哈尔滨工业大学《现代控制理论基础》考试题B卷及答案

合集下载

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)
解法2。拉普拉斯方法
由于

解法3。凯莱-哈密尔顿方法
将状态转移矩阵写成
系统矩阵的特征值是-1和-2,故
解以上线性方程组,可得
因此,
四、(15分)已知对象的状态空间模型 ,是完全能观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设计方法。
解 观测器设计的框图:
观测器方程:
其中: 是观测器的维状态,L是一个n×p维的待定观测器增益矩阵。
设期望的特征多项式为
而能控标准型的特征多项式为
所以,状点配置状态反馈控制器的设计
考虑以下系统
设计一个状态反馈控制器,使闭环系统极点为2−和−3。
该状态空间模型的能控性矩阵为
该能控性矩阵是行满秩的,所以系统能控。
设状态反馈控制器
将其代入系统状态方程中,得到闭环系统状态方程
现代控制理论试题B卷及答案
一、1 系统 能控的状态变量个数是 ,能观测的状态变量个数是 。
2试从高阶微分方程 求得系统的状态方程和输出方程(4分/个)
解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分)
2.选取状态变量 , , ,可得 …..….…….(1分)
来直接计算,只适合一些特殊矩阵A。
方法二 通过线性变换计算状态转移矩阵,设法通过线性变换,将矩阵A变换成对角矩阵或约当矩阵,进而利用方法得到要求的状态转移矩阵。
方法三 拉普拉斯变换法: 。
方法四 凯莱-哈密尔顿方法
根据凯莱-哈密尔顿定理和,可导出 具有以下形式:
其中的 均是时间t的标量函数。根据矩阵A有n个不同特征值和有重特征值的情况,可以分别确定这些系数。
在具体问题分析中,可以选取Q=I。

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。

状态变量个数是2。

…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。

(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。

哈尔滨工业大学2010《现代控制理论基础》考试题B卷和答案

哈尔滨工业大学2010《现代控制理论基础》考试题B卷和答案

一.(本题满分10分)请写出如图所示电路当开关闭合后系统的状态方程和输出方程。

其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。

【解答】根据基尔霍夫定律得:11132223321L x Rx x u L x Rx x Cx x x++=⎧⎪+=⎨⎪+=⎩ 改写为1131112232231211111R x x x u L L L R x x x L L x x x C C ⎧=--+⎪⎪⎪=-+⎨⎪⎪=-⎪⎩,输出方程为2y x =写成矩阵形式为[]111112222331231011000110010RLL x x L R x x u L L x x C C x y x x ⎧⎡⎤--⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥=-+⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎪⎣⎦⎣⎦⎢⎥⎢⎥⎨⎢⎥-⎣⎦⎢⎥⎪⎣⎦⎪⎡⎤⎪⎢⎥⎪=⎢⎥⎪⎢⎥⎪⎣⎦⎩二.(本题满分10分)单输入单输出离散时间系统的差分方程为(2)5(1)3()(1)2()y k y k y k r k r k ++++=++回答下列问题:(1)求系统的脉冲传递函数; (2)分析系统的稳定性;(3)取状态变量为1()()x k y k =.21()(1)()x k x k r k =+-.求系统的状态空间表达式; (4)分析系统的状态能观性。

【解答】(1)在零初始条件下进行z 变换有:()()253()2()z z Y z z R z ++=+系统的脉冲传递函数:2()2()53Y z z R z z z +=++ (2)系统的特征方程为2()530D z z z =++=特征根为1 4.3z =-.20.7z =-.11z >.所以离散系统不稳定。

(3)由1()()x k y k =.21()(1)()x k x k r k =+-.可以得到21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得(2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+-[]212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有:212(1)3()5()3()x k x k x k r k +=--- 又因为12(1)()()x k x k r k +=+ 所以状态空间表达式为[]112212(1)()011()(1)35()3()()10()x k x k r k x k x k x k y k x k ⎧+⎡⎤⎡⎤⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎢⎥⎢⎥+---⎣⎦⎣⎦⎪⎣⎦⎣⎦⎨⎡⎤⎪=⎢⎥⎪⎣⎦⎩(4)系统矩阵为0135⎡⎤=⎢⎥--⎣⎦G .输出矩阵为[]10=c .[][]01100135⎡⎤==⎢⎥--⎣⎦cG 能观性矩阵为o 1001⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦c Q cG .o rank 2=Q .系统完全能观。

现代控制理论试卷及答案-总结

现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。

现代控制理论基础题库(带答案)

现代控制理论基础题库(带答案)

现代控制理论基础题库1、已知某系统的传递函数为:,以下状态空间描述正确的是(C)2、控制理论的发展阶段为(A)。

A、经典控制理论、现代控制理论和鲁棒控制理论B、经典控制理论、现代控制理论C、经典控制理论、鲁棒控制理论D、现代控制理论3、下面关于线性定常系统的非奇异线性变换说法错误的是(C)A、对于线性定常系统,非奇异线性变换不改变系统的传递函数矩阵B、对于线性定常系统,非奇异线性变换不改变系统的特征多项式C、对于线性定常系统,非奇异线性变换不改变系统的状态空间描述D、对于线性定常系统,非奇异线性变换不改变系统的特征值4、状态方程是什么方程(B)A、高阶微分方程B、一阶微分方程C、代数方程D、高阶差分方程5、现代控制理论在整个控制理论发展中起到了什么作用?AA、承上启下B、总结C、开拓D、引领6、能完全描述系统动态行为的数学模型是(B)A、差分方程B、状态空间表达式C、微分方程D、传递函数7、输出方程是(C)A、一阶微分方程B、高阶微分方程C、代数方程D、高阶差分方程8、若某一系统的状态空间描述为:(单选)则与其对应的传递函数为(B)9、以下叙述错误的是(C)A、系统的状态空间模型包括状态方程和输出方程B、状态空间模型不仅可以描述时不变系统,还可以描述时变系统C、一个给定的系统只存在一组动态方程D、状态空间模型存在多种等效的标准型10、以下叙述正确的是(A)A、状态空间模型(A,B,C)的极点等于矩阵A的特征根B、状态空间模型中,系统的输出是由微分方程决定的C、如果系统存在多个状态,则系统可建立对角矩阵形式的状态空间模型D、给定系统的状态微分方程,总能够求出状态的数学表达式。

11、某弹簧-质量-阻尼器机械位移系统如下图所示,图中,K为弹簧的弹性系数,M为质量块的质量,f为阻尼器的阻尼系数,y为质量块M的位移,也是系统的输出量。

为建立其状态空间表达式,以下状态变量的选择方式正确的是(D)(单选)12、某单输入-单输出系统的状态空间模型为(D)则该系统的极点为:A、1,3B、-1,3C、1,-3D、-1,-313、线性定常系统的状态解析表达式中包含ABCA、初始状态B、状态转移矩阵C、输入D、过去时刻的状态14、现代控制理论已经应用在哪些领域ABCDA、倒立摆稳定控制B、工业领域C、航天航空领域D、机器人控制15、哪些内容是现代控制理论的知识体系?ABCDA、系统辨识B、线性系统C、最优估计D、最优控制16、以下哪些条件下,状态变量可以描述系统的未来响应:ABDA、给定当前状态B、给定输入C、给定输出D、给定动态方程17、状态方程是唯一的(错)18、系统状态空间模型中的状态变量可能没有实际物理意义(对)19、具有互不相同的极点的系统总能够化成对角线标准型(对)20、时变控制系统是指一个或多个系统参数会随时间变化的系统。

现代控制理论试卷与答案

现代控制理论试卷与答案

一、名词解说与简答题(共 3 题,每题 5 分,共 15 分)
1、经典控制理论与现代控制理论的差别 2 、对偶原理的内容 3 、李雅普诺夫稳固
二、剖析与计算题(共 8 小题,此中 4-10 小题每题 10 分,第 11 小题 15 分,共85分)
4、电路如下图,设输入为u1,输出为 u2,试自选状态变量并列写出其状态空间表达式。

R1
u1u C1R2
u2
u C2
2
1
5、已知系统的微分方程y 2y 3y 5 y 5u7u 。

试列写出状态空间表达式。

3 6、试将以下状态方程化为对角标准型或许约当标准型。

&412x131
x1
&102x22u1
x27
&
113x35u2
x33
&011u
31
7、已知系统状态空间表达式为4,求系统的单位阶跃响应。

y1 1 x
0011
8、已知线性定常系统(A,B,C),A103, B1,C 012,试判断
0130
系统能否完整能观?若能观求其能观标准型,不可以观则依据能观性进行分解。

9、利用李雅普诺夫方程判断系统&11并求出其一个李
x
2x 能否为大范围渐近稳固,
3
雅普诺夫函数。

10、将状态方程x
x&
1
11、已知系统为x&
2
x&
3121
x u 化为能控标准型。

3 41
x2
x3,试确立线性状态反应控制律,使闭环极点都是 3 ,x1x2x33u
并画出闭环系统的构造图。

春季哈尔滨工业大学《现代控制理论基础》考试题

春季哈尔滨工业大学《现代控制理论基础》考试题

一、填空题(本题含有10个小题,每小题2分,满分共20分)1.若一个单输入单输出线性定常系统∑)(C B,A,的传递函数不存在零极点对消现象,则系统∑)(C B,A,的状态空间表达式必为______实现。

2.一个线性定常系统在施加某一线性状态反馈的前后,它的状态能观性_________________。

3.标量函数22212312()4942128V x x x x x =+++x (其中[]T123x x x =x )是_____定的。

4.一个单输入单输出线性定常系统静态输出反馈可镇定的充分必要条件是该系统的根轨迹______________。

5.在设计带有状态观测器的线性反馈系统时,控制器的动态特性和_________的动态特性是相互独立的,这个原理称为线性系统的______原理。

6.根据一个系统的传递函数(矩阵)可以写出_______个状态空间表达式。

例如系统()5()7()3()3()()2()y t y t y t y t u t u t u t +++=++&&&&&&&&&的其中一个状 态空间表达式为。

_________________________________________7.一个线性定常系统的输出稳定是其状态稳定的___________条件。

8.如果一个非线性系统针对其某一个平衡点经过小偏差线性化以后所得到的Jacobi 矩阵的特征值中含有两个共轭纯虚数,而其余特征值均具有负实部,则原非线性系统关于该平衡点的稳定性宜用李雅普诺夫______法来判断。

9.线性定常系统510105100050100003009u ⎧-⎡⎤⎡⎤⎪⎢⎥⎢⎥=-+⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥-⎪⎣⎦⎣⎦⎨⎡⎤⎪⎢⎥⎪=⎢⎥⎪⎢⎥⎪⎣⎦⎩x x y x &的状态______能观测。

(注:填“完全”、“完全不”或“不完全”之一)10.已知2212212315541554()915541554s s s s s s s s s s s -+⎡⎤⎢⎥++++-=⎢⎥⎢⎥-⎢⎥++++⎣⎦I A ,其中I 表示2阶单位矩阵,则有t e A =________________。

现代控制理论试卷及答案

现代控制理论试卷及答案

现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。

(2)用独立变量描述的系统状态向量的维数不是唯一的。

(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。

(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。

(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。

(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。

(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。

(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。

(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。

对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。

二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。

(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。

试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。

(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。

(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。

现代控制理论试习题(详细答案

现代控制理论试习题(详细答案

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 12。

…..233118x x x x y x ==--=010080x ⎡⎢=⎢⎢-⎣分) 00⎣(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分)2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎤⎡⎤⎡110C 1分)0140x ⎡⎤=⎢⎥⎣⎦ ()⎥⎦⎢⎢⎢⎣-=-8181881C U ……..…………..…….…….(1分) 11188P ⎡⎤=-⎢⎥⎣⎦……..………….…..…….…….(1分) ⎦⎤⎢⎣⎡=43412P ……..………….…...…….…….(1分)1314881148P -⎡⎤-⎢⎥=⎢⎥--⎢⎥⎣⎦..………….…...…….…….(1分) 101105C A PAP -⎡⎤==⎢⎥-⎣⎦………….…...…….…….(1分) ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==1011 43418181Pb b C ……….…...…….…….(1分)1分) 解(3分) 3分)2分)(81分)11121112221222420261p p p p p ⎪-+=⎨⎪-=-⎩………...……....…….…….(1分) 112212743858p p p ⎧=⎪⎪=⎨⎪=⎪⎩………...…………....…….…….(1分)1112122275485388p p P p p ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦...…………....…….…….(1分) 111211122275717480 det det 05346488p p P p p ⎡⎤⎡⎤⎢⎥=>==>⎢⎥⎢⎥⎣⎦⎣⎦………...(1分) P 正定,因此系统在原点处是大范围渐近稳定的.………(1分)八、给定系统的状态空间表达式为1010x --⎡⎢=-⎢⎢⎣2322213332223321(21)3313332(3)(26)64E E E E E E E E E E E λλλλλλλλλλ=+++++++++++++=+++++++++ -- 2分 又因为 *32()331f λλλλ=+++ ------- 1分列方程32123264126333E E E E E E +++=++=+= ----- 2分1232,0,3E k E =-==- ----------- 1分观测器为10312ˆˆ0110010113x x u y ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦------- 1分 方法 2λ⋅分 分分分10ˆ0110x -⎡⎢=-⎢⎢⎣九 分) 1200A tAt A t e e e ⎛⎫= ⎪⎝⎭1A t t e e =…………………………..……….(1分) 11210()12s sI A s ---⎛⎫-= ⎪--⎝⎭101111212s s s s ⎛⎫ ⎪-= ⎪ ⎪- ⎪---⎝⎭………..……….(1分)(){}2112220t A t t t t e e L sI A e ee --⎛⎫=-= ⎪-⎝⎭……….…(1分)()112200000t At tt tt e e L sI A e e e e --⎛⎫ ⎪⎡⎤=-= ⎪⎣⎦ ⎪-⎝⎭……….……….(2分) 222001000001t t tt t t t e e e e e e e ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭……………..……….(2分)一、(( × ( × ( √ ( √二、(的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案2 1cvcvx ,一、 1 系统 x2xu, y 0 1 x 能控的状态变量个数是 0 1能观测的状态变量个数是cvcvx 。

2 试从高阶微分方程 y3y 8 y 5u 求得系统的状态方程和输出方程(4 分/ 个)解 1 . 能控的状态变量个数是 2,能观测的状态变量个数是 1。

状态变量个数是 2。

⋯ .. (4 分)2.选取状态变量 x 1y , x 2y , x 3y ,可得⋯ .. ⋯ . ⋯⋯ .(1 分)x 1 x 2x 2 x 3⋯.. ⋯. ⋯⋯ . (1 分)x 3 8x 1 3x 35uy x 1写成 0 1 0 0x0 0 1 x 0 u ⋯.. ⋯. ⋯⋯ . (1 分)8 035y 1 0 0 x ⋯.. ⋯. ⋯⋯ . (1 分)二、 1 给出线性定常系统 x( k 1) Ax( k) Bu( k), y(k) Cx (k) 能控的定义。

(3 分)2 1 0 2 已知系统 x0 2 0 x, y 0 1 1 x ,判定该系统是否完0 03全能观? (5 分)解 1 .答:若存在控制向量序列 u (k ), u(k 1), , u(k N 1) ,时系统从第k 步的状态 x(k) 开始,在第 N 步达到零状态,即 x( N ) 0 ,其中 N 是大于0 的有限数,那么就称此系统在第k 步上是能控的。

若对每一个 k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

⋯ .. ⋯. ⋯⋯ . (3 分)2.2 1 0CA 0110 2 0 0 2 3⋯⋯⋯.. ⋯⋯⋯.0 0 3(1 分)2 1 0CA20230 2 0 0 4 9 ⋯⋯.. ⋯⋯⋯.(1分)0 0 3C 0 1 1U O CA 0 2 3 ⋯⋯⋯⋯⋯⋯ .. ⋯⋯⋯ . (1 分)CA20 4 9rankU O 2 n ,所以该系统不完全能观⋯⋯ .. ⋯. ⋯⋯ .(2 分)三、已知系统 1、 2 的传递函数分别为g1 (s)s2 1 ,g2s 1 3s 2( s)3s 2 s2s2求两系统串联后系统的最小实现。

春季哈尔滨工业大学《现代控制理论基础》考试题

春季哈尔滨工业大学《现代控制理论基础》考试题

一、填空题(本题含有10个小题,每小题2分,满分共20分)1.若一个单输入单输出线性定常系统∑)(C B,A,的传递函数不存在零极点对消现象,则系统∑)(C B,A,的状态空间表达式必为______实现。

2.一个线性定常系统在施加某一线性状态反馈的前后,它的状态能观性_________________。

3.标量函数22212312()4942128V x x x x x =+++x (其中[]T123x x x =x )是_____定的。

4.一个单输入单输出线性定常系统静态输出反馈可镇定的充分必要条件是该系统的根轨迹______________。

5.在设计带有状态观测器的线性反馈系统时,控制器的动态特性和_________的动态特性是相互独立的,这个原理称为线性系统的______原理。

6.根据一个系统的传递函数(矩阵)可以写出_______个状态空间表达式。

例如系统()5()7()3()3()()2()y t y t y t y t u t u t u t +++=++&&&&&&&&&的其中一个状 态空间表达式为。

_________________________________________7.一个线性定常系统的输出稳定是其状态稳定的___________条件。

8.如果一个非线性系统针对其某一个平衡点经过小偏差线性化以后所得到的Jacobi 矩阵的特征值中含有两个共轭纯虚数,而其余特征值均具有负实部,则原非线性系统关于该平衡点的稳定性宜用李雅普诺夫______法来判断。

9.线性定常系统510105100050100003009u ⎧-⎡⎤⎡⎤⎪⎢⎥⎢⎥=-+⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥-⎪⎣⎦⎣⎦⎨⎡⎤⎪⎢⎥⎪=⎢⎥⎪⎢⎥⎪⎣⎦⎩x x y x &的状态______能观测。

(注:填“完全”、“完全不”或“不完全”之一)10.已知2212212315541554()915541554s s s s s s s s s s s -+⎡⎤⎢⎥++++-=⎢⎥⎢⎥-⎢⎥++++⎣⎦I A ,其中I 表示2阶单位矩阵,则有t e A =________________。

现代控制理论试题详细答案

现代控制理论试题详细答案
………...……....…….…….(1分)
………...…………....…….…….(1分)
...…………....…….…….(1分)
………...(1分)
正定,因此系统在原点处是大范围渐近稳定的.………(1分)
七、已知系统传递函数阵为 试判断该系统能否用状态反馈和输入变换实现解耦控制。(6分)
解: ---------- (2分)
解: 能控标准形为
能观测标准形为
对角标准形为
三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统
求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A的两个特征值是 ,它们是不相同的,故系统的矩阵A可以对角化。矩阵A对应于特征值 的特征向量是
取变换矩阵 , 则
因此,
从而,
在具体问题分析中,可以选取Q=I。
考虑二阶线性时不变系统:
原点是系统的惟一平衡状态。求解以下的李雅普诺夫矩阵方程
其中的未知对称矩阵
将矩阵A和P的表示式代入李雅普诺夫方程中,可得
进一步可得联立方程组
从上式解出 、 和 ,从而可得矩阵
根据塞尔维斯特方法,可得
故矩阵P是正定的。因此,系统在原点处的平衡状态是大范围渐近稳定的。
其特征多项式为
由期望的闭环极点? 2和?3,可得闭环特征多项式
通过
可得
由此方程组得到
因此,要设计的极点配置状态反馈控制器
六、(20分)给定系统状态空间模型
(1) 试问如何判断该系统在李雅普诺夫意义下的稳定性
(2) 试通过一个例子说明您给出的方法;
(3) 给出李雅普诺夫稳定性定理的物理解释。
答:
(1)给定的系统状态空间模型 是一个线性时不变系统,根据线性时不变系统稳定性的李雅普诺夫定理,该系统渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q,矩阵方程 有一个对称正定解矩阵P。因此,通过求解矩阵方程 ,若能得到一个对称正定解矩阵P,则系统是稳定的;若得不到对称正定解矩阵P,则系统是不稳定的。一般的,可以选取Q=I。

(完整版)现代控制理论试卷答案与解析

(完整版)现代控制理论试卷答案与解析

现代控制理论试卷作业一.图为R-L-C电路,设u为控制量,电感L上的支路电流11121222121212010Y xUR R R RY xR R R R R R⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦+++⎢⎥⎢⎥⎣⎦⎣⎦和电容C上的电压2x为状态变量,电容C上的电压2x为输出量,试求:网络的状态方程和输出方程(注意指明参考方向)。

解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。

以电感L上的电流和电容两端的电压为状态变量,即令:12,L ci x u x==,由基尔霍夫电压定律可得电压方程为:2221R C x x L x••+-=1121()0R x C x L x u••++-=从上述两式可解出1x•,2x•,即可得到状态空间表达式如下:121121212()()R Rx R R LRxR R C••⎡-⎡⎤⎢+⎢⎥⎢=⎢⎥⎢-⎣⎦⎢+⎣121121221212()()11()()R RxR R L R R LuxR R C R R C⎤⎡⎤⎥⎢⎥++⎡⎤⎥⎢⎥+⎢⎥⎥⎢⎥⎣⎦-⎥⎢⎥++⎦⎣⎦⎥⎦⎤⎢⎣⎡21yy=⎥⎥⎦⎤⎢⎢⎣⎡++-21121211RRRRRRR⎥⎦⎤⎢⎣⎡21xx+uRRR⎥⎥⎦⎤⎢⎢⎣⎡+212二、考虑下列系统:(a)给出这个系统状态变量的实现;(b)可以选出参数K(或a)的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。

解:(a)模拟结构图如下:13123312312321332133x u kx xx u kxx x x axy x x•••=--=-=+-=+则可得系统的状态空间表达式:123xxx•••⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦32-⎡⎢⎢⎢⎣112311xkk x ua x-⎡⎤⎤⎡⎤⎢⎥⎥⎢⎥-+⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥-⎦⎣⎦⎣⎦[2y=1]123xxx⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(b ) 因为 3023A -⎡⎢=⎢⎢⎣ 001 k k a -⎤⎥-⎥⎥-⎦ 110b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦302Ab -⎡⎢=⎢⎢⎣ 0013 k k a -⎤⎥-⎥⎥-⎦131001-⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 23023A b -⎡⎢=⎢⎢⎣ 0013 k k a -⎤⎥-⎥⎥-⎦301-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦92k k a -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ [M b = Ab 2110A b ⎡⎢⎤=⎦⎢⎢⎣ 301- 91020k k a -⎤⎡⎥⎢-→⎥⎢⎥⎢--⎦⎣ 010 31k a -⎤⎥-⎥⎥-⎦所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈工大2010年春季学期现代控制理论基础 试题B 答案题号 一 二 三 四 五六 七 八 卷面分 作业分 实验分 总分 满分值 10 10 10 10 10 10 10 10 80 10 10 100 得分值第 1 页 (共 8 页)班号 姓名一.(本题满分10分)请写出如图所示电路当开关闭合后系统的状态方程和输出方程。

其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。

【解答】根据基尔霍夫定律得:11132223321L x Rx x u L x Rx x Cx x x++=⎧⎪+=⎨⎪+=⎩ 改写为1131112232231211111R x x x u L L L R x x x L L x x x C C ⎧=--+⎪⎪⎪=-+⎨⎪⎪=-⎪⎩,输出方程为2y x =写成矩阵形式为[]111112222331231011000110010RLL x x L R x x u L L x x C C x y x x ⎧⎡⎤--⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥=-+⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎪⎣⎦⎣⎦⎢⎥⎢⎥⎨⎢⎥-⎣⎦⎢⎥⎪⎣⎦⎪⎡⎤⎪⎢⎥⎪=⎢⎥⎪⎢⎥⎪⎣⎦⎩二.(本题满分10分)单输入单输出离散时间系统的差分方程为(2)5(1)3()(1)2()y k y k y k r k r k ++++=++回答下列问题:(1)求系统的脉冲传递函数; (2)分析系统的稳定性;(3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。

【解答】(1)在零初始条件下进行z 变换有:()()253()2()z z Y z z R z ++=+系统的脉冲传递函数:2()2()53Y z z R z z z +=++ (2)系统的特征方程为2()530D z z z =++=特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。

(3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得(2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+-[]212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有:212(1)3()5()3()x k x k x k r k +=--- 又因为12(1)()()x k x k r k +=+ 所以状态空间表达式为哈尔滨工业大学现代控制理论基础 (B 卷答案) 班号: 姓名:第 3 页 (共 8 页)[]112212(1)()011()(1)35()3()()10()x k x k r k x k x k x k y k x k ⎧+⎡⎤⎡⎤⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎢⎥⎢⎥+---⎣⎦⎣⎦⎪⎣⎦⎣⎦⎨⎡⎤⎪=⎢⎥⎪⎣⎦⎩(4)系统矩阵为0135⎡⎤=⎢⎥--⎣⎦G ,输出矩阵为[]10=c ,[][]01100135⎡⎤==⎢⎥--⎣⎦cG 能观性矩阵为o 1001⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦c Q cG ,o rank 2=Q ,系统完全能观。

三.(本题满分10分) 回答下列问题:(1)简述线性系统的对偶原理;(2)简述线性定常系统的状态稳定性与输出稳定性的相互关系;(3)r 输入r 输出2+r 阶线性解耦系统等效于多少个独立的单输入单输出系统? 【解答】(1)若线性系统1与线性系统2互为对偶,则系统1的能控性等价于系统2的能观性,系统1的能观性等价于系统2的能控性。

(2)若线性定常系统的状态稳定,则输出必稳定,反之,若线性定常系统的输出稳定,则状态未必稳定。

当且仅当线性定常系统的传递函数没有零极点对消现象时,其状态稳定性和输出稳定性才是等价的。

(3)r 输入r 输出2+r 阶线性解耦系统等效于r 个独立的单输入单输出系统。

四.(本题满分10分)设有一个2阶非线性系统,其状态方程为112222cos x x x x x x =-⎧⎨=⎩,判断该系统在坐标原点处的稳定性,并证明你的判断。

【解】此系统在坐标原点处不稳定。

【证明】取李雅普诺夫函数2212()V x x =+x ,显然是正定函数,此外,沿着状态轨线的导数为:()2112211222()222cos 2V x x x x x x x x x =+=-+x 221122222cos 2x x x x x =-+ ()22112222cos 2x x x x x =-+222222112222222112cos cos 2cos 42x x x x x x x x x ⎛⎫=-++- ⎪⎝⎭22212222112cos 2cos 22x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭显然是正定的,所以该系统在坐标原点处不稳定。

五.(本题满分10分)设某控制系统的模拟结构图如下,试判断系统的能控性、能观性和稳定性。

【解答】根据模拟结构图可得状态空间表达式1122123x x x u x x u =-++⎧⎨=--⎩ 1y x =写成矩阵形式为[]11221223110110x x u x x x y x ⎧-⎡⎤⎡⎤⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎪⎣⎦⎣⎦⎨⎡⎤⎪=⎢⎥⎪⎣⎦⎩2310-⎡⎤=⎢⎥-⎣⎦A ,11⎡⎤=⎢⎥-⎣⎦b ,[]10=c 。

系统的特征方程为哈尔滨工业大学现代控制理论基础 (B 卷答案) 班号: 姓名:第 5 页 (共 8 页)()223det 2301λλλλλ+--==++=I A显然系统渐近稳定。

系统的能控性矩阵为[]1511c -⎡⎤==⎢⎥--⎣⎦Q b Ab ,显然,c Q 满秩,所以系统状态完全能控。

系统的能观性矩阵为1023o ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦c Q cA ,显然,o Q 满秩,所以系统状态完全能观。

六.(本题满分10分)某系统的状态空间表达式为[]00116001u y ⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦=x x x设计一个全维状态观测器,使观测器的两个极点均为10-。

【解答】设全维观测器方程为[]112200101160l l u y l l ⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎪⎪=-++⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥-⎪⎪⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭x x 112201160l l u y l l -⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦x x观测器特征多项式为()11221220det 61616l l l l l l λλλλλ⎧⎫-⎡⎤⎪⎪-==+++⎨⎬⎢⎥---++⎪⎪⎣⎦⎩⎭I 观测器期望特征多项式为()221020100λλλ+=++根据多项式恒等的条件得21620100l l +=⎧⎨=⎩ 解得1210014l l =⎧⎨=⎩,全维状态观测器方程为01001100120014u y -⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦x x七. (本题满分10分)证明对于状态空间表达式的线性变换,其特征方程保持不变。

【证明】设原线性系统为=+⎧⎨=+⎩x Ax Buy Cx Du 其特征方程为()det 0s -=I A设线性变换为=x Tz ,变换后的线性系统为11--⎧=+⎨=+⎩z T ATz T Buy CTz Du 该系统的特征方程为()1det 0s --=I T AT写成()11det 0s ---=T T T AT()1det 0s -⎡⎤-=⎣⎦T I A T()()()1det det det 0s --=T I A T ()()()1det det det 0s --=T T I A ()()1det det 0s --=T T I A()()det det 0s -=I I A()det 0s -=I A显然,其特征方程保持不变。

证毕哈尔滨工业大学现代控制理论基础(B 卷答案) 班号: 姓名:第 7 页 (共 8 页)八. (本题满分10分)开环系统的结构如图所示:试用状态反馈的方法,使闭环系统单位阶跃响应的过渡过程时间 5.65s t =秒(0.02∆=),超调量为 4.32%P σ=,其中一个闭环特征值为5-。

求状态反馈控制律的数学表达式。

【解答】将上述方块图该画成模拟结构图,如下:写成状态空间表达式为12223331552x x x x x x x u y x =⎧⎪=-+⎪⎨=-+⎪⎪=⎩,即[]010005500012100u y ⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=-+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥-⎣⎦⎣⎦⎪⎪=⎩x x x 闭环系统单位阶跃响应的过渡过程时间 5.65st =秒(0.02∆=),可得:45.65s nt ζω==,0.707n ζω≈,超调量为 4.32%P eσ==,解得0.707ζ≈,所以1n ω≈。

期望闭环特征多项式为()()()()2225251n n s s s s s ζωω+++≈+++((*32()515f s s s s =+++++设状态反馈控制律为[]123u k k k =x ,代入可得闭环系统的状态方程123010552221k k k ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦x x 闭环特征多项式为()12300010()det det 00055002221s f s s s s k k k ⎛⎫⎡⎤⎡⎤ ⎪⎢⎥⎢⎥=-=-- ⎪⎢⎥⎢⎥ ⎪⎢⎥⎢⎥-⎣⎦⎣⎦⎝⎭I A 12310det 0552221s s k k s k -⎡⎤⎢⎥=+-⎢⎥⎢⎥---+⎣⎦()()323231625101010s k s k k s k =+-+---根据多项式恒等条件可得:3231625 6.4145101018.07105k k k k ⎧-=+=⎪⎪--=+=⎨⎪-=⎪⎩解得:1230.50.10.207k k k =-⎧⎪=-⎨⎪=-⎩,状态反馈控制律为[]1231230.50.10.207u k k k x x x ==---x 。

相关文档
最新文档