建立平面直角坐标系PPT教学课件

合集下载

人教版7.1平面直角坐标系 课件 (共20张PPT)

人教版7.1平面直角坐标系 课件 (共20张PPT)
2叫做点P的纵坐标,
3 N2
1 -4 -3 -2 -1 0 -1 1
.Q(2,3) (3,2) p ·
M
2 3 4 5
记作:P(3,2)
X
-2 -3
-4
平面上点的坐标的确定
Y b
平面内任意一点P,过P点分别 向x、y轴作垂线,垂足在x轴、 y轴上对应的数a、b分别叫做 O 点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标。
y 2
y
2 1 1
y
2 1 1 2 O
-2 -1
O
2
x
-2 -1
O
1
1
2 x
-2 -1
x
-2 -4
-1 -2 1 y ]
-1 -2
[
[
2
]
y 2
[
3
]
-2 -1 O
2 1
-2 -1 1 2 x O
1 1 -1 2
-1
-2
[ 4 ]
-2
5
纵轴
y
如何在平面直 5 角坐标系中表 4 示一个点? 3 纵坐标2
任何一个在 x轴上的点 的纵坐标都为0。
练习
1 .点﹙0,1﹚,﹙2,0﹚,﹙-1,2﹚,﹙-1,0﹚, 3 个,在y轴上的点N﹙a,3﹚在y轴上,则a= _______ 0 3 .若点p﹙-4,b﹚在x轴上,则b= ____
4 .若点N﹙a+5 ,a-2﹚在y轴 –5 上,则a=______
. P(a,b)
a
X
记为P(a,b)
注意:横坐标写在前,纵坐标写在后, 中间用逗号隔开.
发现: (a,b)是一对有序数对,横坐标在前,纵 坐标在后,中间用逗号隔开,不能颠倒。

《平面直角坐标系》课件(共20张PPT)

《平面直角坐标系》课件(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

4、如果以中心 广场为原点呢?
.

(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;

《平面直角坐标系》课件(共21张PPT)

《平面直角坐标系》课件(共21张PPT)

C
A.
F 点(0,3)在____轴上;
点(3,-2)在第_____象限;
B
(0,3),(-2,0),(6,0) ,
两条互相垂直且有公共原点的数轴
(1)线段 AG 上的点都在 x 轴上,它们的纵坐标等于0;
G 原点 轴正半轴 C.
这四组点关于直线x=2对称.
A
连接起来的图形像“房子” (0,3),(-2,0),(6,0) ,
观察所描出的图形,它像什么?
y
连接起来的图形像“房子” D
E
C
F
B
G
oA
x
① D(- 3,5),E(- 7,3), C(1,3),D(- 3,5);
② F(- 6,3),G(- 6,0), A(0,0),B(0,3); -1
y
D
与y轴平行的直线上点的坐标的特征
E ③(1,0),(1,-6),
若点 P(2m - 1,3)在第二象限,则( )
o
若点P(m+5,m-2)在y轴上,则m=
.
x
解答下列问题: ① D(- 3,5),E(- 7,3),
若点P在第三象限且到x轴的距离为 2 ,
(1)若CA平行于x轴,BC平行于y轴,则点C的
(1)图形中哪些点在坐标轴上,它们的坐标有什么特点? 已知线段AB=3,AB∥x轴,若A点坐标为
(1)线段 AG 上的点都在 x 轴上,它们的纵坐标等于0;
纵轴上的点横坐标为0.
若点 P(2m - 1,3)在第二象限,则( )
A.
(-1,-3),(2,-1),(-3,4)这些点所在的象限,说说你是怎么判断的.
① D(- 3,5),E(- 7,3),
③(1,0),(1,-6),

平面直角坐标系(共17张PPT)

平面直角坐标系(共17张PPT)

先横后纵加括号,
中间不忘加逗号。
1
-3 -2
. N
-1
O -1 -2 -3
1
横坐标
-4
·
Q(0,-4)
N(-1.5,-2)在哪里?
平面直角坐标系的建立,使得平面上的点与有序实数对 一一对应,从而架起了数与形之间的桥梁.
应用新知 例1(1)写出平面直角坐标系中的A、B、O 、P各点的 1
坐标. (2)在平面直角坐标系中画出点E(-5,-5)、F(0,-3)、 G(-4,-3)、H(-2.5,3)
(-,+)
-4 -3
3 2 1 1
第一象限
(+,+)
2 3 4 x
x轴上的点 的纵坐标 为0,表示 为(a,0)
y轴上的 点的横坐 标为0, 表示为 (0,b)
-2 -1 O -1 -2 -3 -4
第三象限
(-,-)
第四象限
(+,-)
应用新知 2 例2 (1)在点A(-2,-4)、B(-2,4)、C(3,-4)、
y
5 4 B 3 2 A G
C
R(-3,0)
-1
1 0 1 2 3 4 5 6
-6 -5 -4 -3 -2
-1 E -2
F -3 -4 D
x
-5 -6
挑战自我
y
2、指出A、B、C、D各点的 坐标
B O
-3
2
ห้องสมุดไป่ตู้
A
x
3 -1
C
D
3.在点M(-1,0)、N(0,-1)、P(-2,-1)、O(5,0)、R(0, -5)、S(-3,2)中,在x轴上的点的个数是( )B A 、1 B 、2 C 、3 D 、4

平面直角坐标系(共16张PPT)

平面直角坐标系(共16张PPT)

二、新课讲解
例1 如图, 长方形ABCD的长与宽分别是6 , 4 , 建立适当的直角坐标 系,并写出各个顶点的坐标.
二、新课讲解
解: 以点C为坐标原点, 分别以CD , CB所在直线为x轴、y 轴,建立直角坐标系,如图. 此时点C的坐标是(0 ,0) .
由CD=6, CB=4, 可得D , B , A的坐标分别为D(6,
二、新课讲解
解: x BC 在坐标系 中,A点坐标为(4,4),B点坐标为(0,4),C点坐标为(0,0),D点坐标为(4,0);
八年级数学北师大如版·上图册,以边BC所在直线为 轴,以边 的中垂线为y轴建立
直角坐标系. 例1 如图, 长方形ABCD的长与宽分别是6 , 4 , 建立适当的直角坐标系,并写出各个顶点的坐标.
0),B(0,4),A(6,4).
二、新课讲解
在例1中,你还可以怎样建立直角坐标系?与同伴进行交流.
还可以分别以A、B、D为坐标原点建立适当的直角坐标系.如: 以A为坐标原点,则B,C,D的坐标分别为(-6,0),(-6,4),(0,-4).
二、新课讲解
例2 对于边长为4的等边三角形ABC(如图),建立适当的直角坐 标系,写出各个顶点的坐标.
二、新课讲解
在一次“寻宝”游戏中,寻宝人已经找到了A(3,2)和B(3,-2) 两个标志点(如图),并且知道藏宝地点的坐标为(4,4),除此之外 不知道其他信息.如何确定直角坐标系找到“宝藏”?与同伴进行交
流.
二、新课讲解
先根据点A(3,2)、B(3,-2)建立相应的平面直角坐标系, 再由藏宝地点的坐标,即(4,4)确定“宝藏”的位置.
八年级数学北师大版·上册
第三章 位置与坐标
3.2 平面直角坐标系(第3课时)

建立平面直角坐标系课件

建立平面直角坐标系课件
建立平面直角坐标系课件
CATALOGUE
目 录
• 平面直角坐标系的基本概念 • 平面直角坐标系的建立 • 平面直角坐标系的应用 • 平面直角坐标系的扩展
01
CATALOGUE
平面直角坐标系的基本概念
定义与性质
定义
平面直角坐标系是由两条互相垂 直的数轴构成的平面坐标系统, 其中水平数轴称为x轴,竖直数轴 称为y轴,它们的交点称为原点。
以原点为起点,沿x轴和y轴测量的距离表示点的坐标。例如,点A的坐标为(3,4) ,表示点A距离原点的水平距离为3个单位,垂直距离为4个单位。
坐标轴上的点
在x轴上,点的坐标为(x,0);在y轴上,点的坐标为(0,y)。
点的坐标计算
点的横坐标
通过测量点与x轴的距离来确定。
点的纵坐标
通过测量点与y轴的距离来确定。
坐标变换
当平面直角坐标系发生旋转或平移 时,点的坐标会相应地发生变化。
03
CATALOGUE
平面直角坐标系的应用
解析几何问题
直线方程
通过平面直角坐标系,可 以表示直线的方程,如点 斜式、两点式和截距式等 。
圆方程
同样通过坐标系,可以表 示圆的方程,如标准式和 一般式等。
距离公式
利用坐标系,可以方便地 计算两点之间的距离。
直观地表 示一次函数的图像,如正比例函数和 一次函数。
三角函数的图像,如正弦、余弦和正 切函数的图像,都可以通过平面直角 坐标系来表示。
二次函数
坐标系也是二次函数图像表示的重要 工具,如开口方向、顶点和对称轴等 。
向量运算
向量表示
在平面直角坐标系中,向量可以 用坐标来表示,如向量的起点和
终点坐标。
向量加法

平面直角坐标系--PPT课件

平面直角坐标系--PPT课件

在直角坐标系内画出下列各点:A(4,5),B(0,-3)
y
C(-3,-4),D(5,0),E(2. 5,-2)
5
.A
.4
P
3
2
1
.D
6 5 4 3 2 1O 1 2 3 4 5 6 7
x
C.
1
.2
3
. E
4B
5
练习3:在平面直角坐标系中分别描出点
A(3,2)、B(2,3)的位置,并写出点C、D、E
4、若点P(x,y)的坐标满足xy﹥0,则点
P在第
象限;
若点P(x,y)的坐标满足xy﹤0,且在x
轴上方,则点P在第
象限.
5、实数 x,y满足 (x-1)2+ |y| = 0,则点 P( x,
y)在( )
(A)原点
(B)x轴正半轴
(C)第一象限 (D)任意位置
今天你知道了什么?
1、如何建立平面直角坐标系?-2来自第三象限 -3-4
1 23 4 5 6 X
第四象限
-5
注 意:坐标轴上的-6点不属于任何象限。
①两条数轴 ②互相垂直 ③公共原点 叫平面直角坐标系
直角坐标系的划分
y
5
注意

4

3
轴 上
第二象限Ⅱ 2第一象限Ⅰ

1


-6 -5 -4 -3 -2 -1 0 -1 1 2 3 4 5 6 x
在 任
2
.R
3
T(0,--5)
.4
5T
.P
一般,先在x轴上得到横坐标,再在y轴上得到纵坐标。
练习1:找一找,它在哪?y
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

《平面直角坐标系》数学教学PPT课件(5篇)

《平面直角坐标系》数学教学PPT课件(5篇)

新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.

-2

第三象限
-1
-2
-3
-4
O
1
4
2
3
x

第四象限
5
第二象限
4

3
y
第一象限
点的位置 横坐标符号 纵坐标符号

第一象限
2
1
-4
-1
-3
-2

第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x

第四象限
第三象限
第四象限
x轴
y轴








纵坐标为0
横坐标为0
例2

《平面直角坐标系》PPT优质课件

《平面直角坐标系》PPT优质课件
3Y 2 1
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测

《平面直角坐标系》ppt课件

《平面直角坐标系》ppt课件

坐标系的建立
确定原点
选择平面内的任意一点作为原点,作为两条数轴 的公共起点。
确定正方向
在水平数轴上选取正方向,通常以向右为正;在 垂直数轴上选取正方向,通常以向上为正。
单位长度
根据实际需要确定数轴上的单位长度,通常以厘 米或毫米为单位。
坐标系的分类
绝对坐标标 系。
平面直角坐标系
目录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的点 • 平面直角坐标系中的直线 • 平面直角坐标系中的距离公式 • 平面直角坐标系的应用
01
平面直角坐标系的基本 概念
定义与性质
定义
平面直角坐标系是由两条互相垂直、 原点重合的数轴构成的平面几何图形。
性质
具有方向性、单位性、正交性等性质, 是描述平面内点位置的重要工具。
05
平面直角坐标系的应用
在几何中的应用
确定点位置
01
通过平面直角坐标系,可以确定平面内任意点的位置,并描述
其坐标。
计算距离和角度
02
利用坐标系,可以方便地计算两点之间的距离和两点之间的夹
角。
绘制图形
03
通过坐标系,可以绘制各种几何图形,如直线、圆、椭圆等。
在代数中的应用
代数方程表示
平面直角坐标系可以将代数方程表示为图形,便于理解和解决代 数问题。
点到直线的距离公式
总结词
点到直线最短距离的平方
详细描述
给定点$P(x_0, y_0)$和直线$Ax + By + C = 0$,则点到直线的距离公式为:$d^2 = frac{|Ax_0 + By_0 + C|^2}{A^2 + B^2}$。

平面直角坐标系课件(共15张PPT)

平面直角坐标系课件(共15张PPT)
平面直角坐标系(2)
讨论:已知点A(-1,0)、B(-5,0)、C(-3,5).
(1)在下面的直角坐标系中画出这三点.
(2) 画出△ABC及BC边上的高AD.
(3) △ABC是等腰三角形吗?AD的长是多少?
y
5 4
3 2
1
-
9
- 8- 7
-
6
-
5- 4
-3
-2
-
1 -1
o
1
23
4
56
7
89x
-2
-3
-4
-5
第3页,共15页。
平面直角坐标系(2)
解:点B、点C的坐标分别为B(1,0)、C(5,0). 因为BC=4,△ABC面积为10,所以△ABC的高为5. 又因为△ABC是等腰三角形,所以点A的横坐标 是3, 纵坐标是5,即A(3,5). 在第一象限内画出△ABC.
y
5
A.
4
3 2
. . 1
B
(2) 画出△ABC及BC边上的高AD.
1
平面直角坐标系(2)
. .o . 平面直角坐标系(2)
. . . . - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 (3)点P(a , b)关于x轴对称点的坐标为 ________,
. -1 解:点B、点C的坐标分别为B(1,0)、C(5,0).
平面直角坐标系(2)
y
5
B′(5,5)
.B(-42,3) 3
. A′(3,3) (5,3)
.2
A(-4,1)1
.(3,1)
- 9- 8- 7 - 6- 5- 4- 3 - 2- 1-1 o 1 2 3 4 5 6 7 8 9 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结
类比思想 数形结合思想
平面向量
空间向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
具有大小和方向的量 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a
成立吗? 加法结合律
数乘分配律 k(a b) ka+kb
向量加法结合律在空间中仍成立吗?
( a + b )+ c = a +( b + c )
O
O
a
a
b +c
A
CA
பைடு நூலகம்
C
bBc
b Bc
(平面向量)
空间中
向量加法结合律:
( a + b )+ c = a +( b + c )
D 1 2 3 45 6x
解:如图–1 :以CD所在的直线为X轴,以线 段CD的中垂–2 线为Y轴,建立直角坐标系。由 CD 的长6,–3 此时的点C的坐标为(-3,0), D(3,0)–4 CB的长为4,可以得到B,A的
坐标为,B(-3,4),A(3,4)
例3.对于边长为4的正三角
4Y A
形△ABC,建立适当的直
(2) 2AD1 BD1 xAC1 (3) AC AB1 AD1 xAC1
(2) 2AD1 BD1 AD1 AD1 BD1 AD1 (BC1 BD1) AD1 D1C1 AC1
x 1.
D1 A1
D
C1 B1
C
A
B
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B
A
D
C
2、平面向量的加法、减法与数乘运算
b a
向量加法的三角形法则
b
a
向量减法的三角形法则
b a
向量加法的平行四边形法则
a
k a (k>0)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k(a b) ka+kb
我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算, 其运算律是否也与平面向量完全相同呢?
定义: 数乘空间向量的运算法则
3
角坐标系,写出各个顶点
B
–4 –3 –2 –1
2 1
00 1
的坐标 思考:怎样求出A
C
的纵坐标呢?
234
–1
AO 16 4 2 3
–2
–3 A(0,2 3),B(-2,0)
–4 C(2,0)
在一次“寻宝”游戏
4Y
中,寻宝人已经找到
3
了坐标为(3,2)和(3,-2)
A(3,2) 的两个标志点,并且
CC1
D1 A1
D A
C1 B1
C B
a
D
D1 A1
C1 B1
CD
C
A
BA
B
平行六面体:平行四边形ABCD平移向量 a
到A1B1C1D1的轨迹所形成的几何体. 记做ABCD-A1B1C1D1
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
(3) AC AB1 AD1 xAC1
O
O
a a
b +c
A
b
B
c
C
A
b
C
Bc
(空间向量)
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量; A1 A2 A2 A3 A3 A4 An1 An A1 An
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
(a) ()a 其中、是实数。
类似于平面向量,为了研究的方便起见,我们规定: 零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?)
定义:表示空间向量的有向线段所在直线互相平行或 重合,则称这些向量叫共线向量.(或平行向量)
思考⑴:对空间任意两个向量 a 与 b ,如果 a b ,那 么 a 与 b 有什么关系?反过来呢? 类似于平面,对于空间任意两个
-2
A -3
-4
C
12345x
B
y 4 3 2 1
-4 -3 -2 -1 0 -1
-2 -3 -4
12345x
y
能力训练
4
3
2
1
-4 -3 -2 -1 0 -1
-2 -3 -4
12345x
已知边长为 4的正方形 ABCD,在直角坐标系中, C、D两点在第二象限,AB 与 X轴的交角为 60°,求 C点的坐标。
D1
C1
(2) AB AD AA1
(3)
1 3
(AB
AD
AA1 )
(4) AB
AD
1 2
CC1
解:(1)AB BC=AC;
A1 G
D A
B1 M
C B
(2)AB AD AA1 AC AA1 AC CC1 AC1
始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量
向量 a , b ( b 0 ),
a // b 存在 R , a b . b c
a
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
(2) AB AD AA1
(3)
1 3
(AB
AD
AA1 )
(4) AB
AD
1 2
2
知道藏宝地点的坐标
1
为(4,4),除此以外不
–4 –3 –2 –1 0 1 2 3 4 5 6 x 知道其他信息,如何
–1
确定直角坐标系找到
–2
B(-3,2) “宝藏”
–3
–4
4Y
C(4,4)
3
在一次“寻宝”游
A(3,2)
戏中,寻宝人已经
2
找到了坐标为(3,2)
1
和(3,-2)的两个标
–3 –2 –1 0 1 2 3 4 5 6 x 志点,并且知道藏
数乘分配律
k(a b) ka+kb
C
a+b
B
b
O
A
OB OA AB
a CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘
k a (k<0)
思考:空间任意两个向量是否可能异面?
B
b
O
A
思考:它们确定的平面是否唯一?
a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。
–1
点的坐标
解:如图–2 :以C为坐标原点,分别以CD,
CB所在的直–3 线为X轴,Y轴,建立直角坐标
系。此时的–4点C的坐标为(0,0)由CD 的
长6,CB的–5长为4,可以得到D,B,A的坐
标为D(6,0),B(0,4),A(6,4)
B
A
4Y
你还可以怎
3
样建立直角
2
坐标系呢?
1
C
–4 –3 –2 –1 0
数乘分配律
k(a b) ka+kb
D A
b
D A
C
Ba
D1 A1
C1 B1
C
D
B
A
C B
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
加法 加法:三角形法则或 减法 平行四边形法则 数乘 减法:三角形法则 运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
(1) AB1 A1D1 C1C xAC
解(1) AB1 A1D1 C1C
D1
AB1 B1C1 C1C A1
C1 B1
AC x 1.
D A
(2) 2 AD1 BD1 x AC1
C B
(3) AC AB1 AD1 x AC1
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
k a (k<0)
向量的数乘
3、平面向量的加法、减法与数乘运算律
加法交换律: a b b a 加法结合律: (a b) c a (b c) 数乘分配律: k(a b) ka+kb
相关文档
最新文档