机械系统建模与仿真第六章

合集下载

机械系统建模和仿真SimMechanics

机械系统建模和仿真SimMechanics

机械系统建模和仿真SimMechanics——机械系统建模和仿真SimMechanics集成于Simulink之中,是进行控制器和对象系统跨领域/学科的研究分析模块集。

SimMechanics为多体动力机械系统及其控制系统提供了直观有效的建模分析手段,一切工作均在Simulink环境中完成。

它提供了大量对应实际系统的元件,如:刚体、铰链、约束、坐标系统、作动器和传感器等。

使用这些模块可以方便地建立复杂图形化机械系统模型,进行机械系统的单独分析或与任何Simulink设计的控制器及其它动态系统相连进行综合仿真。

SimMechanics是Simulink物理建模产品家族的一员,该产品系列扩展了Simulink的建模能力,利用它们做出的模型仍能与传统Simulink模块所建立的模型相融合。

特点提供了三维刚体机械系统的建模环境包含了一系列分析机械运动和设计机械元件尺寸的仿真技术完整的建模层次,允许机械模型模块与其它类型模块结合使用可在Simulink中建立高精度、非线性的模型以支持控制系统的开发和测试。

SolidWorks转换器可以通过CAD工具定义机械模型包括各种铰链和约束形式可对平移运动和旋转运动,力和力矩进行建模、分析提供平衡点和线性化工具以支持控制系统设计使用Virtual Reality Toolbox或MATLAB?图形(Handle Graphics?)支持机械系统可视化及动画显示可进行系统的运动学和正向、逆向动力学分析使用O(n)递归求解多体动力学系统运动方程为模型定义提供多种本地坐标系统强大功能在Simulink环境中进行的动力学研究使用Simulink集成化的图形界面建立机械多体动力学系统的模型并进行仿真。

SimMechanics使得用户可以方便地修改系统中的物理参数,包括位置,方位角和机械元件运动参数等。

使用Simulink变步长积分法可以得到较高的计算精度。

Simulink的过零检测功能以双精度数据水平判定和求解不连续过程,对于机械系统中存在的静摩擦和机械硬限位等情况建模具有重要的意义。

系统建模与仿真教学全套课件

系统建模与仿真教学全套课件

求解
用传统和现代的数学方法计算求解 模型得出结论,对复杂系统,计算机仿 真是最有力的工具之一。
分析与检验
1、分析模型是否符合要求, 2、检验是否符合客观实际。 往复循环,直至符合要求。
建模的方法
一、建模的方法论 二、常用建模方法
建模的方法论
(一)归纳 (二)演绎 (三)类比 (四)移植
归纳
认识
(1)将目标表述为适合于建模的相应形 式;
(2)拟定模型的规范, (3)模型要素的筛选和确定。 (4)模型关系的确定。找出模型中真正 要做用的关系。将把模型要素与目标联系 成为一个有机的整体,形成模型分析的基 础。
建模
建模的本质是在实际系统与模型之间 建立一种关系 。是将要素原型表示为要素 变量,描述要素间的相互依存和相互依赖 关系,确定约束条件、目标与要素的关系, 部分与部分、部分与整体的关系。
抽象模型(Abstract Model)
是用符号、图表等来描述客观事物所建立的模型。抽 象模型又可分为:
数学模型(Mathematics Model)
用字母、数字、数学符号建立起来的公式、图表、图 像及框图等来描述客观事物的特征及其内在联系的模型。
仿真模型(Simulation Model)
也称模拟模型(Analog Model)——用便于控制的一 组条件代表真实事物的特征,通过模仿性的试验来了解真 实事物的规律。
系统、模型与仿真
一、系统 “按照某些规律结合起来,互相作用、互相 依存的所有实体的集合或总和”。
二、模型 模型是实际系统的抽象模型是实际系统
的抽象 模型可分为两大类: 形象模型 抽象模型
❖形象模型(Iconic Model)
❖ 又称物理模型,是采用一定比例 尺按照真实系统的“样子”制作, 与实物基本相似。

系统建模与仿真PPT课件

系统建模与仿真PPT课件

内涵分类方法
同构模型 同态模型
形象模型
模拟模型
符号模型
数学模型
System Engineering
➢除此之外,还有不少对系统模型的分类方法。 ➢例如:
➢ (1)按变量性质可将数学模型分为确定性模型与 随机模型;
➢ (2)按变量间的关系可将模型分为线性模型与非 线性模型;
➢ (3)按时间因素可有动态模型与静态模型; ➢ (4)按是否间断可有连续模型与离散模型; ➢ (5)按学科性质,可有运筹学模型、计量经济学
用户订货
生产管理部门
原料 采购部 制造车


装配车 装运部 成品


System Engineering
?模型的构建原则
2)考虑信息相关性
例如:在工业管理中,研究工艺流程对生 产的效率的影响时,就不需要考虑工人的 工资。如果将工人工资信息包括在模型中 不会有什么害处,但它会增加模型的复杂 性。
System Engineering
?模型化的地位
它不能代替对客观系统内容的研究,只有在和对 客观系统内容研究相配合时,模型的作用才能充 分发挥。
System Engineering
实际系 统
模型化
模型Biblioteka 比较现实意 义解释
实验、分析 结论
System Engineering
二、模型的分类
1.模型的分类
形式分类方法
物理模型 数学模型 概念模型
第6讲 系统建模与仿真
Email:
System Engineering
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加

基于多体动力学的机械系统建模与仿真

基于多体动力学的机械系统建模与仿真

基于多体动力学的机械系统建模与仿真在机械系统的设计与研究中,了解其动力学行为是至关重要的。

通过建立合适的数学模型和进行相应的仿真分析,可以更好地理解机械系统的运动规律和性能特点。

基于多体动力学的方法是一种常用的工具,它可以描述机械系统中多个物体之间的相互作用和运动状态,本文将介绍基于多体动力学的机械系统建模与仿真的方法与应用。

一、数学建模基于多体动力学的机械系统建模的第一步是建立数学模型。

数学模型是一个描述机械系统运动规律的数学方程组,其中包含了系统中各个物体的运动方程和约束方程。

1. 运动方程运动方程描述了物体在空间中的位置和速度随时间变化的规律。

对于单个物体,其运动方程可以根据牛顿第二定律得到:\[m_i \frac{{d^2 \boldsymbol{r}_i}}{{dt^2}} = \boldsymbol{F}_i\]其中,\(m_i\) 是物体的质量,\(\boldsymbol{r}_i\) 是物体的位置矢量,\(\boldsymbol{F}_i\) 是物体所受合外力的矢量。

对于涉及多个物体的机械系统,需要考虑物体之间的相互作用。

在这种情况下,可以通过引入物体之间的相互作用力来描述整个系统的运动规律:\[m_i \frac{{d^2 \boldsymbol{r}_i}}{{dt^2}} =\boldsymbol{F}_i^{\text{外}} + \sum_{j \neq i}\boldsymbol{F}_{ij}^{\text{内}}\]其中,\(\boldsymbol{F}_i^{\text{外}}\) 是物体\(i\)所受的合外力,\(\boldsymbol{F}_{ij}^{\text{内}}\) 是物体\(i\)受到物体\(j\)作用力。

2. 约束方程约束方程用于描述系统中各个物体之间的约束关系。

在机械系统中,常见的约束包括几何约束(如刚性连接、触地约束等)和运动约束(如关节连接、接触力平衡等)。

《建模与仿真》教学大纲

《建模与仿真》教学大纲

《建模与仿真》教学大纲课程名称:建模与仿真课程代码:INDE2038课程性质:专业选修课程学分/学时:2学分/36学时开课学期:第七学期适用专业:工业工程先修课程:概率统计、C语言程序设计后续课程:毕业设计开课单位:机电工程学院课程负责人:大纲执笔人:杨宏兵大纲审核人:一、课程性质和教学目标《建模与仿真》是面向工程实际的应用型课程,是工业工程系的专业课程之一。

学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。

本课程的教学目标是培养学生的设计能力、创新能力和工程意识。

课程以制造型生产企业为核心,通过理论教学和实践环节相结合,阐述了离散事件系统建模与仿真技术在生产企业分析中的基本原理和方法。

其内容涉及计算机仿真技术在生产系统分析中的作用和原理、仿真软件的介绍,重点介绍排队系统、库存系统、加工系统以及输入、输出数据分析。

本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理;并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能;使学生了解计算机仿真的基本步骤。

二、课程教学方法1、启发式课堂讨论针对关键知识点、典型题和难题,通过教师提问,鼓励学生回答问题或请到讲台前做题,并请其他学生评判或提出不同的答案或不同的解决方法。

目的是加强学生自主学习的能力和判断能力,培养主动思考的习惯,启发学生的探索精神。

2、重视在教学中加强知识演进的逻辑规律的讲解提高学生的逻辑思维能力,培养学生分析问题、解决问题的能力。

3、加强计算机辅助设计、分析将Flexsim仿真软件引入教学中。

应用计算机辅助设计、分析,能方便的改变系统结构参数,认识复杂系统的动态响应。

三、课程教学内容及学时分配第一章概论(2课时)教学目的:了解系统仿真技术的发展历史;掌握系统仿真技术的特点;理解系统仿真的应用;掌握系统仿真的优势与局限性;熟悉系统仿真的相关技术;了解系统仿真的研究热点和发展方向;教学重点:系统仿真的应用;系统仿真的优势与局限性;系统仿真的相关技术;教学难点:系统仿真的应用;第二章系统仿真基本知识(6课时)教学目的:了解生产系统的基本特征;理解掌握系统、系统模型、系统仿真等建模与仿真相关的基本概念;了解系统仿真的类型;理解离散系统与连续系统的区别;熟悉生产系统建模的方法与仿真研究的步骤;深入理解排队论的基本概念,熟悉排队系统的组成与排队模型的分类,掌握到达模式与服务机构刻画的参数,熟悉排队规则与队列的度量;熟悉几种常用的到达时间间隔和服务实践的理论分布(定长分布、泊松分布、埃尔朗分布、正态分布等);掌握M/M/1排队系统与M/M/C排队系统的分析;掌握库存系统模型;熟悉库存系统;掌握库存系统模型;熟悉库存系统仿真及仿真结果分析;教学重点:系统、系统模型、系统仿真等建模与仿真相关的基本概念;离散系统与连续系统的区别;生产系统建模的方法与仿真研究的步骤;排队论的基本概念,排队系统的组成与排队模型的分类;几种常用的到达时间间隔和服务实践的理论分布(定长分布、泊松分布、埃尔朗分布、正态分布等);M/M/1排队系统与M/M/C排队系统的分析;库存系统仿真方法;教学难点:系统、系统模型、系统仿真等建模与仿真相关的基本概念;离散系统与连续系统的区别;排队论的基本概念;M/M/1排队系统与M/M/C排队系统的分析;库存系统仿真;第三章随机数与随机变量(3课时)教学目的:理解掌握随机变量(离散、连续),以及连续随机变量的密度函数的概念;掌握随机变量的数字特征;理解掌握随机数的概念,熟悉产生连续均匀分布随机数的几种方法,掌握计算机产生随机数的方法;熟悉随机数的统计检验;掌握各种离散分布随机数的产生方法;熟悉非均匀连续分布随机数及其产生方法。

《机电系统建模与仿真》课程教学大纲(本科)

《机电系统建模与仿真》课程教学大纲(本科)

《机电系统建模与仿真》课程教学大纲课程编号:081169111课程名称:机电系统建模与仿真英文名称:Modeling and Simulation of Mechatronic System课程类型:专业方向课课程要求:选修学时学分:24/1.5 (讲课学时:20实验学时:0上机学时:4)适用专业:机械设计制造及其自动化一、课程性质与任务本课程是机械设计制造及其自动化专业的一门专业方向课,也可作为其它专业的选修课。

其任务是阐明机电•体化系统建模的基本原理和方法。

通过对本课程的学习,初步掌握机电系统的各种仿真方法,使学生能够熟练应用仿真技术分析机电系统,为今后从事机电系统的分析、设计打下基础。

二、课程与其他课程的联系本课程以先修课程高等数学、大学物理、工程力学、机械原理、机械设计、电工技术基础、理论力学、液压与气压传动为基础。

学习本课程前,学生应对机械传动、机电传动及控制工程等有所了解。

三、课程教学目标1.了解机电一体化系统设计的技术路线的发展历程与未来趋势,理解仿真在机电系统设计中的作用。

掌握机电系统常用的计算机仿真软件,并能将该方法应用于系统的分析之中。

(支撑毕业要求2.1,2.3);2.学习机械传动系统动力学模型的有关知识,掌握传动机构的仿真分析方法。

针对传动机构的机械参数对系统性能的影响,具有建立机械运动系统数学模型的能力,并对系统数学模型进行正确的分析和解答(支撑毕业要求2.2,7.1);3.掌握机构运动学模型的建立方法,能够根据系统数学模型的仿真,学习系统机构动力学动态性能关系等方面的知识,将本专业基础理论和基本原理综合运用于机械工程问题的分析之中。

(支撑毕业要求2.1、2.2、6.1 );4.学习基于传递函数的伺服控制系统设计方法,掌握PID控制系统设计系统的仿真分析方法,并能够在设计过程中,考虑社会、健康、安全以及环境等多种制约因素,并阐明非线性环节对伺服系统性能的影响。

(支撑毕业要求2.1、6.2);5.学习实时仿真的概念,掌握物理仿真、采样系统仿真的概念和方法。

机械控制系统的建模与仿真

机械控制系统的建模与仿真

机械控制系统的建模与仿真1.引言机械控制系统的建模和仿真是现代工程领域中的重要研究内容之一。

通过建立数学模型和进行仿真分析,可以帮助我们更好地理解和优化机械控制系统的性能。

2.机械控制系统的基本原理机械控制系统通常由传感器、控制器、执行器和反馈回路组成。

传感器用于感知环境中的参数,控制器根据传感器提供的反馈信息进行决策,执行器执行控制指令,而反馈回路则用于监测执行器的输出,并将信息反馈给控制器,形成闭环控制。

3.建立机械控制系统的数学模型建立机械控制系统的数学模型是进行仿真分析的关键步骤。

常用的建模方法包括物理建模、数学建模和系统辨识等。

3.1物理建模物理建模是根据系统的物理特性和运动原理建立数学模型的方法。

以机械振动系统为例,可以使用牛顿第二定律和杆件挠曲理论等基本原理,建立其运动方程。

通过对运动方程进行求解,可以得到系统的响应和频率特性等信息。

3.2数学建模数学建模是根据信号与系统理论和数学工具,将机械控制系统抽象为数学模型的过程。

例如,可以使用传递函数描述控制系统的输入输出关系,利用状态空间模型分析系统的稳定性和响应特性。

3.3系统辨识系统辨识是一种通过实验数据分析系统动态特性并确定系统数学模型的方法。

利用现代系统辨识理论和算法,可以从实测数据中提取系统的参数和结构信息,进而建立准确的数学模型。

4.基于数学模型进行仿真分析建立了机械控制系统的数学模型之后,我们可以利用仿真工具进行仿真分析。

仿真分析可以帮助我们理解系统的工作原理、预测系统的性能以及进行系统优化。

4.1仿真平台与工具目前,有许多专门用于建模和仿真分析的软件平台和工具可供选择。

例如,MATLAB/Simulink是一套被广泛应用于系统建模和仿真的工具,提供了丰富的建模组件和仿真功能;ADAMS是一款用于多体动力学仿真的商业软件,适用于机械系统的多体建模和仿真。

4.2仿真分析的应用通过仿真分析,我们可以评估机械控制系统的性能指标,如响应时间、稳态误差以及抗干扰能力等。

《机械建模与仿真》课程教学大纲(本科)

《机械建模与仿真》课程教学大纲(本科)

机械建模与仿真Modeling and Simulation of Mechanical Engineering课程代码:04320620学分:2学时:32 (其中:课堂教学学时:32;实验学时:0;上机学时:0;课程实践学时:0)先修课程:《高等数学》、《机械设计》、《机械原理》、《工程力学》、《CAE应用基础》、《三维结构设计》适用专业:能源与动力工程教材:《ADAMS2012虚拟样机从入门到精通》刘晋霞等编著;机械工业出版社出版, 2013年04月一、课程性质与课程目标(一)课程性质《机械建模与仿真》是一门以数学理论为基础,以计算机为工具,借助系统模型对实际问题进行科学实验的技术,它具有经济、可靠、实用、安全、灵活、可重复使用等优点,已成为复杂系统分析、设计、试验、评估不可或缺的重要手段。

本课程重视基础理论知识和实际问题相结合,能提高学生分析和解决实际问题的能力。

(二)课程目标1.知识方面本课程介绍机械系统建模与仿真技术的最新成果一虚拟样机技术,介绍目前世界上应用最广泛且最具权威性的机械系统动力学仿真分析软件一ADAMS。

通过本课程的学习,学生应了解虚拟样机技术的核心理论一多体系统动力学一的基本概念、模型和方程组,熟悉ADAMS软件的特点、结构、功能和基本使用方法,能够用ADAMS建立实际机械系统的模型并进行仿真计算、分析和优化设计。

2.能力与素质方面通过对本课程的学习,使学生了解具有相同或相似模型的不同机械系统之间的相似性,初步掌握典型机械系统建模的基本理论和方法,能够熟练利用计算机和仿真技术对机械系统进行设计和分析,培养学生的系统分析和类比的能力,为今后应用建模和仿真工具进行机械系统研究和工程设计工作打下良好的基础。

3.对毕业要求的支撑性完善课程教学体系,培养学生多角度分析问题和解决问题的能力。

使学生掌握工程基础知识和本专业的基本理论知识,具有系统的工程时间学习经历;了解本专业前沿发展现状和趋势。

基于有限元方法的机械系统建模与仿真

基于有限元方法的机械系统建模与仿真

基于有限元方法的机械系统建模与仿真在现代机械工程领域,为了更有效地设计、分析和优化机械系统,基于有限元方法的建模与仿真技术发挥着至关重要的作用。

有限元方法作为一种强大的数值分析工具,能够帮助工程师在产品开发的早期阶段就对其性能进行准确预测,从而减少试验次数、缩短研发周期、降低成本并提高产品质量。

有限元方法的基本原理是将一个复杂的连续体离散化为有限个单元的组合。

这些单元通过节点相互连接,每个单元具有特定的形状和特性。

通过对每个单元进行力学分析,并利用节点处的平衡条件和协调条件,建立起整个系统的代数方程组。

求解这些方程组,就可以得到系统在给定载荷和边界条件下的响应,如位移、应力、应变等。

在机械系统建模中,首先需要对实际的物理系统进行合理的简化和抽象。

这包括确定系统的几何形状、材料特性、载荷条件和边界约束等。

例如,对于一个汽车发动机的曲轴连杆机构,需要考虑各个零部件的几何尺寸、材料的强度和刚度、燃烧压力和惯性力等载荷,以及各个部件之间的连接方式和约束条件。

几何建模是有限元分析的第一步。

通过使用专业的 CAD 软件或有限元前处理工具,可以创建机械系统的三维几何模型。

在建模过程中,需要根据分析的目的和精度要求,对几何形状进行适当的简化和近似。

例如,对于一些小的倒角、圆孔等细节,如果对分析结果影响不大,可以忽略不计,以减少计算量。

材料特性的定义也是建模中的关键环节。

不同的材料具有不同的力学性能,如弹性模量、泊松比、屈服强度等。

这些参数需要根据实际使用的材料通过实验测试或查阅相关的材料手册来获取。

对于一些复杂的材料行为,如非线性弹性、塑性、粘弹性等,还需要选择合适的本构模型来描述其力学特性。

载荷和边界条件的施加直接影响着分析结果的准确性。

载荷可以是集中力、分布力、压力、温度等。

边界条件则包括固定约束、滑动约束、对称约束等。

在施加载荷和边界条件时,需要充分考虑实际工作情况,确保模型能够真实反映机械系统的受力状态。

《机械系统运动学与动力学仿真分析》课程教学大纲

《机械系统运动学与动力学仿真分析》课程教学大纲

编码:ME06094Code: ME06094课程名称:机械系统运动学与动力学仿真分析Course Title: Simulated Analysis of MechanicalSystem Kinematics and Dynamics课程类别:专业选修Course category: Elective Course in Specialty 学分:2 Credit(s): 2开课单位:机械与运载工程学院Offering College/School: College ofMechanical & Vehicle Engineering课程描述: 本课程是为机械制造及自动化专业学生开设的专业选修课,以理论力学、机械原理为先导课程。

本课程主要包括机械系统动力学仿真分析原理、仿真模型的建立与调试、参数化分析方法等内容。

学生需要了解机械系统动力学仿真分析的基本原理,掌握机械系统动力学模型的建模方法,并能运用课程知识对简单机械系统进行动力学仿真分析。

通过学习本课程,学生学会机械系统的建模和动力学仿真分析方法,获得应用相关科学原理对工程问题进行研究的能力。

Course description:This is a professional elective course for students majoring in mechanical manufacturing and automation, guided by theoretical mechanics and mechanical principles. This course mainly includes the principles of mechanical system dynamics simulation and analysis, the establishment and debugging of simulation models, and the method of parametric analysis. Students need to understand the basic principles of mechanical system dynamics simulation analysis, master the modeling method of mechanical system dynamics model, and use the knowledge of curriculum to perform dynamic simulation analysis of simple mechanical systems. By studying this course, students learn the modeling and dynamic simulation analysis methods of mechanical systems, and obtain the ability to apply the relevant scientific principles to study engineering problems.课程内容课程教学目标通过本课程的教学,使学生具备以下能力:1.能够运用所学工程知识,设计满足动力学需求的机械系统(毕业要求3.2)。

基于多体动力学的机械系统建模与仿真

基于多体动力学的机械系统建模与仿真

基于多体动力学的机械系统建模与仿真机械系统是现代工程领域中的关键部分。

为了更好地设计和优化机械系统,工程师需要对其进行精确的建模与仿真。

在这方面,基于多体动力学的方法被广泛应用。

本文将从理论基础、建模方法和仿真技术等方面进行探讨,以帮助读者更好地理解基于多体动力学的机械系统建模与仿真。

1. 理论基础多体动力学是研究机械系统运动规律的一种理论方法。

它基于牛顿力学原理,考虑系统中的各个部分之间的相互作用,通过求解物体的运动方程来描述系统的行为。

多体动力学不仅考虑力的平衡和动量守恒,还考虑了惯性、摩擦、弹性等因素的影响。

在建模和仿真过程中,多体动力学为对不同系统进行动态分析提供了一种有效的工具。

2. 建模方法基于多体动力学的机械系统建模过程分为几个步骤。

首先,需要定义系统中各个部分的几何形状和质量分布,并确定它们之间的约束关系。

然后,将系统中的各个部分划分为刚体或弹性体,并确定它们之间的连接方式。

接下来,根据牛顿第二定律,编写每个部分的运动方程。

最后,通过求解这些方程,可以得到系统的运动情况。

3. 仿真技术基于多体动力学的机械系统仿真是将系统的运动方程数值解求解的过程。

在仿真过程中,需要选择适当的数值计算方法,如欧拉法、Verlet算法等,对系统的运动进行离散化处理。

此外,还需要确定仿真的时间步长,并考虑系统中的摩擦、碰撞等现象的影响。

通过不断迭代求解运动方程,可以模拟出系统在不同工况下的运动轨迹和动力学性能。

4. 应用领域基于多体动力学的机械系统建模与仿真广泛应用于工程领域。

例如,在机械设计中,可以通过仿真分析系统的运动情况,优化结构设计和运动机构的参数;在车辆工程中,可以研究车辆运动过程中的悬挂系统、转向系统等;在航空航天领域,可以研究飞行器的姿态稳定性和操纵性能等。

总结起来,基于多体动力学的机械系统建模与仿真是一种重要的工程手段,可以通过数值求解系统的运动方程,模拟出系统在不同工况下的运动轨迹和动力学性能。

机械设计行业虚拟仿真与实验方案

机械设计行业虚拟仿真与实验方案

机械设计行业虚拟仿真与实验方案第1章虚拟仿真技术概述 (3)1.1 虚拟仿真技术发展历程 (3)1.2 虚拟仿真技术在机械设计中的应用 (4)1.3 虚拟仿真技术的发展趋势 (4)第2章机械系统建模与仿真 (5)2.1 机械系统建模方法 (5)2.1.1 理论建模方法 (5)2.1.2 实验建模方法 (5)2.1.3 混合建模方法 (5)2.2 机械系统仿真模型 (5)2.2.1 线性模型 (5)2.2.2 非线性模型 (5)2.2.3 状态空间模型 (5)2.3 机械系统仿真软件介绍 (6)2.3.1 Adams (6)2.3.2 Ansys (6)2.3.3 Simulink (6)2.3.4AMESim (6)第3章有限元分析方法与应用 (6)3.1 有限元法基本原理 (6)3.1.1 有限元法的数学理论 (6)3.1.2 有限元法的实施步骤 (6)3.2 有限元分析软件介绍 (7)3.2.1 ANSYS软件 (7)3.2.2 ABAQUS软件 (7)3.2.3 MSC Nastran软件 (7)3.3 有限元分析在机械设计中的应用案例 (7)3.3.1 轴承座强度分析 (7)3.3.2 齿轮传动系统接触分析 (7)3.3.3 液压缸密封功能分析 (7)3.3.4 汽车车身碰撞分析 (7)第4章多体动力学仿真 (8)4.1 多体动力学基本理论 (8)4.1.1 牛顿欧拉方程 (8)4.1.2 拉格朗日方程 (8)4.1.3 凯恩方程 (8)4.1.4 约束条件及求解方法 (8)4.2 多体动力学仿真软件 (8)4.2.1 MSC Adams (8)4.2.2 Simpack (8)4.2.3 RecurDyn (8)4.2.4 LMS Samtech (8)4.3 多体动力学在机械系统中的应用 (8)4.3.1 汽车悬挂系统仿真 (8)4.3.2 航空发动机叶片振动分析 (8)4.3.3 工业动态功能分析 (8)4.3.4 风力发电机组叶片多体动力学分析 (8)第5章流体力学仿真 (8)5.1 流体力学基本原理 (9)5.1.1 流体的连续性方程 (9)5.1.2 流体的动量方程 (9)5.1.3 流体的能量方程 (9)5.1.4 流体的湍流模型 (9)5.2 流体力学仿真软件 (9)5.2.1 Fluent (9)5.2.2 CFDACE (9)5.2.3 OpenFOAM (9)5.3 流体力学在机械设计中的应用 (9)5.3.1 流体动力学优化 (10)5.3.2 液压系统设计 (10)5.3.3 空气动力学分析 (10)5.3.4 热流体分析 (10)第6章热力学仿真 (10)6.1 热力学基本理论 (10)6.1.1 热力学第一定律 (10)6.1.2 热力学第二定律 (10)6.1.3 状态方程与物性参数 (10)6.2 热力学仿真软件 (11)6.2.1 Fluent (11)6.2.2 Ansys Workbench (11)6.2.3 COMSOL Multiphysics (11)6.3 热力学在机械设计中的应用 (11)6.3.1 热机设计 (11)6.3.2 热交换器设计 (11)6.3.3 热防护设计 (11)6.3.4 节能减排 (11)第7章材料功能虚拟测试 (11)7.1 材料力学功能概述 (12)7.2 材料功能虚拟测试方法 (12)7.2.1 有限元法 (12)7.2.2 无损检测技术 (12)7.2.3 神经网络方法 (12)7.3 材料功能虚拟测试案例分析 (12)7.3.1 钢材弹性模量的虚拟测试 (12)7.3.2 铸铁屈服强度的虚拟测试 (12)7.3.3 铝合金抗拉强度的虚拟测试 (12)第8章虚拟样机与实验方案设计 (13)8.1 虚拟样机技术 (13)8.1.1 虚拟样机概述 (13)8.1.2 虚拟样机技术的应用 (13)8.2 虚拟实验方案设计方法 (13)8.2.1 虚拟实验概述 (13)8.2.2 虚拟实验方案设计方法 (13)8.3 虚拟样机与实验方案设计案例分析 (14)8.3.1 虚拟样机建立 (14)8.3.2 实验条件设置 (14)8.3.3 实验方案设计 (14)8.3.4 实验结果分析 (14)第9章仿真数据后处理与分析 (14)9.1 仿真数据后处理方法 (14)9.1.1 数据清洗与校验 (14)9.1.2 数据整理与归一化 (14)9.1.3 数据统计分析 (15)9.2 仿真结果可视化与评价 (15)9.2.1 结果可视化 (15)9.2.2 结果评价 (15)9.3 仿真结果不确定性分析 (15)9.3.1 不确定性来源识别 (15)9.3.2 蒙特卡洛模拟与敏感性分析 (15)9.3.3 风险评估与可靠性分析 (15)第10章虚拟仿真与实验方案在机械设计中的应用实例 (15)10.1 虚拟仿真在产品设计中的应用 (15)10.1.1 虚拟原型设计 (15)10.1.2 参数优化设计 (16)10.2 虚拟仿真在制造工艺中的应用 (16)10.2.1 数控加工仿真 (16)10.2.2 模具设计与制造仿真 (16)10.3 虚拟仿真在故障诊断与维修中的应用 (16)10.3.1 故障诊断 (16)10.3.2 维修指导 (16)10.4 虚拟仿真与实验方案在机械设计中的综合应用案例 (16)第1章虚拟仿真技术概述1.1 虚拟仿真技术发展历程虚拟仿真技术起源于20世纪50年代,最初应用于航空航天领域。

机械设计中的机械系统建模与仿真

机械设计中的机械系统建模与仿真

机械设计中的机械系统建模与仿真机械设计是一门综合性强、涉及面广的学科,它的发展与机械系统的建模与仿真密不可分。

机械系统建模与仿真是指通过数学模型和计算机仿真技术来描述、分析和预测机械系统的运动行为以及性能表现。

本文将从机械系统建模和机械系统仿真两个方面进行讨论。

一、机械系统建模机械系统建模是指将机械系统的结构、零部件以及它们之间的相互作用关系用数学模型来表示的过程。

机械系统建模的步骤可分为以下几个方面:1. 系统边界的确定:首先需要明确所研究机械系统的范围和边界。

系统边界的确定有助于界定需要建模和仿真的目标。

2. 系统结构的分析:对机械系统的结构进行分析,了解各个部件之间的连接方式以及作用关系。

这一步骤有助于理清系统的整体结构,并为后续的建模工作提供基础数据。

3. 动力学模型的建立:根据机械系统的结构和原理,通过牛顿定律等原理建立机械系统的动力学模型。

动力学模型描述了机械系统中各个部件之间的力学关系,是建模的核心。

4. 状态方程的确定:在建立动力学模型的基础上,确定系统的状态方程。

状态方程描述了系统中各个变量之间的关系,通过求解状态方程可以得到系统的运动规律。

5. 参数的估计与校正:在建立动力学模型和状态方程的过程中,需要对系统的参数进行估计和校正。

参数的准确性对于模型的准确性和仿真结果的可靠性至关重要。

二、机械系统仿真机械系统仿真是指利用计算机对机械系统的动力学行为进行模拟和预测的过程。

它可以帮助设计人员直观地了解机械系统的运动行为、性能指标以及随时间的变化规律。

机械系统仿真一般包括以下几个方面:1. 初始条件的设定:在进行机械系统仿真之前,需要确定模拟的起始状态,即初始条件。

初始条件的设定对于仿真结果的准确性和系统行为的真实性有重要影响。

2. 动力学仿真:使用数值计算方法对机械系统的动力学行为进行仿真。

通过求解动力学方程,可以得到系统在不同时间点上的状态。

3. 功能仿真:对机械系统的功能进行仿真,包括系统的运动轨迹、速度、加速度以及力学性能等方面。

机械系统建模和仿真SimMechanics

机械系统建模和仿真SimMechanics

——机械系统建模和仿真SimMechanics集成于Simulink之中,是进行控制器和对象系统跨领域/学科的研究分析模块集。

SimMechanics为多体动力机械系统及其控制系统提供了直观有效的建模分析手段,一切工作均在Simulink环境中完成。

它提供了大量对应实际系统的元件,如:刚体、铰链、约束、坐标系统、作动器和传感器等。

使用这些模块可以方便地建立复杂图形化机械系统模型,进行机械系统的单独分析或与任何Simulink设计的控制器及其它动态系统相连进行综合仿真。

SimMechanics是Simulink物理建模产品家族的一员,该产品系列扩展了Simulink的建模能力,利用它们做出的模型仍能与传统Simulink模块所建立的模型相融合。

特点•提供了三维刚体机械系统的建模环境•包含了一系列分析机械运动和设计机械元件尺寸的仿真技术•完整的建模层次,允许机械模型模块与其它类型模块结合使用•可在Simulink中建立高精度、非线性的模型以支持控制系统的开发和测试。

•SolidWorks转换器可以通过CAD工具定义机械模型•包括各种铰链和约束形式•可对平移运动和旋转运动,力和力矩进行建模、分析•提供平衡点和线性化工具以支持控制系统设计•使用Virtual Reality Toolbox或MATLAB®图形(Handle Graphics®)支持机械系统可视化及动画显示•可进行系统的运动学和正向、逆向动力学分析•使用O(n)递归求解多体动力学系统运动方程•为模型定义提供多种本地坐标系统强大功能在Simulink环境中进行的动力学研究使用Simulink集成化的图形界面建立机械多体动力学系统的模型并进行仿真。

SimMechanics使得用户可以方便地修改系统中的物理参数,包括位置,方位角和机械元件运动参数等。

使用Simulink变步长积分法可以得到较高的计算精度。

Simulink的过零检测功能以双精度数据水平判定和求解不连续过程,对于机械系统中存在的静摩擦和机械硬限位等情况建模具有重要的意义。

机械系统建模与仿真

机械系统建模与仿真

机械系统建模与仿真机械工程是一门广泛涉及设计、制造、分析和维护机械系统的工程学科。

在机械工程中,机械系统建模与仿真是一项重要的技术,它可以帮助工程师们更好地理解和预测机械系统的行为。

本文将介绍机械系统建模与仿真的基本概念、方法和应用。

一、机械系统建模机械系统建模是指将机械系统的结构和行为抽象为数学模型的过程。

通过建立数学模型,工程师可以对机械系统进行分析和优化。

机械系统建模的核心是建立系统的动力学方程,即描述系统运动和相互作用的方程。

这些方程可以是基于物理原理的,也可以是基于经验的。

在机械系统建模中,常用的方法包括拉格朗日法和牛顿-欧拉法。

拉格朗日法通过定义系统的广义坐标和广义力,将系统的动力学方程转化为拉格朗日方程。

牛顿-欧拉法则基于牛顿定律和欧拉定理,将系统的动力学方程表示为力和力矩的平衡方程。

这些方法可以根据具体的系统特点选择使用。

二、机械系统仿真机械系统仿真是指利用计算机模拟机械系统的运动和行为。

通过仿真,工程师可以在计算机上模拟机械系统的运行过程,观察系统的动态行为和性能指标。

机械系统仿真可以帮助工程师们快速评估不同设计方案的优劣,并进行系统性能优化。

在机械系统仿真中,常用的方法包括离散事件仿真和连续系统仿真。

离散事件仿真适用于描述系统中离散事件的发生和相互作用,如机械系统中的传感器触发、开关切换等。

连续系统仿真适用于描述系统中连续的物理过程,如机械系统中的运动、振动等。

这些方法可以根据仿真的目的和需求选择使用。

三、机械系统建模与仿真的应用机械系统建模与仿真在工程实践中有着广泛的应用。

它可以用于机械系统设计阶段的概念验证和优化。

通过建立数学模型和进行仿真,工程师可以评估不同设计方案的性能,找到最优的设计方案。

此外,机械系统建模与仿真还可以用于系统故障诊断和故障排除。

通过仿真模拟系统的故障行为,工程师可以快速定位和修复故障。

机械系统建模与仿真还可以用于机械系统的控制和优化。

通过建立系统的控制模型和进行仿真,工程师可以设计和优化控制策略,提高系统的性能和稳定性。

基于论的机械系统建模与仿真

基于论的机械系统建模与仿真

基于论的机械系统建模与仿真在现代工程领域中,机械系统的建模与仿真已经成为了不可或缺的重要工具。

它不仅能够帮助工程师在设计阶段就对产品的性能进行预测和优化,还能够减少试验次数、缩短研发周期、降低成本,并提高产品的质量和可靠性。

接下来,让我们深入探讨一下机械系统建模与仿真的相关内容。

机械系统建模,简单来说,就是将实际的机械系统转化为数学模型的过程。

这个数学模型可以是基于物理定律和原理建立的,也可以是基于经验数据和统计分析得到的。

建模的目的是为了能够用数学的方法来描述机械系统的行为和性能,以便进行后续的分析和仿真。

在建模过程中,首先需要对机械系统进行详细的分析和了解。

这包括系统的结构、组成部件、运动方式、受力情况等等。

然后,根据这些信息选择合适的建模方法和理论。

例如,对于简单的机械系统,可以采用牛顿力学定律来建立模型;对于复杂的机械系统,则可能需要用到拉格朗日方程或者哈密顿原理等更高级的理论。

建模的准确性对于后续的仿真结果至关重要。

如果模型过于简化,可能会导致仿真结果与实际情况相差较大;而如果模型过于复杂,又会增加计算的难度和时间。

因此,在建模过程中需要在准确性和复杂性之间进行权衡,找到一个合适的平衡点。

有了数学模型之后,就可以进行仿真了。

仿真就是利用计算机软件对建立的数学模型进行数值求解,从而得到机械系统在不同条件下的性能和行为。

通过仿真,可以得到系统的运动轨迹、速度、加速度、受力情况等各种参数,并且可以直观地观察到系统的运行情况。

在机械系统的仿真中,有多种软件可供选择。

例如,ADAMS 是一款广泛应用于机械系统动力学仿真的软件,它可以对复杂的机械系统进行精确的建模和仿真;SolidWorks 则不仅可以进行三维建模,还能够进行简单的运动仿真;MATLAB 也是常用的工具之一,它在数学计算和控制系统仿真方面具有强大的功能。

在实际应用中,机械系统建模与仿真可以帮助工程师解决很多问题。

例如,在汽车设计中,可以通过建模与仿真来优化汽车的悬挂系统,提高行驶的舒适性和稳定性;在航空航天领域,可以对飞行器的结构进行建模与仿真,分析其在不同工况下的强度和可靠性;在机器人研发中,可以对机器人的运动控制进行仿真,优化控制算法,提高机器人的精度和效率。

机械系统运动学和动力学建模与仿真

机械系统运动学和动力学建模与仿真

机械系统运动学和动力学建模与仿真机械系统运动学和动力学建模与仿真摘要:机械系统运动学和动力学建模与仿真是研究机械系统运动和力学特性的关键技术之一。

本文首先介绍了机械系统的运动学和动力学基本原理,然后详细阐述了机械系统建模的方法和步骤,并介绍了常用的仿真软件和工具。

最后通过一个具体的案例,展示了机械系统建模与仿真的应用。

关键词:机械系统、运动学、动力学、建模、仿真第一章引言机械系统是现代工程中常见的一种系统,其运动和力学特性对于系统设计和控制具有重要意义。

机械系统运动学和动力学建模与仿真是研究机械系统运动和力学特性的重要手段,在机械工程、航空航天、汽车工程等领域具有广泛的应用。

本文将系统介绍机械系统运动学和动力学建模与仿真的基本原理、方法和应用。

第二章机械系统运动学2.1 运动学基本原理运动学是研究物体运动的一门学科,对于机械系统运动学建模具有重要意义。

在机械系统运动学中,主要考虑系统的位置、速度和加速度等因素。

本节将介绍运动学基本原理,包括坐标系、位置、速度和加速度等概念。

2.2 运动学建模方法机械系统的运动学建模是指根据系统的几何结构和运动特性,建立系统的位置、速度和加速度等参数与时间的关系模型。

常用的运动学建模方法包括几何法、向量法和矩阵法等。

本节将详细介绍这些方法的原理和应用。

第三章机械系统动力学3.1 动力学基本原理动力学是研究物体运动的力学学科,在机械系统动力学建模中,需要考虑系统的受力和受力矩等因素。

本节将介绍动力学基本原理,包括受力和力矩的概念,以及牛顿运动定律和动力学基本方程等内容。

3.2 动力学建模方法机械系统的动力学建模是指根据受力和力矩的影响,建立系统的运动方程。

常用的动力学建模方法包括牛顿-欧拉法、拉格朗日法和哈密顿法等。

本节将详细介绍这些方法的原理和应用。

第四章机械系统建模与仿真4.1 建模方法和步骤机械系统建模是指根据系统的运动学和动力学特性,建立系统的数学模型。

建模的过程包括选择合适的坐标系、建立运动学方程和动力学方程等。

系统建模与仿真

系统建模与仿真

以英尺计的反应距离
100 80 60 40 20 0 0 20 40 60 80 100 以英里/小时计的速率
图2 反应距离和速率的比例性
第 18 页
计算机测控技术与应用
沈阳航空工业学院 自动控制系
得到总的停止距离为:
表3:测试得到的总的停车距离与公式计算的距离 速率(英里/小时) 总的停止距离(测试) 停止距离(计算) 20 42 43.6
识别并确定变量 3)求解或解释模型; 4)验证模型;
模型的正确性、合理性、可用性
5)实施模型;
6)维修模型;
使用模型
模型是否仍然适用?
第 11 页
计算机测控技术与应用
沈阳航空工业学院 自动控制系
建模示例:车辆的停止问题
某驾驶规则:
正常的驾驶条件对车与车之间的跟随距离的要求是每10英
里的速率可以允许一辆车的跟随距离,但在不利的天气或道
第 3 页
计算机测控技术与应用
沈阳航空工业学院 自动控制系
系统的分类
自然系统
社会系统
1、工程系统、非工程系统 2、连续系统、离散事件系统 3、白色系统、灰色系统、黑色系统 4、简单系统、复杂系统 5、小系统、大系统、巨系统 - - - - - - - - - - - - - - - - - -
第 4 页
一种模型的转换过程是否有效。
模型的验证(Validation):是在适用范围内针对建模与仿真
对象,模型具有理想的精度。
模型的确认(Accreditation):指对模型或仿真是否可被接
受使用。通过认证,以确保仿真模型能比较精确地反映真实 系统的特性。因此,在模型验证和校核的基础上还应进行静 态检查、动态调试和人工校对。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R I
1
则导纳圆方程变为: 或
2
( x x0 ) ( y y 0 )
2 2
2
x y ax by c 0
2
上式即为最小二乘圆拟合法的数学模型,待识别的参数为a、 b、c。其中: 2 2 2 a 2 x0 , b 2 y 0 , c x0 y 0
T i 1
T
式中:θ
[ 1 2 n ]
T
x [ x1 x 2 x n ]
θ 为待识别参数
x (k ) y (k )
现在,在 s 个观测点得到系统的一组观测数据
对应相同观测点上的理论值完全满足上述方程,即
第六讲 动态系统参数类建模方法
y ( k ) x ( k )θ
(2)模态参数识别
设实际测得主导模态某频响函数在 s 个频率点处的频响函数值 R I 为 H ef ( k ) x k , H ef ( k ) y k ,
第六讲 动态系统参数类建模方法
R I 对应相同频率点处的理论值为 H ef ( k ) x k , H ef ( k ) y k 。
2 k k 1 s 4 k k 1
第 i 阶模态固有频率和阻尼比分别为:
0i
ki / mi
i g i / ki
第六讲 动态系统参数类建模方法
欲求振型矢量,需n个测点的阻抗函数。又:
H ef ( i 1)
I
1 K efi i
构造最小二乘的目标函数:
E

E b
2
s
2 2 2 (x k y k a x k b y k c )
k 1
令:
E a
0,
0,
E c
2 yk yk
0 得a、b、c的最小二乘估计值
xk k y s
1
a xk b xk yk c xk
即 f 坐标激励、e 坐标响应的频响函数。式中: i / 0 i 为频 率比, 0 i k i / m i 为第 i 阶模态的无阻尼固有频率。第 i 阶模 态 e、f 坐标间的等效刚度为: K efi k i / ei fi 显然,对应某 阶模态 i 的等效刚度不是常值,而刚度ki对固定模态是常值。
为使 E 最小,将 E 对θ 求一次偏导,并另其为零,得:
X
T
T ˆ y X Xθ
T 1 (X X )
因为观测矩阵一般为列满秩矩阵,则
ˆ T 1 θ (X X ) X
T
存在,所以可得:
y
如果ε是一个具有零均值的平稳随机过程,例如,白噪声,可 ˆ 以证明,最小二乘估计 θ 是无偏的、有效的和一致的。
E[

,]Fra bibliotek式中: ρm为自相关系数, μ为均值,σ为均方差。
第六讲 动态系统参数类建模方法
若有时间序列{yk},k=1,….,N,E[yk]= μ 。令zk=yk- μ,则 E[zk]= μ’=0,称为0均值化。 对于AR、MA、ARMA模型,需满足的数学条件是:具有有 理谱密度的平稳时间序列,亦即要求观测时序{zk}是平稳、正 态分布、0均值的序列。 1 AR模型(AR(p) ,Auto Regressive)
第六讲 动态系统参数类建模方法
时序分析建模是建立在输出等价的基础上(亦即模型所描述 的系统与实际系统仅需输出相等)。应用广泛,主要有气象 预报、人口预测、市场预测等。 一 平稳时间序列及其数学模型 若一个时间序列 z1 , z 2 , z k , z k m , ,其统计特性(数学 期望、方差)是不随时间而变化的,称为平稳时间序列。从 波形上看,在时间坐标上其波动是均匀的。从相关系数上考 虑,有 z1 z1 m z2 z2m m E[ , ] E[ , ] zk zk m
Z ( ) K efi (1 i )
R 2
ef
Z ef ( ) K efi (1 i j i )
Z ( ) K efi i
I
ef
由于虚部与ω无关,阻抗方程在由实部和 虚部构成的平面上表示为一根平行于水 平轴的直线,称为阻抗线。可见,阻抗 线与导纳圆等价,但更为简单。
1、 不考虑剩余模态的影响 (1)理论模型
第六讲 动态系统参数类建模方法
设第 i 阶模态为待识别的主导模态,其他模态对主导模态的影 响称为剩余模态。完全忽略其影响,则频响函数变为:
H ef ( ) 2 K efi 1 i j i 1 1
其Nyquist图是一个圆。
2
频响函数亦可用阻抗表示: 其实部和虚部分别为:
第六讲 动态系统参数类建模方法
6.1 最小二乘法 最小二乘法是一类经典、有效的数据处理方法,它的思想是: 未知量的最可能值是这样一个数,它使得各次实际观测值和计 算值之间的差值的平方乘以度量其精度的数据以后的和为最小。 假设线性时不变系统的数学模型可用含n个参数的线性参数 模型表示: n
y
i xi x θ

( a / 2 ) (b / 2 ) c
第六讲 动态系统参数类建模方法
进一步根据图解法识别其他各种模态参数,如图,a<0,b>0。 最小二乘阻抗线法完全用最小二乘原理 估计模态参数,估计精度高,但未考虑 剩余模态,故结果误差较大;最小二乘 圆拟合法只用最小二乘原理估计出导纳 圆的半径或振型,而其他参量的估计仍 建立在图解法基础上,故精度不高。 由于最小二乘阻抗线法便于编程处理,故 对小阻尼系统或作为多模态识别法迭代的 初始估计,这种方法很具有优越性。

xk yk
x k ( x k2 y k2 ) k ( x k2 y k2 ) y (x2 y2 ) k k
2 2
进而得拟合圆圆心坐标和半径分别为:
x 0 a / 2, y 0 b / 2,
T
( k 1, 2, s )
由于噪声等影响,实测值近似满足模型方程,即
T y ( k ) x ( k )θ ( k ) ( k 1, 2, s )
( k ) 是理论值与实测值之间的误差。
将模型用矩阵形式表示:
y Xθ
y Xθ ε
所以: ε y X θ 是实测模型与理论模型之间的总体误差。
R I
( H ef ( ) H efc ) ( H ef ( )
R R 2 I
1 2 K efi i
H efc ) (
I 2
1 2 K efi i
)
2
第六讲 动态系统参数类建模方法
设:
x H ef ( ), y H ef ( ), 2 K efi i R I x 0 H efc , y 0 H efc
由拟合圆识别参数
第六讲 动态系统参数类建模方法
6.3 时序建模方法 最小二乘类识别法是以描述系统输入与输出因果关系的控制 理论为基础的,但实际问题常遇到如下情况: (1)产生观测数据的系统并不具体,甚至边界也不清楚。 (2)产生观测数据的系统虽然具体,却无法准确获知系统的 输入。 (3)系统输入是可观测的,但系统处于严重的、无法观测的 噪声干扰之中,此时无法采用以控制理论为基础的辨识方法 来建模。 对于上述情形,可采用时间序列分析法建模。按照时间次序 排列的一系列观测数据称为时间序列,分析这种数据序列的 统计方法称为时间序列分析。
第六讲 动态系统参数类建模方法
6.2 最小二乘圆拟合法 最小二乘圆拟合法主要用于单模态识别。所谓单模态识别法是 指一次只识别一阶模态的模态参数,所用数据为该阶模态共振 频率附近的频响函数值。 研究单模态识别法的意义有:1)对模态耦合较小的系统,用 单模态识别法识别出的结果能达到满意精度;2)对模态耦合 较大的系统,需采用多模态识别法,需要进行迭代。用单模 态识别法得到的结果可以作为迭代的初值,大大加快迭代过 程的收敛速度。 最小二乘圆拟合法的基本思想是,根据实测频响函数数据,用 理想导纳圆去拟合实测的导纳圆,并按最小二乘原理使其误差 最小。
阻抗线
第六讲 动态系统参数类建模方法
(2)模态参数识别 对原点频响函数Hff( ω ),令振型归一化为φ fi=1,则Kffi=ki, 所以阻抗方程的实部和虚部变为:
Z
R ff
( ) k i (1 i ) k i m i
2
2
Z
I ff
( ) k i i g i
R ff
( k ) k i m i k
2
( k 1, 2, , s )
实测 Z R ( k ) 与理论值的总方差,即目标函数为: ff
第六讲 动态系统参数类建模方法
E

s
2 2 R ( k i m i k Z ff ( k ))
k 1
令:
E ki

1 Z ef
I
I 而 Z ef 可由最小二乘法利用 s 各测试值求得:
Z ef
I
1
s
s
I Z ef ( k )
k 1
所以由
1 Z ef
I
1 组成的矢量 I Z1 f
1 Z2f
I

1 即为振型矢量。 I Z nf
T
由于上述参数识别理论用到与导纳圆等价的阻抗线,故又称最 小二乘阻抗线法。
第六讲 动态系统参数类建模方法
2 考虑剩余模态的影响 (1)理论模型 在实模态系统中,对剩余模态最简单的处理就是视其频响函 数为常数。此时频响函数可写为:
相关文档
最新文档