1 + cos2θ)/ 26、2sinθcosθ = sin2θ7、1 + tan²θ = sec²θ8、1 + cot²θ = cosec²θ以上公式在解决三角函数方程、计算三角函数值时起到了重要的作用。
三角函数转换公式大全
三角函数转换公式大全1.正弦函数的转换公式:(1) 周期性:sin(x+2kπ) = sin(x),其中k是整数。
(2) 正负性:sin(-x) = -sin(x)。
(3) 余弦关系:sin(π/2 - x) = cos(x),sin(π/2 + x) = cos(x)。
(4) 反余弦关系:sin(arccos(x)) = √(1-x^2),其中,x,≤12.余弦函数的转换公式:(1) 周期性:cos(x+2kπ) = cos(x),其中k是整数。
(2) 正负性:cos(-x) = cos(x)。
(3) 正弦关系:cos(π/2 - x) = sin(x),cos(π/2 + x) = -sin(x)。
(4) 反正弦关系:cos(arcsin(x)) = √(1-x^2),其中,x,≤13.正切函数的转换公式:(1) 周期性:tan(x+kπ) = tan(x),其中k是整数,x≠(2k+1)π/2(2) 对称性:tan(π/2 - x) = 1/tan(x),tan(π/2 + x) = -1/tan(x)。
(3) 正割关系:tan(π/2 - x) = 1/cos(x),tan(π/2 + x) = -1/cos(x)。
4.等腰三角形的特殊三角函数转换公式:(1) sin(α) = sin(π - α),sin(α) = sin(α + π)。
(2) cos(α) = -cos(π - α),cos(α) = -cos(α + π)。
(3) tan(α) = -tan(π - α),tan(α) = tan(α + π)。
5.和差角的三角函数转换公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)。
(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)。
(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))。
三角函数公式的总结和归纳:高一数学
三角函数公式的总结和归纳:高一数学1. 弧度和角度的转换公式- 角度转弧度公式:$radian = \frac{\pi}{180} \times degree$ - 弧度转角度公式:$degree = \frac{180}{\pi} \times radian$2. 正弦函数公式- 正弦函数定义:$sin\theta = \frac{y}{r}$- 正弦函数的周期性:$sin(\theta + 2\pi) = sin\theta$- 正弦函数的奇偶性:$sin(-\theta) = -sin\theta$3. 余弦函数公式- 余弦函数定义:$cos\theta = \frac{x}{r}$- 余弦函数的周期性:$cos(\theta + 2\pi) = cos\theta$- 余弦函数的奇偶性:$cos(-\theta) = cos\theta$4. 正切函数公式- 正切函数定义:$tan\theta = \frac{y}{x}$- 正切函数的周期性:$tan(\theta + \pi) = tan\theta$- 正切函数的奇偶性:$tan(-\theta) = -tan\theta$5. 三角函数的基本关系式- 正弦定理:$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$ - 余弦定理:$c^2 = a^2 + b^2 - 2ab \cdot cosC$- 正切定理:$\frac{a-b}{a+b} = \frac{tan(\frac{A-B}{2})}{tan(\frac{A+B}{2})}$6. 三角函数的和差化简公式- 正弦函数的和差化简公式:$sin(A\pm B) = sinA \cdot cosB\pm cosA \cdot sinB$- 余弦函数的和差化简公式:$cos(A\pm B) = cosA \cdot cosB \mp sinA \cdot sinB$- 正切函数的和差化简公式:$tan(A\pm B) = \frac{tanA \pm tanB}{1 \mp tanA \cdot tanB}$7. 三角函数的倍角化简公式- 正弦函数的倍角化简公式:$sin2A = 2sinA \cdot cosA$- 余弦函数的倍角化简公式:$cos2A = cos^2A - sin^2A$- 正切函数的倍角化简公式:$tan2A = \frac{2tanA}{1 -tan^2A}$8. 三角函数的半角化简公式- 正弦函数的半角化简公式:$sin\frac{A}{2} = \sqrt{\frac{1 - cosA}{2}}$- 余弦函数的半角化简公式:$cos\frac{A}{2} = \sqrt{\frac{1 + cosA}{2}}$- 正切函数的半角化简公式:$tan\frac{A}{2} = \frac{sinA}{1 + cosA}$总结本文对高一数学中三角函数公式进行了总结和归纳。
三角函数公式总结)
高中三角函数公式大全三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanA tanB1-tanAtanBtanA tanBtan(A-B)=1tanAtanBcotAcotB-1cot(A+B)=cotB cotAcotAcotB1cot(A-B)=倍角公式2tanAtan2A=2A1tanSin2A=2SinA?CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式3sin3A=3sinA-4(sinA)3cos3A=4(cosA)-3cosAtan3a=tana·tan( +a)·tan(-a)3 3半角公式sin(A)= 1 cosA2 2cos(A)= 1 cosA2 2tan(A)= 1 cosA21cosAA1cosAcot()=21cosAtan(A)=1 cosA=sinA2sinA1cosA和差化积a babsina+sinb=2sincos22a b absina-sinb=2cos sin2 2cosa+cosb=2cos a b cos a b22 cosa-cosb=-2sin a b sin a b2 2 tana+tanb=sin(a b)cosacosb积化和差sinasinb=-1[cos(a+b)-cos(a-b)]2cosacosb=1[cos(a+b)+cos(a-b)]2sinacosb= 1[sin(a+b)+sin(a-b)]2cosasinb= 1[sin(a+b)-sin(a-b)]2诱导公式sin(-a)=-sinacos(-a)=cosasin( -a)=cosa2cos(-a)=sina2sin( +a)=cosa2cos(+a)=-sina2sin( -πa)=sina cos(π-a)=-cosa sin(π+a)-sina= cos(π+a)=-cosasina tgA=tanA=cosa 万能公式2tan a sina=2(tan a)2121 (tan a)2 cosa=2(tan a)2122tan atana=21(tan a)22其它公式a?sina+b?cosa=(a2b2)×sin(a+c)[其中tanc=b]aa?sin(a)-b?cos(a)=(a2b2)×cos(a-c)[其中tan(c)=a]b 1+sin(a)=(sin a+cos a)2221-sin(a)=(sin a-cos a)22 2其他非重点三角函数csc(a)=1sec(a)= sina1 cosa公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:±α及3±α与α的三角函数值之间的关系:22sin(+α)=cosα2cos(+α)=-sinα2tan(+α)=-cotα2cot(+α)=-tanα2sin(-α)=cosα2cos(-α)=sinα2tan(-α)=cotα2cot(-α)=tanα2sin(3+α)=-cosα2cos(3+α)=sinα2tan(3+α)=-cotα2cot(3+α)=-tanα2sin(3-α)=-cosα2cos(3-α)=-sinα2tan(3-α)=cotα2cot(3-α)=tanα2(以上k∈Z)这个物理常用公式2 22ABcos()×A?sin(ωt+θ)+B?sin(ωt+Aφ)=Btarcsin[(Asin Bsin) sinB2A22ABcos()三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b|-b||a≤|a|+|b||a|-≤b≤b<=>a≤b|a-b|≥-|a||b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac<0注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯+(2n-1)=n22+4+6+8+10+12+14+⋯+(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯+n2=n(n+1)(2n+1)/613+23+33+43+53+63+⋯n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+⋯+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanAtanB··tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)sin(B/2)·sin(C/2)+1·(4)sin2A+sin2B+sin2C=4sinAsinB··sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=msin(α+2β),|m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=msin(α+2β)sin(a+-β)=msin(a+β+β)sin(a+β)cos-cos(a+ββ)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cos-βm)=cos(a+(1β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
常用的三角函数有哪些公式
常用的三角函数公式总结三角函数是数学中重要的分支之一,常用的三角函数包括正弦函数、余弦函数和正切函数。
这些函数在解决几何问题、物理问题和工程问题等方面起着至关重要的作用。
在本文中,我们将总结常用的三角函数的公式,帮助读者更好地理解和运用它们。
正弦函数(Sine)正弦函数通常用符号sin表示,其定义如下:$$ \\sin(\\theta) = \\frac{{\\text{对边}}}{{\\text{斜边}}} $$正弦函数的一些常用公式如下:1.正弦函数的平方和余弦函数的平方等于1:$$ \\sin^2(\\theta) + \\cos^2(\\theta) = 1 $$2.正弦函数的双角公式:$$ \\sin(2\\theta) = 2\\sin(\\theta)\\cos(\\theta) $$3.正弦函数的和差公式:$$ \\sin(\\alpha \\pm \\beta) =\\sin(\\alpha)\\cos(\\beta) \\pm\\cos(\\alpha)\\sin(\\beta) $$余弦函数(Cosine)余弦函数通常用符号cos表示,其定义如下:$$ \\cos(\\theta) = \\frac{{\\text{邻边}}}{{\\text{斜边}}} $$余弦函数的一些常用公式如下:1.余弦函数的平方和正弦函数的平方等于1:$$ \\cos^2(\\theta) + \\sin^2(\\theta) = 1 $$2.余弦函数的双角公式:$$ \\cos(2\\theta) = \\cos^2(\\theta) - \\sin^2(\\theta) $$3.余弦函数的和差公式:$$ \\cos(\\alpha \\pm \\beta) =\\cos(\\alpha)\\cos(\\beta) \\mp\\sin(\\alpha)\\sin(\\beta) $$正切函数(Tangent)正切函数通常用符号tan表示,其定义如下:$$ \\tan(\\theta) = \\frac{{\\text{对边}}}{{\\text{邻边}}} $$正切函数的一些常用公式如下:1.正切函数与正弦、余弦的关系:$$ \\tan(\\theta) =\\frac{{\\sin(\\theta)}}{{\\cos(\\theta)}} $$2.正切函数的双角公式:$$ \\tan(2\\theta) = \\frac{{2\\tan(\\theta)}}{{1 -\\tan^2(\\theta)}} $$3.正切函数的和差公式:$$ \\tan(\\alpha \\pm \\beta) = \\frac{{\\tan(\\alpha) \\pm \\tan(\\beta)}}{{1 \\mp \\tan(\\alpha)\\tan(\\beta)}} $$通过本文的介绍,读者可以更加深入地了解常用的三角函数公式,为解决各种数学问题提供了重要的数学工具。
(完整版)常用的三角函数公式大全
2
2
tana+tanb= sin(a b) cosa cosb
积化和差
1 sinasinb = - [cos(a+b)-cos(a-b)]
2 1 cosacosb = [cos(a+b)+cos(a-b)] 2 sinacosb = 1 [sin(a+b)+sin(a-b)] 2 cosasinb = 1 [sin(a+b)-sin(a-b)] 2
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = tanA tanB 1- tanAtanB tanA tanB
万能公式
2tan a
sina=
2
1 (tan a ) 2
2
1 (tan a) 2
cosa=
2
1 (tan a )2
2
a
2tan
tana=
2
1 (tan a ) 2
2
其它公式
a?sina+b?cosa= (a 2 b2 ) ×sin(a+c) [其中 tanc= b ] a
a?sin(a-)b?cos(a) = (a2
tan(A-B) = 1 tanAtanB cotAcotB -1
cot(A+B) = cotB cotA cotAcotB 1
cot(A-B) = cotB cotA
所有三角函数的公式大全
所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。
掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。
以下是所有三角函数的公式大全。
一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。
2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。
3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。
4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。
在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。
二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。
2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。
3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。
4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。
三角函数定理公式大全
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
常用三角函数公式与口诀
常用三角函数公式与口诀三角函数是数学中常用的一种函数形式,用来描述角和边长之间的关系。
常用的三角函数包括正弦函数、余弦函数和正切函数。
为了方便记忆和应用,人们总结了一些常用的三角函数公式和口诀,下面将介绍一些常见的。
一、正弦函数(sin):正弦函数表示对边与斜边的比值,记作sinθ。
常用公式有:1. sin(90°-θ) = cosθ2. sin²θ + cos²θ = 13. sin(2θ) = 2sinθcosθ4. sin(-θ) = -sinθ5. sin(180°+θ) = -sinθ二、余弦函数(cos):余弦函数表示的是邻边与斜边的比值,记作cosθ。
常用公式有:1. cos(90°-θ) = sinθ2. cos²θ + sin²θ = 13. cos(2θ) = cos²θ - sin²θ4. cos(-θ) = cosθ5. cos(180°+θ) = -cosθ三、正切函数(tan):正切函数表示的是对边与邻边的比值,记作tanθ。
常用公式有:1. tanθ = sinθ / cosθ2. tan(-θ) = -tanθ3. tan(180°+θ) = tanθ四、反三角函数:反三角函数是三角函数的逆运算,由于三角函数是周期性的,所以我们通常只考虑其在一个周期内的值。
常用的反三角函数包括:1. 反正弦函数(arcsin):y = arcsin(x),其定义域为[-1, 1],值域为[-π/2, π/2]。
2. 反余弦函数(arccos):y = arccos(x),其定义域为[-1, 1],值域为[0, π]。
3. 反正切函数(arctan):y = arctan(x),其定义域为整个实数集,值域为[-π/2, π/2]。
五、常用口诀:为了方便记忆这些三角函数的公式,人们总结了一些口诀,如下:1."正旦分,分正时,余分秋."(正弦函数公式)2."正白夜,夜分钟,余原分."(余弦函数公式)3."正旦奇,奇旦分,正平双"(正切函数公式)4."全部落下是正弦,正切同名都负伸;奇奇偶,愣丑默,反余余起来都正。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
三角函数公式总结
三角函数公式总结三角函数公式总结诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA。
sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数诱导公式的口诀奇变偶不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式 sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin 2b a +cos 2b a -sina-sinb=2cos2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数csc(a) =asin 1 sec(a) =acos 1公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanα cot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。