第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

合集下载

2018年高考数学常见题型解法归纳反馈训练第13讲函数的零点个数问题的求解方法

2018年高考数学常见题型解法归纳反馈训练第13讲函数的零点个数问题的求解方法

第13讲 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <g ,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =L .(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案422510152025oy=cosxy=lgxyx【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=- 令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x] ] 极小值ZZ极大值]因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

函数零点高中数学解题方法含详解

函数零点高中数学解题方法含详解
5.C
【分析】
分别解函数对应的方程,逐项判断,即可得出结果.
【详解】
A选项,由 可得 ,即函数 有零点;
B选项,由 得 ,即函数 有零点;
C选项,由 解得, 不存在,即函数 没有零点;
D选项,由 解得 或 ,即函数 有零点.
故选:C.
6.A
【分析】
直接令 ,求方程的实数根,确定零点个数.
【详解】
令 ,解得: 或 ,
故选:C
8.D
【分析】
由已知,根据奇函数的对称性有(-∞,0)上也有1009个零点,由奇函数在R上有定义即f(0)=0,即可知零点的总个数.
【详解】
∵f(x)为奇函数且在(0,+∞)内有1009个零点,
∴在(-∞,0)上也有1009个零点,
又∵f(0)=0,
∴共有2018+1=2019(个)零点.
故选:D
故选:C
2.C
【分析】
根据函数的零点存在性定理即可求解.
【详解】
因为函数 的图象是连续的曲线,
且 , ,
所以 ,
根据零点存在性定理可得函数 必定存在零点位于区间 ,
故方程 必存在有根的一个区间是 ,
故选:C.
3.B
【分析】
令 ,利用零点存在性定理即可求解.
【详解】
令 ,则f(0)=-4<0,f(1)=-1<0,f(2)=3>0,
(2)若不等式 在 上有解,求实数 的取值范围;
(3)设函数 ,若 在 上有零点,求实数 的取值范围.
参考答案
1.C
【分析】
题目是让我们找零点所在的一个区间,注意是一个区间,意味着只要找到一个,问题就解决,利用零点存在定理即可判断.

导数与函数的零点知识点讲解+例题讲解(含解析)

导数与函数的零点知识点讲解+例题讲解(含解析)

导数与函数的零点一、知识梳理1.利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、例题精讲 + 随堂练习考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a =1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明由题意可得h(x)=f(x)-g(x)=e x-1-x-x,所以h(1)=e-3<0,h(2)=e2-3-2>0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解由(1)可知h(x)=f(x)-g(x)=e x-1-x-x.由g(x)=x+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x-12x-12-1,记φ(x)=e x-12x-12-1,则φ′(x)=e x+14x-32.当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,易知φ(x)在(0,+∞)内至多有一个零点,即h(x)在[0,+∞)内至多有两个零点,则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【训练2】 已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围. 解 (1)由题意知,函数f (x )的定义域为R , 又f (0)=1-a =2,得a =-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f ′(x )=e x +a ,由于e x >0, ①当a >0时,f ′(x )>0,f (x )在R 上是增函数, 当x >1时,f (x )=e x +a (x -1)>0; 当x <0时,取x =-1a , 则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0. 所以函数f (x )存在零点,不满足题意. ②当a <0时,令f ′(x )=0,得x =ln(-a ). 在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值;(2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-xx =0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m .(2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1, ln x 1-x 1-m =ln x 2-x 2-m =0, 由题意可知ln x 2-x 2=m <-2<ln 2-2. 又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2, 所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2.令g (x )=-x +1x +2ln x (x >2),则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0,当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4.因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln4.0964>ln 1=0,∴g (x )<0,所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2.因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增. 所以x 1<1x 2,故x 1x 2<1.三、课后练习1.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________. 解析 由题意得,|AB |=|e t +1-(2t -1)| =|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减, 在(ln 2,+∞)上单调递增, 所以h (t )min =h (ln 2)=4-2ln 2>0, 即|AB |的最小值是4-2ln 2. 答案 4-2ln 22.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.解析 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0, ∴当x =2时,f (x )有极小值f (2)=ae 2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0, 解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)3.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103.(1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 解 (1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2. 由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点, 则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.4.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4. 答案 D5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x3零点的个数. 解 函数g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0),所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点.②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点.综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和. 解 f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ), 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, 则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减. 则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 解 (1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx (x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. 所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ; 由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, 所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1, 所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.。

怎样求解函数零点问题

怎样求解函数零点问题

思路探寻函数零点问题的难度通常较大.常见的命题形式有:(1)判断零点的个数;(2)由函数的零点求参数的取值范围;(3)证明与函数零点有关的不等式.那么如何破解这三类函数零点问题呢?下面举例加以探究.一、判断函数零点的个数判断函数零点的个数,实质上是判断函数的图象与x 轴的交点的个数,或求函数为0时的解的个数.因此判断函数零点的个数,往往有两种思路:(1)令函数为0,通过解方程求得零点的个数;(2)判断出函数的单调性、奇偶性、对称性,画出函数的图象,通过研究图象与x 轴的交点,来判断函数零点的个数.例1.已知函数f ()x =ln x -()a -1x +1.(1)若f ()x 存在极值,求a 的取值范围;(2)当a =2,且x ∈()0,π时,证明:函数g ()x =f ()x +sin x 有且仅有2个零点.解:(1)略;(2)当a =2时,g ()x =ln x -x +1+sin x ,得g ′()x =1x-1+cos x ,令h ()x =g ′()x ,因为x ∈()0,π,则h ′()x =-1x2-sin x <0,所以h ()x =g ′()x 在()0,π上单调递减,又因为g ′()π3=3π-1+12=3π-12>0,g ′()π2=2π-1<0,所以g ′()x 在()π3,π2上有唯一的零点α,当x ∈()0,α时,g ′()x >0,当x ∈()α,π时,g ′()x <0,所以g ()x 在()0,α上单调递增,在()α,π上单调递减,可知g ()x 在()0,π存在唯一的极大值点α(π3<α<π2),而g ()α>g ()π2=ln π2-π2+2>2-π2>0,g()1e 2=-2-1e 2+1+sin 1e 2=-1e 2+()sin 1e 2-1<0,g ()π=lnπ-π+1=lnπ-()π-1,令F ()x =ln x -()x -1,F ′()x =1x -1=1-x x ,则x ∈()0,1,F ′()x >0;x ∈()1,+∞,F ′()x <0,所以F ()x 在()0,1上单调递增,在()1,+∞上单调递减,得F ()x max =F ()1=0,故F ()π<F ()1=0,即g ()π=lnπ-()π-1<0,可知g ()x 在()0,α和()α,π上分别有1个零点,所以当x ∈()0,π时,g ()x 有且仅有2个零点.函数式g ()x =f ()x +sin x 中含有对数、三角函数式,我们很难通过画图、解方程求得零点的个数,于是对函数求导,研究函数的单调性、极值,从而画出函数的图象;进而借助函数的图象来确定函数零点的个数.在解答函数零点问题时,经常要用到函数的零点存在性定理,但运用该定理只能判断函数在某个区间上是否含有零点,却不能确定函数在某区间上零点的个数,此时往往需结合函数的图象进行判断.二、由函数的零点求参数的取值范围根据函数的零点求参数的取值范围问题比较常见.在解题时,往往要先通过解方程或画图,利用函数的零点存在性定理,判断函数的零点的存在性和个数,确定零点的范围;然后建立关于参数的关系式,进而求得参数的取值范围.例2.已知函数f ()x =x 2+x ln x .(1)求函数f ()x 在区间[]1,e 上的最大值;(2)若F ()x =f ()x -ax 3有2个零点,求实数a 的取值范围.解:(1)f ()x max =f ()e =e 2+e .(过程略)(2)由题意可知函数f ()x =x 2+x ln x 的定义域为()0,+∞,由f ()x =ax 3可得a =x +ln xx 2,令g ()x =x +ln x x 2,其中x >0,则g ′()x =1-x -2ln xx 3,令h ()x =1-x -2ln x ,其中x >0,则h ′()x =-1-2x<0,所以函数h ()x 在()0,+∞上为减函数,且h ()1=0,当0<x <1时,h ()x >0,则g ′()x >0,所以函数g ()x 在()0,1上单调递增,当x >1时,h ()x <0,则g ′()x <0,所以函数g ()x 在()1,+∞上单调递减,所以g ()x max =g ()1=1,49思路探寻令p ()x =x +ln x ,其中x >0,则p ′()x =1+1x>0,则函数p ()x 在()0,+∞上为增函数,因为p()1e =1e-1<0,p ()1>0,则存在x 0∈()1e,1,使得p ()x 0=0,当0<x <x 0时,f ()x =x ()x +ln x <0;当x >x 0时,f ()x =x ()x +ln x >0.由题意可知,直线y =a 与函数g ()x 的图象有2个交点,如图所示.由图可知,当0<a <1时,直线y =a 与函数g ()x 的图象有2个交点,故实数a 的取值范围是0<a <1.解答本题需抓住关键信息:函数F ()x =f ()x -ax 3有2个零点.于是令F ()x =f ()x -ax 3=0,并将其变形为a =x +ln x x2,再构造新函数,将问题转化为直线y =a 与函数g ()x 的图象有2个交点的问题.利用导数与函数g ()x 单调性的关系判断函数的单调性,并画出函数g ()x 的图象,即可通过讨论直线y =a 与函数g ()x 的图象的位置关系,确定参数a 的取值范围.在求参数的取值范围时,若容易从方程中分离出参数来,往往可以采用分离参数法求参数的取值范围.三、证明与函数零点有关的不等式问题与函数零点有关的不等式问题通常较为复杂,且具有较强的综合性.在解题时,需根据函数零点的分布情况,构造新函数或新方程,再根据导数的性质讨论新函数的性质或方程的根,从而证明不等式.例3.已知函数f ()x =me x -x 2-x +2.(1)若函数f ()x 在R 上单调递增,求m 的取值范围;(2)若m <0,且f ()x 有2个零点x 1,x 2,证明:||x 1-x 2<3+m 3.解:(1)m ≥2e -12;(过程略)(2)不妨设x 1<x 2,由题意可得me x 1-x 21-x 1+2=0,me x 2-x 22-x 2+2=0,即x 1,x 2为方程m =x 2+x -2e x的2个根,因为m <0,所以x 2+x -2<0,解得:-2<x <1,所以x 1,x 2∈(-2,1),设h (x )=x 2+x -2e x(-2<x <1),则h ′(x )=-x 2+x +3e x,令h ′(x )=0得x =1-132,则h (x )在()-2,1-132上单调递减,在()1-132,1上单调递增,而h (x )在()-2,0处的切线方程为y =-3e 2(x +2),设h 1(x )=-3e 2(x +2),则h (x )>h 1(x ),设h (x )在()x 0,x 20+x 0-2ex 0处的切线方程过点(1,0),其切线的斜率为-x 20+x 0+3ex 0,取x 0=-1,则h (x )在()-1,-2e 处的切线斜率为e ,则切线的方程为y +2e =e ()x +1,即y =ex -e ,可知h 2(x )=ex -e 单调递增,可得h (x )≥h 2(x ),记y =m 与y =h 1(x )和y =h 2(x )交点的横坐标分别为x 3,x 4,则h (x 1)=m =h 1(x 3)=-3e 2(x 3+2),故x 3=-2-m3e2,因为h 1(x 3)=h (x 1)>h 1(x 1),所以h 1(x )单调递减,所以x 1>x 3,h (x 2)=m =h 2(x 4)=e (x 4-1),故x 4=1+me,由h 2(x 4)=h (x 2)≥h 2(x 2),知h 2(x )单调递增,所以x 2≤x 4,由于m <0,所以||x 1-x 2=x 2-x 1<x 4-x 3=3+m e +m3e 2=3+m()1e +13e 2<3+m ()13+127<3+m 3.故不等式成立.解答本题,要先将x 1,x 2视为方程m =x 2+x -2e x的两根,根据方程确定两根的取值范围;然后构造新函数h (x ),讨论导函数h ′(x )的性质和几何意义,以确定y =m ,h (x )与其切线y =h 1(x )、y =h 2(x )的交点之间的大小关系,从而证明不等式.函数零点问题一般都可以转化为方程问题或函数单调性问题.因此在解答函数零点问题时,需根据题意构造出相应的方程和函数,灵活运用方程思想和数形结合思想,通过研究该函数的图象与性质、方程的根来求得问题的答案.(作者单位:江苏省如皋市搬经中学)50。

最全函数零点问题处理74页WORD版

最全函数零点问题处理74页WORD版

最全函数零点问题处理74页WORD版在74页的WORD文档中,我们可以找到最全的函数零点问题处理方法。

函数零点问题是指在一个函数中,寻找让函数取零值的变量值或者变量区间的问题。

这在数学、物理和工程等领域中经常出现,并且在实际问题中具有重要的意义。

以下是一些常见的函数零点问题处理方法:1.图像法:这是一种直观的方法,通过函数的图像来估计函数的零点。

我们可以使用计算机软件或者手绘的方法绘制函数的图像,通过观察图像来判断零点的位置。

这种方法的优点是直观易懂,但是在精确性上可能存在一定的误差。

2. 代数法:这是一种通过代数运算来求解函数零点的方法。

对于一些简单的函数,可以通过代数运算找到确切的零点。

例如,对于一次函数f(x)=ax+b,可以直接解方程ax+b=0来求解零点。

对于高次函数,我们可以使用一些代数方法,如因式分解、配方法等来求解零点。

3.迭代法:这是一种通过不断迭代逼近零点的方法。

迭代法的基本思想是,从一个初始值开始,通过一定的递推公式不断逼近函数的零点。

例如,常见的迭代法有牛顿迭代法、二分法、弦截法等。

这些方法本质上都是通过不断迭代来逼近函数零点,直到满足一定的收敛条件。

4.数值法:这是一种通过数值计算来求解函数零点的方法。

数值法通过一定的数值计算方法,如插值法、拟合法等,根据已知的函数值,求解函数的零点。

数值法的优点是不依赖于函数的解析形式,对于任意函数均可以求解。

但是数值法在精度和计算时间上可能存在一定的限制。

5.综合法:综合法是指综合使用多种方法来求解函数零点的方法。

在实际问题中,往往需要通过多种方法的综合来求解函数的零点。

综合法可以充分发挥各种方法的优点,提高求解的准确性和效率。

在处理函数零点问题时,需要根据具体的问题选择合适的方法。

不同的方法在不同的问题中可能具有不同的适用性和优缺点。

因此,熟悉和掌握各种函数零点问题处理方法是非常重要的。

通过不断的学习和实践,我们可以提高对函数零点问题的处理能力,解决实际问题。

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组:(1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( )A .4B .5C .6D . 7【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1xe f x ax=+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是1(1)2,1(,12+;()f x 的单调减区间是1(,)2-∞-,1(,12-,(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得1x =±,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是因此()f x的单调增区间是1(1)2,1(,12;()f x 的单调减区间是1(,)2-∞-,1(,12--,(1)+∞; 【反馈检测3答案】(1)单调递增区间是)+∞, 单调递减区间是(;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x x f x x+∞=.当0x <<()'0f x <,函数()f x 单调递减,当x >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是)+∞, 单调递减区间是(.(2)令()()()()211l n ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,综上,函数()F x 有唯一零点,即两函数图象总有一个交点.。

微专题 函数零点个数有关问题的处理

微专题 函数零点个数有关问题的处理

微专题:函数零点个数有关问题的处理一.知识点:h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,等价于函数y =f (x )与y =g (x )图象的交点的横坐标。

二、处理方法已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围.通常情况下:f (x )要可画或知道其单调性走向,g (x )为常数函数或过定点的直线或常见函数.三、新课讲授类型一:右边为常数形【例1】若方程f (x )=|3x -1|-k 有一零点,则k 的取值范围为________.【思考】有两个零点呢?没有零点呢?【例2】若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是________.【例3】已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.类型二:右边为直线形【例4】若函数f (x )=|2x -1|+ax -5(a 是常数,且a ∈R )恰有两个不同的零点,则a 的取值范围为________.【例5】已知函数f (x )=⎩⎪⎨⎪⎧ 1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是________.【例6】已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是________.类型三:右边为其它曲线形【例7】已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有 对类型四:复合函数形【例8】已知函数f (x )=⎩⎪⎨⎪⎧e |x -1|,x >0-x 2-2x +1,x ≤0,若关于f (x )的方程[f (x )]2-3f (x )+a =0(a ∈R )有8个不等的实数根,则a 的取值范围是_______.【思考1】若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.【思考2】已知函数f (x )=⎩⎪⎨⎪⎧x 2-3x (x ≥0),-e -x +1(x <0),则方程|f (x )-1|=2-c (c 为常数且c ∈(-1,0))的不同的实数根的个数为________.【思考3】若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【思考4】已知函数f (x )=⎩⎪⎨⎪⎧ x 2+x -94,x ≤0,x -2,x >0.若方程f (x )=a 有两个不相等的实数根,则实数a 的取值范围是________.【思考5】已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R),若函数f (x )在R 上有两个零点,则实数a 的取值范围是________.【思考6】若函数()(0)f x a a =≠存在零点,则a 的取值范围是_______.【思考7】已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.。

求函数零点的四种解题方法

求函数零点的四种解题方法

求函数零点的四种解题方法函数零点是数学中一个重要的概念,它是指函数图像上单调递增或单调递减部分的交点,而求解函数零点是数学中的重要问题,它是解决各类物理、化学及建筑等工程问题的重要工具。

本文将介绍求解函数零点的四种解题方法,希望能为读者提供参考。

第一,利用极值的思想求解函数零点。

求函数零点的思路就是,从分析函数的极大值和极小值开始,找出函数零点。

比如,设函数y=f(x),其中f(x)是定义在x1<x2<x3<x4关于连续的实数上的函数,函数f(x)在区间(x1,x4)上单调递增(递减),那么函数f(x)在极大值点(最大值点)x2处取得极大值f2,在极小值点(最小值点)x3处取得极小值f3,则可知函数零点处f(x)=0。

第二,根据函数的导数的特性来求解函数零点。

求函数零点的思路就是,分析函数的导数(即导函数),如果函数的导数在某个点有极值,则在此点上函数图像必定有零点,而且函数图像在此点有拐点,因此可以根据函数的导数求函数零点。

第三,利用二分法求解函数零点。

求函数零点的思路就是,将函数的定义域分为两个部分,再将其中一部分分为两个部分,以此类推,直至求出函数零点。

举个例子,设函数y=f(x)是定义在[a,b]上的函数,且函数f(x)在区间[a,b]上单调,那么可以先将定义域[a,b]划分为两部分,[a,(a+b)/2]和[(a+b)/2,b],其中,区间[a,(a+b)/2]上函数f(x)是单调递增,在区间[(a+b)/2,b]上函数f(x)是单调递减,则可知区间[a,(a+b)/2]上或[(a+b)/2,b]上至少有一个零点,然后将[a,(a+b)/2]或[(a+b)/2,b]二分,重复上述步骤,直至求出函数零点。

第四,用牛顿迭代法求解函数零点。

牛顿迭代法又叫牛顿法,是求函数零点的一种数值及其它迭代方法,用于近似求解函数零点。

它的基本思想是,以待求解函数f(x)的定义域上某一点x0为初始值,取函数f(x)的导函数f′(x)的直线作为近似的函数,用它来逐步近似求函数f(x)的零点。

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

浅谈函数零点个数问题的解决方法

浅谈函数零点个数问题的解决方法

教学篇•方法展示浅谈函数零点个数问题的解决方法李雪静(福建省福州第七中学,福建福州)摘要:从函数零点个数的问题出发,结合一定的例题,为学生总结归纳了函数零点个数的几种求法。

本文归纳的解法有直接法(定义法)、数形结合法、零点存在性定理和利用导数求解零点个数,希望对学生有一定的用处,能够提高学生的做题效率和解题能力。

关键词:函数零点;直接法;数形结合;零点存在性定理;导数一、引言对于最近几年各个地方的考试,函数零点是否存在、零点个数以及通过零点个数求一些参数的取值,经常出现在各种高中数学试卷的选择题、填空题中,甚至是解答题中,题目形式也多样化,函数零点问题渐渐成了考试中的热点,更是一个亮点。

在平常的学习中,一提到函数,学生们就会忧心忡忡,在函数零点问题上,也总是不知如何入手,为此结合个人教学体会,就函数零点个数问题,稍作归纳总结供学生参考和使用。

函数零点一直是考试的热点,是教学过程中的重点和难点,更是学生学习的难点。

多数学生数学思维差,不愿意计算,不愿意思考,更不会把所有的知识结合起来运用,也不会总结归纳,因此需要教师对求函数零点个数的方法进行归纳;通过具体实例的探究,归纳概括出所发现的结论,体验对函数知识由浅入深的认知过程和代数与图像相结合的思想方法,从函数与方程的联系中体会转化的辩证思想;让学生学会这些求解方法并会运用这些方法进行对函数零点问题应用的解答;对于学生而言,考查函数的零点个数,只需要看此函数对应方程有几个根,或者拆成两个函数,研究这两个函数的图象有多少个交点,或者将函数图象的草图画出来,研究函数图象与x轴有多少个交点也可以。

本文就函数零点个数的常见题型和对应的解法作出详细的分析,希望在以后的教学中能够更好地掌握函数的零点教学。

二、直接法(定义法)一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f(x)(x∈R)的零点[1](the zero of the function);即函数的零点就是使函数值为零的自变量的值。

导数求零点个数的方法

导数求零点个数的方法

导数求零点个数的方法导数是微积分中的一个重要概念,它可以用来求函数的极值、拐点和零点等信息。

在本文中,我们将介绍如何利用导数来求函数的零点个数。

我们需要知道什么是函数的零点。

函数的零点是指函数取值为零的点,也就是函数图像与x轴相交的点。

例如,函数f(x)=x^2-1的零点为x=-1和x=1。

接下来,我们来看如何利用导数求函数的零点个数。

假设我们有一个函数f(x),我们可以先求出它的导数f'(x)。

然后,我们需要找出导数f'(x)的所有零点。

这些零点就是函数f(x)的驻点。

驻点是指函数图像在该点处的斜率为零的点。

在这些点处,函数图像可能是极大值、极小值或拐点。

因此,我们需要进一步分析这些驻点的性质,以确定它们是极值点还是拐点。

具体来说,我们可以利用二阶导数f''(x)来判断驻点的性质。

如果f''(x)>0,则该驻点为函数的极小值点;如果f''(x)<0,则该驻点为函数的极大值点;如果f''(x)=0,则该驻点可能是函数的拐点。

我们需要注意的是,函数的零点可能不仅仅存在于驻点处。

例如,函数f(x)=x^3-x的导数f'(x)=3x^2-1的零点为x=±sqrt(1/3),但是函数f(x)的零点还有一个x=0。

因此,我们需要将驻点和其他可能的零点都考虑在内,才能得到函数的所有零点个数。

利用导数求函数的零点个数需要以下步骤:求出函数的导数,找出导数的所有零点,分析这些零点的性质,将驻点和其他可能的零点都考虑在内,最终得到函数的所有零点个数。

这种方法可以帮助我们更快地求出函数的零点个数,从而更好地理解函数的性质和行为。

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?函数零点问题的4种解题方法一、依据概念化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。

二、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。

因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。

注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。

接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。

三、依存定理凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。

即存在c∈(a,b),使得f(c)=0。

通常将此论述称为零点存在性定理。

因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。

四、借助单调确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。

通常将此论述称为零点唯一性定理。

因此,该策略解题需要考虑两个条件:条件一是f(a)f(b)<0是否成立;条件二是否具有单调性。

题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。

函数的零点个数问题、隐零点及零点赋值问题(学生版)-高中数学

函数的零点个数问题、隐零点及零点赋值问题(学生版)-高中数学

函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一)确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2.判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x轴交点的个数问题.(2)分离出参数,转化为a=g(x),根据导数的知识求出函数g(x)在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y=a与函数y=g(x)图象交点的个数问题.只需要用a与函数g(x)的极值和最值进行比较即可.3. 处理函数y=f(x)与y=g(x)图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f(x)=g(x)根的个数问题,也通过构造函数y=f(x)-g(x),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.1(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数f x =ax2e xa≠0,a∈R.(1)求f x 的极大值;(2)若a=1,求g x =f x -cos x在区间-π2,2024π上的零点个数.(二)根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.2(2024届天津市民族中学高三下学期5月模拟)已知函数f x =ln x+2(1)求曲线y=f x 在x=-1处的切线方程;(2)求证:e x≥x+1;(3)函数h x =f x -a x+2有且只有两个零点,求a的取值范围.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性);求含参函数的极值或最值;证明一类超越不等式;求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知f(a)的符号,探求赋值点m(假定m<a)使得f(m)与f(a)异号,则在(m,a)上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值;确保赋值点x0落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.3(2024届山东省烟台招远市高考三模)已知函数f x =x+ae x a∈R.(1)讨论函数f x 的单调性;(2)当a=3时,若方程xf x -x +f x -xf x=m+1有三个不等的实根,求实数m的取值范围.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为x 0,再利用导函数的单调性确定x 0所在区间,最后根据fx 0 =0,研究f x 0 ,我们把这类问题称为隐零点问题. 注意若f (x )中含有参数a ,关系式f '(x 0)=0是关于x 0,a 的关系式,确定x 0的合适范围,往往和a 的范围有关.4(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数f x =e x ,g x =ln x .(1)若函数h x =ag x -1 -x +1x -1,a ∈R ,讨论函数h x 的单调性;(2)证明:142x -1 f 2x -f x >2g x -2.(参考数据:e 45≈2.23,e 12≈1.65)1(2024届山西省晋中市平遥县高考冲刺调研)已知函数f x =ln x+sin x+sin π10.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.2(2024届江西省九江市高三三模)已知函数f x =e ax+e-ax(a∈R,且a≠0).(1)讨论f x 的单调性;(2)若方程f x =x+x-1有三个不同的实数解,求a的取值范围.3(2024届重庆市第一中学校高三下学期模拟预测)已知函数f(x)=a(ln x+1)+1x3(a>0).(1)求证:1+x ln x>0;(2)若x1,x2是f(x)的两个相异零点,求证:x2-x1<1-1 a.4(2022高考全国卷乙理)已知函数f x =ln1+x+axe-x (1)当a=1时,求曲线y=f x 在点0,f0处的切线方程;(2)若f x在区间-1,0,0,+∞各恰有一个零点,求a取值范围.5(2024届辽宁省凤城市高三下学期考试)已知函数f x =xe x -1-ln x -x .(1)求函数f x 的最小值;(2)求证:e f x +x >e x -e -1 ln x -12.6(2024届湖南省长沙市第一中学高考最后一卷)已知函数f x =xe x-1,g x =ln x-mx,m∈R.(1)求f x 的最小值;(2)设函数h x =f x -g x ,讨论h x 零点的个数.7(2024届河南省信阳市高三下学期三模)已知函数f x =ax-ln1-x.a∈R(1)若f x ≥0恒成立,求a的值;(2)若f x 有两个不同的零点x1,x2,且x2-x1>e-1,求a的取值范围.8(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数f x =e x-1-ax-a a∈R.(1)当a=2时,求曲线y=f x 在x=1处的切线方程;(2)若函数f x 有2个零点,求a的取值范围.9(2024届广东省茂名市高州市高三第一次模拟)设函数f x =e x+a sin x,x∈0,+∞.(1)当a=-1时,f x ≥bx+1在0,+∞上恒成立,求实数b的取值范围;(2)若a>0,f x 在0,+∞上存在零点,求实数a的取值范围.10(2024届河北省张家口市高三下学期第三次模)已知函数f(x)=ln x+5x-4.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;-2.(2)证明:f(x)>-35x11(2024届上海市格致中学高三下学期三模)已知f x =e x-ax-1,a∈R,e是自然对数的底数.(1)当a=1时,求函数y=f x 的极值;(2)若关于x的方程f x +1=0有两个不等实根,求a的取值范围;(3)当a>0时,若满足f x1,求证:x1+x2<2ln a.=f x2x1<x212(2024届河南师范大学附属中学高三下学期最后一卷)函数f (x )=e λx -4sin x +λ-2的图象在x =0处的切线为y =ax -a -3,a ∈R .(1)求λ的值;(2)求f (x )在(0,+∞)上零点的个数.13(2024年天津高考数学真题)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的值;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.14(2024届河北省高三学生全过程纵向评价六)已知函数f x =axe x,g x =sin x+cos x.(1)当a=1时,求f x 的极值;(2)当x∈0,π时,f x ≤g x 恒成立,求a的取值范围.15(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数f x =a ln x-1x+x a∈R.(1)讨论f x 的零点个数;(2)若关于x的不等式f x ≤2x-2e在0,+∞上恒成立,求a的取值范围.16(2024届四川省成都石室中学高三下学期高考适应性考试)设f x =(a2-1)e x+sin x-3(1)当a=2,求函数f(x)的零点个数.(2)函数h(x)=f(x)-sin x-x2+2ax+2,若对任意x≥0,恒有h(x)>0,求实数a的取值范围17(2023届云南省保山市高三上学期期末质量监测)已知函数f x =2ax-sin x.(1)当a=1时,求曲线y=f x 在点0,f0处的切线方程;(2)当x>0时,f x ≥ax cos x恒成立,求实数a的取值范围.18(2024届广东省揭阳市高三上学期开学考试)已知函数f x =2ln x-12mx2+1m∈R.(1)当m=1时,证明:f x <1;(2)若关于x的不等式f x <m-2x恒成立,求整数m的最小值.19(2023届黑龙江省哈尔滨市高三月考)设函数f x =x3-3ax2+3b2x(1)若a=1,b=0,求曲线y=f x 在点处的切线方程;(2)若,不等式对任意恒成立,求整数k的最大值.20(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数f x 零点的个数,并证明;(2)证明:.。

求解函数零点与极值

求解函数零点与极值

求解函数零点与极值求解函数的零点和极值是数学中常见的问题,也是数学学习的重点之一。

掌握这一技巧可以帮助我们更好地理解函数的性质和变化规律。

在本文中,我将以具体的例子来说明如何求解函数的零点和极值,并给出一些实用的方法和技巧。

一、求解函数的零点函数的零点指的是函数取零值的点,即满足f(x)=0的x值。

求解函数的零点有多种方法,下面以一元一次函数和一元二次函数为例进行说明。

例1:求解函数f(x)=2x+3的零点。

解:将f(x)置为0,得到2x+3=0。

移项得2x=-3,再除以2得到x=-3/2。

所以函数f(x)=2x+3的零点为x=-3/2。

例2:求解函数f(x)=x^2-4x+3的零点。

解:将f(x)置为0,得到x^2-4x+3=0。

这是一个一元二次方程,可以使用因式分解、配方法或求根公式来解。

这里我们使用因式分解法,将方程变形为(x-3)(x-1)=0。

因此,x-3=0或x-1=0,解得x=3或x=1。

所以函数f(x)=x^2-4x+3的零点为x=3和x=1。

二、求解函数的极值函数的极值指的是函数在某些点上取得的最大值或最小值。

求解函数的极值可以通过求导数和判断导数的符号来实现。

下面以一元二次函数和三角函数为例进行说明。

例3:求解函数f(x)=x^2-4x+3的极值。

解:首先求导数f'(x)=2x-4。

然后,令f'(x)=0,得到2x-4=0,解得x=2。

接下来,我们判断导数的符号。

当x<2时,f'(x)<0;当x>2时,f'(x)>0。

因此,x=2是函数f(x)=x^2-4x+3的一个极小值点。

将x=2代入原函数,得到f(2)=2^2-4*2+3=-1。

所以,函数f(x)=x^2-4x+3的极小值为-1。

例4:求解函数f(x)=sin(x)的极值。

解:首先求导数f'(x)=cos(x)。

然后,令f'(x)=0,得到cos(x)=0。

数学 函数零点的求法及零点的个数

数学 函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1]求函数2223+--=x x x y 的零点.[解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳]函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2]求函数f(x)=lnx+2x -6的零点个数.[解题思路]求函数f(x)=lnx+2x -6的零点个数就是求方程lnx+2x -6=0的解的个数[解析]方法一:易证f(x)=lnx+2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)=lnx+2x -6只有一个零点。

方法二:求函数f(x)=lnx+2x -6的零点个数即是求方程lnx+2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围[例3](2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析]若0a =,()23f x x =-,显然在[]1,1-上没有零点,所以0a ≠.令()248382440a a a a ∆=++=++=,解得372a -±=①当372a --=时,()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

求零点个数的四种方法

求零点个数的四种方法

求零点个数的四种方法一、函数图像法函数图像法是一种直观且常用的求解零点个数的方法。

通过观察函数的图像,可以得到函数的零点个数的大致范围。

我们需要绘制出函数的图像。

可以利用计算机软件或者手绘来实现。

在绘制的过程中,需要注意函数的定义域和值域,以及函数的特性,如是否为奇函数或偶函数,是否有对称轴等。

通过观察函数图像的变化,我们可以初步推测出函数的零点个数的范围。

接下来,我们可以通过进一步分析函数的图像来确定零点的个数。

具体方法有以下几种:1. 零点的个数等于函数图像与x轴的交点个数。

通过观察函数图像与x轴的交点个数,可以初步判断零点的个数。

但需要注意的是,这种方法只能给出零点个数的范围,并不能给出具体的个数。

2. 零点的个数等于函数图像上下波动的次数。

通过观察函数图像的上下波动次数,可以初步判断零点的个数。

但需要注意的是,这种方法只适用于单调函数和周期函数,对于非单调函数和非周期函数则不适用。

3. 零点的个数等于函数图像的最大值和最小值的个数。

通过观察函数图像的最大值和最小值的个数,可以初步判断零点的个数。

但需要注意的是,这种方法只适用于有极值点的函数,对于没有极值点的函数则不适用。

二、数值逼近法数值逼近法是一种通过数值计算来求解函数零点的方法。

通过利用数值逼近的原理,可以通过迭代计算来逐步逼近函数的零点。

常用的数值逼近法有以下几种:1. 二分法:将函数的定义域等分成若干个小区间,然后通过判断函数在每个小区间的取值来确定零点所在的区间。

不断迭代,直到获得足够精确的零点近似值。

2. 牛顿法:通过利用函数的切线来逼近函数的零点。

首先,选取一个初始点作为零点的近似值,然后利用函数的切线来逼近函数的零点。

通过迭代计算,可以得到足够精确的零点近似值。

3. 割线法:通过利用函数的两个近似点所确定的割线来逼近函数的零点。

首先,选取两个初始点作为零点的近似值,然后利用割线的交点来逼近函数的零点。

通过迭代计算,可以得到足够精确的零点近似值。

求函数零点的四种解题方法

求函数零点的四种解题方法

求函数零点的四种解题方法在代数学中,函数的零点是使得函数值为零的输入值。

求解函数的零点是数学中常见的问题之一、以下将介绍四种常用的方法来求解函数的零点。

方法一:图像法图像法是一种常用的直观方法,在解决函数零点问题时非常有用。

它主要通过绘制函数图像来确定函数零点的位置。

具体步骤如下:1.首先,根据函数的定义确定函数的定义域和值域。

2.使用合适的比例和区间,在坐标轴上绘制函数的图像。

3.根据图像的形状和变化,使用直观的方法估计函数的零点的位置。

4.根据估计的位置,使用更精确的方法来求解函数的零点。

图像法的优点是直观、易于理解,在初步估计函数零点的位置时非常有用。

然而,它对于精确求解函数的零点并不总是有效,需要进一步使用其他方法来提高精度。

方法二:因数分解法因数分解法是一种常见的方法,适用于多项式函数(特别是一次、二次和三次多项式函数)。

它的基本思想是将多项式函数分解为两个或更多个因式相乘的形式,然后根据因式为零的性质来求解函数的零点。

具体步骤如下:1.将多项式函数表示为二项式或多项式的乘积。

2.令每个因式为零,解得每个因式的解。

3.将解代入原多项式函数,验证是否为零点。

因数分解法通常适用于可因式分解的多项式函数。

然而,对于高次多项式函数,因数分解法可能不太实用,因为需要找到合适的因式分解形式。

方法三:代入法代入法是一种常用的方法,适用于无法通过因数分解或图像法求解函数的零点。

具体步骤如下:1.首先,从函数的定义出发,选择一个合适的变量替换,将原函数转化为一个新的函数。

2.将新函数设置为零,并求解变量的值。

3.将求解得到的变量值代回原函数,验证是否为零点。

在实际应用中,选择合适的变量代换往往是关键。

代入法通常适用于复杂函数的求解,但也可能需要使用其他数值或近似方法来解决问题。

方法四:数值法数值法是一类通过数值计算来解决函数零点问题的方法。

它主要通过数值逼近的原理和算法,以迭代的方式逐步求解函数的零点。

专题13 函数零点个数的判断方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

专题13 函数零点个数的判断方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

方法13 判断函数零点个数的判断方法基本原理方法解读适合题型典例指引解方程法令f (x )=0,若能求出解,则有几个不同的解就有几个零点基本初等函数例1图象法画出函数f (x )的图象,函数f (x )的图象与x 轴的交点个数即为函数f (x )的零点个数分段函数、绝对值函数例2转化法将函数f (x )拆成两个常见函数h (x )和g (x )的差,从而f (x )=0⇔h (x )-g (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数即为函数y =h (x )与函数y =g (x )的图象的交点个数复杂函数例3 典型例题精选与变式 典型例题自主解析体会方法例1【全国⇔卷2021届高三高考数学(理)仿真模拟】1. 方程()1cos 2s ,[in 0]23xx x π+∈=实数根的个数为___________.【答案】2 【解析】【分析】先将1cos 2sin 3x x +=化简为23sin 22sin x x =-,求得1sin 2x =,然后根据[0,2]x π,即可得到6x π=或56x π=,进而得到实数根的个数. 【详解】因为1cos 2sin 3xx +=,所以3sin 1cos2x x =+,即223sin 1cos sin x x x =+-,因此23sin 22sin x x =-,解得sin 2x =-(舍)或1sin 2x =,又因为[0,2]x π, 所以6x π=或56x π=,所以方程[]()1cos 2sin 0,23xx x π+=∈实数根的个数为2个, 故答案为:2. 【方法】解方程法例2(多选题)【重庆市名校联盟2021届高三三模】2. ()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A. f ()x 的值域为[]0,2B. 当(]3,5x ∈时,()f x = C. ()f x 图象的对称轴为直线4,x k k Z =∈ D. 方程3f x x 恰有5个实数解【答案】ABD 【解析】【分析】画出()f x 的部分图象结合图形分析每一个选项即可.【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==故B 正确.故选:ABD.例3【2021浙江温州瑞安中学模拟】3. 已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解.【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点, 故选:B.最新模拟精选与提高 精选练习自主解析体会应用 【2021陕西二模】4. 若函数()()y f x x =∈R 满足(1)()f x f x +=-,且[1,1]x ∈-时,2()1f x x =-,已知函数lg ,0,()e ,0,xx x g x x ⎧>=⎨<⎩则函数()()()h x f x g x =-在区间[6,6]-内的零点个数为( ) A. 14 B. 13C. 12D. 11【答案】C 【解析】【分析】由(1)()f x f x +=-,知函数()()y f x x R =∈是周期为2的函数,进而根据2()1f x x =-与函数lg ,0,()e ,0,xx x g x x ⎧>=⎨<⎩的图象得到交点个数. 【详解】解:因为(1)()f x f x +=-,所以函数()()y f x x R =∈是周期为2函数,因为[1,1]x ∈-时,2()1f x x =-,所以作出它的图象,则()y f x =的图象如图所示:(注意拓展它的区间)再作出函数lg ,0,()e ,0,xx x g x x ⎧>=⎨<⎩的图象, 容易得出到交点为12个. 故选:C .【点睛】结论点睛:本题考查函数方程思想,数形结合思想,注意周期函数的一些常见结论:若()()f x a f x +=,则周期为a ;若()()f x a f x +=-,则周期为2a ;若1()()f x a f x +=,则周期为2a ;另外要注意作图要细致,属于中档题. 【2021长岭二中二模】5. 已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A. 2 B. 3C. 4D. 5【答案】A 【解析】【分析】函数()y f x x =-的零点个数转化为两个函数图象交点的个数,转化条件为函数()f x 周期2T =,当[]0,1x ∈时,()πcos 2f x x =,根据周期性可画出它的图象,从图象上观察交点个数即可.【详解】∵()()2f x f x +=,则函数()f x 是周期2T =的周期函数. 又∵函数()f x 是定义在R 上的偶函数,且[]0,1x ∈时,()πcos2f x x =, ∴当[)1,0x ∈-时,()()ππcos cos 22f x f x x x ⎛⎫=-=-= ⎪⎝⎭,令()0f x x -=,则函数()y f x x =-的零点个数即为函数()y f x =和()g x x =的图象交点个数,分别作出函数()y f x =和()g x x =的图象,如下图,显然()f x 与()g x 在[)1,0-上有1个交点,在0,1上有一个交点, 当1x >时,()1g x >,而()1f x ≤, 所以1x >或1x <-时,()f x 与()g x 无交点.综上,函数()y f x =和()g x x =的图象交点个数为2,即函数()y f x x =-的零点个数是2. 故选:A【2021年秋季高三数学开学摸底考】6. 已知函数()f x 是定义域为R 的奇函数.当0x >时,ln ,01()12(1),12x x f x f x x -<⎧⎪=⎨-+>⎪⎩,则函数π()()sin4g x f x x =-在[π,π]-上的零点个数为( ) A. 3 B. 4C. 5D. 6【答案】C 【解析】【分析】分别作出函数()f x 与πsin 4y x =在同一坐标系下的图象,利用交点个数求函数零点的个数.【详解】由()0()sin4g x f x x π=⇒=,而函数()f x 是定义域为R 的奇函数, 所以(0)0f =,故(0)0g =, 又πsin4y x =为R 上的奇函数, 故()g x 在0x <与0x >时零点个数相同,故只需研究0x >时的情形,对πsin 4y x =,284T ππ==, 在同一直角坐标系中作出()y f x =与πsin4y x =的图象,由图可知,0x >时,函数图象有2个交点, 所以总共有1225+⨯=个零点, 故选:C【点睛】关键点点睛:分析函数的奇偶性,利用对称性只需研究0x >时,函数图象的交点个数是解题的关键,属于中档题. 【上海市控江中学2021届高三三模】 7. 方程2sin 216x π⎛⎫+= ⎪⎝⎭在区间[2,2)ππ-上的解的个数是( ) A. 4 B. 6C. 8D. 9【答案】C 【解析】【分析】把方程等价化,在同一坐标系内作出两个函数图象,观察公共点个数即可得解.【详解】原方程化为1sin 262x π⎛⎫+= ⎪⎝⎭,在同一坐标系内作出函数sin 26y x π⎛⎫=+ ⎪⎝⎭[2,2)x ππ∈-图象与直线12y =,如图:观察图象知:在[2,2)x ππ∈-时函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象与直线12y =有8个公共点,所以方程2sin 216x π⎛⎫+= ⎪⎝⎭在区间[2,2)ππ-上8个解. 故选:C【山东省烟台市2021届高三二模】 8. 已知函数()f x 是定义在区间()(),00,-∞+∞上的偶函数,且当()0,x ∈+∞时,()()12,0221,2x x f x f x x -⎧<≤⎪=⎨-->⎪⎩,则方程()2128f x x +=根的个数为( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】将问题转化为()f x 与228xy =-的交点个数,由解析式画出在(0,)+∞上的图象,再结合偶函数的对称性即可知定义域上的交点个数.【详解】要求方程()2128f x x +=根的个数,即为求()f x 与228xy =-的交点个数,由题设知,在(0,)+∞上的图象如下图示,∴由图知:有3个交点,又由()f x 在()(),00,-∞+∞上是偶函数,∴在,0上也有3个交点,故一共有6个交点.故选:D.【点睛】关键点点睛:将问题转化为()f x 与228xy =-的交点个数,利用数形结合思想及偶函数的对称性求交点的个数. 【辽宁省2021届高三5月份高考数学模拟】9. 已知()f x 的定义域为[)0,+∞,且满足()[)()[)1,0,121,1,x e x f x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( )A. 8B. 9C. 10D. 11【答案】B 【解析】【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣, 且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果; (2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果. 【2021新疆布尔津县中学三模】10. 已知函数()y f x =是定义在R 上的偶函数,且()()2f x f x -=,当01x ≤≤时,()f x x =,设函数()()5log g x f x x =-,则()g x 的零点的个数为( ) A. 6 B. 7C. 8D. 9【答案】C 【解析】【分析】由题设知()g x 的零点可转化为()f x 与5log x 的交点问题,而()[0,1]f x ∈且周期为2,关于y 轴对称的函数;5log x 且关于y 轴对称,当55x -≤≤时有5log (,1]x ∈-∞,画出(0,)+∞的草图即可确定交点个数,利用对称性确定总交点数.【详解】由题意知:()f x 关于1x =对称,而()g x 的零点即为()5=log f x x 的根, 又∵()f x 在R 上的偶函数,知:()[0,1]f x ∈且周期为2,关于y 轴对称的函数,而55x -≤≤时5log (,1]x ∈-∞且关于y 轴对称∴()f x 与5log x 在(0,)+∞的图象如下,∴共有4个交点,由偶函数的对称性知:在(,0)-∞上也有4个交点,所以共8个交点. 故选:C.【点睛】关键点点睛:将函数零点转化为两个函数的交点问题,应用数形结合的方法,由函数的周期性、奇偶对称性判断交点的个数. 【2021安徽泗县最后一卷】 11. 已知a ∈R ,函数52log (1),1()(2)2,1x x f x x x ⎧-<=⎨--+≥⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数最多有( ) A. 6个 B. 7个C. 8个D. 9个【答案】C 【解析】【分析】以()()1,2f x f x ==的特殊情形为突破口,解出1x =或3或45或4-;24x =-或2425x =或2x =,将12x x+-看作整体,利用换元的思想进一步讨论即可.【详解】由基本不等式可得120x x +-≥或124x x+-≤-, 作出函数52log (1),1()(2)2,1x x f x x x ⎧-<=⎨--+≥⎩,12y x x =+-的图象,如下:且()()24242225f f f ⎛⎫-=== ⎪⎝⎭,()()()441315f f f f ⎛⎫-==== ⎪⎝⎭, ①当2a >时,1224x x +-<-或2412125x x<+-<, 由图象可知:1224x x +-<-、2412125x x <+-<分别有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或124225x x +-=或122x x+-=, 由图象可知:1224x x +-=-、124225x x +-=、122x x +-=分别有两解,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或41242525x x <+-<或1122x x<+-<或1223x x<+-<, 由图象可知:12424x x -<+-<-、41242525x x <+-<、1122x x<+-<、1223x x<+-<分别有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1425x x +-=或121x x +-=或123x x+-=, 由图象可知:124x x +-=-有一解,1425x x +-=、121x x +-=、123x x +-=分别有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或14025x x <+-<或1324x x<+-<, 由图象可知:1420x x -<+-<无解,14025x x <+-<、1324x x<+-<分别有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ⑥当0a =时,120x x +-=或1324x x<+-<, 由图象可知:120x x +-=有一解,1324x x <+-<有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 由图象可知:123x x +->有两解, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2;综上可知,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数最多有8个, 故选:C.【点睛】方法点睛:函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.(多选题)【辽宁省沈阳市2021届高三三模】12. 已知函数()f x 是定义在R 上的偶函数,且当0x >时,()()24,044,4x x x f x m x x x ⎧-<≤⎪=⎨->⎪⎩,m ∈R ,那么函数()()2g x f x =-在定义域内的零点个数可能是( )A. 2B. 4C. 6D. 8 【答案】BC【解析】【分析】首先确定(0)0f =,0不是()g x 的零点,然后在0x >时,解方程()2f x =确定解的个数,再由奇函数性质得出在R 上()g x 的零点个数.【详解】函数()f x 是R 上的奇函数,()00f =,0x >时,()()24,044,4x x x f x m x x x ⎧-<≤⎪=⎨->⎪⎩, 当04x <≤时,242x x -=可得2x =+或2x =,当4x >时,令()42m x x -=,即()24m x m -=,若2m =时,显然无解,若2m >时,442m x m =>-,即2m >时,()()2g x f x =-在()4,+∞上有一个零点 当2m ≤时,()()2g x f x =-在()4,+∞上没有零点,综上,由函数()f x 是奇函数知,2m ≤时,函数()()2g x f x =-有4个零点,当2m >时,函数()()2g x f x =-有6个零点.故选:BC .【点睛】方法点睛:本题考查函数的零点个数,解题方法根据零点定义解方程()0g x =,即()2f x =,结合奇函数性质,只要求得0x >时()2f x =的解的个数即可得结论.【2021湖南衡阳八中模拟】13. 已知函数1,0()ln ,0x f x x x x x ⎧-<⎪=⎨⎪>⎩,则方程(())()10ef f x f x +-=(e 是自然对数的底数)的实根个数为__________.【答案】6【解析】【分析】令()t f x =,原方程可得()1t f t e-=,利用数形结合判断()y f t =与1t y e -=交点个数及交点横坐标的范围,再根据横坐标判断()t f x =时交点的个数,即为实根的个数.【详解】令()t f x =,方程为:()10ef t t +-=,即()1t f t e-=, ()y f t =与1t y e-= 的性质如下: 1、()y f t =:在(,0)-∞上单调递增,值域为(0,)+∞;1(0,)e上递增,1(,1]e 上递减, 值域为1[0,]e 且11()f e e =、(1)0f =;(1,)+∞上单调递增,值域为(0,)+∞; 2、1t y e-=:过定点(1,0),定义域上单调递减; ∴可得函数图象如下图示,∴共有三个交点,横坐标分别为123,,t t t ,且123101t t t e<<<<=, ∴当1()t f x =,显然无解;当2()t f x =时,有四个实根;当3()t f x =时,有两个实根,∴如下图示:一共有6个实根.故答案为:6【点睛】关键点点睛:令()t f x =,原方程可得()1t f t e-=,讨论()y f t =与1t y e-= 的性质并画出函数图象,根据交点横坐标的范围,应用数形结合判断根的个数.。

函数的零点个数

函数的零点个数

函数的零点个数
函数的零点个数是指函数在定义域内使得函数值为0的实数解的个数。

对于多项式函数,它的零点个数等于它的次数。

但对于一般的函数,零点个数可能无限多或者没有。

对于连续函数,在两个零点之间必定存在一个零点,因此零点个数可以用函数图像上的上下交替的区域来计算。

这个方法被称为零点定理。

在实际应用中,我们经常需要用数值方法来求函数的零点,例如二分法、牛顿迭代法等等。

函数的零点个数在数学、物理、工程等领域中都有广泛应用。

- 1 -。

最全函数零点问题处理74页WORD版

最全函数零点问题处理74页WORD版

最全函数零点问题处理74页WORD版如何处理函数零点问题
函数零点指的是函数在特定点处变为零,这是在数学中一个非常重要的概念。

对于函数零点的处理,我们可以从定义、求解两方面入手。

一、定义
函数零点可以定义为一些函数在特定点处的极值,这里的极值指的是函数值变为零,这样的点叫做零点,或者叫做泰勒点,也就是一阶导数为0的点。

二、求解
要求解函数零点,首先要确定该函数的函数式,通过分析可以知道,零点是一阶导数为0的点。

因此,我们可以计算函数一阶导数的值并求解出一阶导数为0的点,即函数零点。

例如,求函数y=x^2+5x+6的零点,其一阶导数为y'=2x+5,求解得x=-2.5,代入原函数,即y=-2.5^2+5(-2.5)+6=-12.5,则函数的零点为(-2.5,-12.5)。

总之,函数零点的处理,要先定义函数零点的概念,然后通过求解函数的一阶导数求出函数的零点,以此来解决函数零点问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <g ,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =L .(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C422510152025oy=cosxy=lgxyx【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x] ] 极小值ZZ极大值]因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m +∞,单调递减区间是()0,m ;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x 的定义域为()()()()0,,'x m x m f x x+-+∞=.当0x m <<时,()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是(),m +∞, 单调递减区间是()0,m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

相关文档
最新文档