满堂支架计算
满堂支架计算
满堂支架计算1、荷载计算根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。
钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。
截面积转动惯量回转半径 截面模量钢材弹性系数钢材容许应力,按照《钢管满堂支架预压技术规程》中关于旧钢管抗压强度设计值的规定需要乘以折减系数0.85,故验算时按照170MPa 的容许应力进行核算。
1、支架结构验算荷载计算与荷载的组合:A 、钢筋混凝土自重:W 砼= 0.4×26=10.4KN/m2(钢筋混凝土梁重量按26kN/m 3计算)B 、支架模板重① 模板重量:(竹胶板重量按24.99kN/m 3计算)②主次楞重量:主楞方木:(方木重量按8.33KN/m3计算)次楞钢管:C 、人员与机器重W =1KN/ m 2 (《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》)D 、振捣砼时产生的荷载2/4.0015.099.24m kN h W p =⨯==模板模板ρ2/47.033.81.01.025.011.01.06.01m kN h W p =⨯⨯⨯+⨯⨯==)(方木方木ρ22222893.44)1.48.4(14.34/)(cm d D A =÷-⨯=-=π344078.5)8.432()]1.48.4(14.3[cm =⨯÷-⨯=D d D W 32/)(44-=πcmA J i 58.1)/(2/1==44444187.1264)1.48.4(14.364/)(cm d D J =÷-⨯=-=πMPa E 51005.2⨯=MPa f 205][=2/12.0105.33.01m kN kg W =⨯⨯=钢管W =2KN/ m 2 ( 《JGJ166-2008 建筑施工碗扣式脚手架安全技术规X 》) E 、倾倒混凝土时冲击产生的荷载W =3KN/ m 2 (采用汽车泵取值3.0KN/m 2)F 、风荷载按照《建筑施工碗扣式脚手架安全技术规X 》,风荷载W k =0.7u z u s W o其中u z 为风压高度变化系数,按照《建筑结构荷载规X 》取值为1;u s 为风荷载体型系数,按照《建筑结构荷载规X 》取值为0.8;W o 为基本风压,按照XX 市市郊离地高度5m 处50年一遇值为0.3 KN/m 2。
满堂支撑架计算规范
满堂支撑架计算规范根据JGJ 130-2011135.4 满堂支撑架计算5.4.1满堂支撑架顶部施工层荷载应通过可调托撑传递给立杆。
5.4.2满堂支撑架根据剪刀撑的设置不同分为普通型构造与加强型构造,其构造设置应符合本规范第6.9.3条规定,两种类型满堂支撑架立杆的计算长度应符合本规范第 5.4.6条规定。
5.4.3立杆的稳定性应按本规范式(5.2.6-1)、式(5.2.6-2)计算。
不组合风荷载时: N/φA≦f (5.2.6-1)组合风荷载时: N/φA+Mw/W≦f (5.2.6-2)式中:N——计算立杆的轴向力设计值(N),不组合风荷载时N=1.2(NG1k +NG2k)+1.4ΣNQk(5.2.7-1)组合风荷载时N=1.2(NG1k +NG2k)+0.85×1.4ΣNQk(5.2.7-2)式中:NG1k——脚手架结构自重产生的轴向力标准值;NG2k——构配件自重产生的轴向力标准值;ΣNQk——施工荷载产生的轴向力标准值总和,内、外立杆各按一纵距内施工荷载总和的1/2取值。
φ——轴心受压构件的稳定系数,应根据长细比λ由本规范附录A表A.0.6取值;表A.0.6 轴心受压构件的稳定系数φ(Q23511钢)注:当λ>250时,φ=7320/λ2λ——长细比, λ=l 0/i ;l 0——计算长度(mm ),应按本规范式第5.4.6条的规定计算;i ——截面回转半径,可按本规范附录B 表B.0.1采用; 表 B.0.1 钢管截面几何特性外径Φ,d 壁厚t 截面积 A (cm 2) 惯性矩 I (cm 4) 截面模量 W (cm 3) 回转半径i (cm) 每米长质量(kg/m)mm 48.3 3.6 5.06 12.71 5.26 1.59 3.97A ——立杆截面面积(mm 2),可按本规范附录B 表B.0.1采用;M w ——计算立杆段由风荷载设计值产生的弯矩(N ·mm ),可按下式计算:M w =0.9×1.4M wk =0.9×1.4ωk l a h 2/10 (5.2.9)式中:M wk ——风荷载产生的弯矩标准值(N ·mm );w w ——风荷载标准值(kN/m 2),应按本规范式(4.2.5)式计算;l a ——立杆纵距(m )。
桥梁满堂支架计算
满堂支架计算碗扣式钢管支架门架式钢管支架扣件式满堂支架(后图为斜腿钢构)1立杆及底托1.1立杆强度及稳定性(通过模板下传荷载)由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。
可采用此值直接计算立杆的强度和稳定性。
立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。
以下按Ф48*3.0进行计算,截面A=424mm2。
横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。
立杆长细比:1350/15.95=84.64按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。
强度验算:31150/424=73.47N/mm2=73.47MPa,满足。
稳定验算:31150/(0.656875*424)=111.82MPa,满足。
1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》)支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。
立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。
立杆荷载计算:单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。
单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。
单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。
单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。
单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。
风荷载:W K=0.7u z*u s*w0风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算);挡风系数ψ=1.2*An/Aw。
满堂支架计算.(DOC)
满堂支架计算简介满堂支架是一种用于建筑中支撑结构的装置,主要用于建筑施工中的临时支撑、拆除撑和开挖撑等作用。
在使用满堂支架时需要进行详细的计算和设计,以确保施工的安全性和稳定性。
本文将介绍满堂支架计算的基本原理和方法。
基本原理满堂支架的作用是通过承载扭矩和弯曲力来支撑建筑的结构,防止结构发生变形和倒塌。
因此,在计算满堂支架的承载能力时需要考虑以下因素:•支架材料的强度和刚度•支架的外形尺寸和结构形式•施工现场的荷载和环境条件根据上述因素,可以通过力学方法进行满堂支架的计算。
计算方法计算流程•确定支架荷载。
在计算中需要将支架的分量按荷载分别处理,包括垂直、水平、剪切和扭矩四个方向上的荷载。
•计算支架的扭转刚度。
扭转刚度是指支架在受力作用下的扭转变形程度,需要根据支架材料的强度和形状进行计算。
•计算支架的弯曲刚度。
弯曲刚度是指支架在受力作用下的弯曲变形程度,同样需要根据支架材料的强度和形状进行计算。
•计算支架的承载能力。
支架的承载能力是指支架在荷载作用下的最大承载能力值,需要根据支架的构造和受力情况进行计算。
计算公式•支架荷载计算公式:支架荷载 = 分量荷载 + 载荷作用 + 摩擦力•支架的扭转刚度计算公式:Kt = GJ / L其中G为材料的剪切模量,J为截面扭转常数,L为支架的长度。
•支架的弯曲刚度计算公式:Kb = EI / L其中E为材料的弹性模量,I为截面惯性矩,L为支架的长度。
•支架的承载能力计算公式:P = Mx / Y + My / X其中Mx和My分别为支架在垂直和水平方向上的扭转力矩,X和Y分别为支架在垂直和水平方向上的截面模量。
结论满堂支架计算是建筑安全工作中不可或缺的环节,需要根据实际情况进行详细的计算和设计。
本文介绍了满堂支架计算的基本原理和方法,希望对读者了解和掌握这一领域有所帮助。
满堂支架受力计算
支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.6×0.0384=0.41KN 支架最大荷载为N=21.54+0.41=21.95KN 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力: 3.腹板处受力计算(60cm×60cm间距处) 其荷载与横梁处相同。 因横梁处支架是满足施工要求的,故腹板处也是满足要求的。
最大弯矩为:
弯曲强度: 最大挠度: <600/400=1.5 4) 支架受力 模板自重:0.43KN/㎡ 支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡ N1=0.9×0.6×23.43=12.65KN 支架高度以7米计算: 则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN 支架最大荷载为N=12.65+0.48=13.13 立杆长细比,查表得=0.676 [N]=>N 查表得外径48mm壁厚3.5mm钢管在步距120mm时,容许荷载 [N]=33.1KN>N。 故在此应力下,立杆是安全的。 5)地基承载力计算 支架底托下辅设30*30*7cmC30砼块。其单根立杆有效承压面积为 30cm×30cm=0.09㎡ 地基承载力:<15 2、横梁处受力计算(60cm×60cm间距处)
一、横杆和钢管架受力计算
1、标准截面处受力计算(90cm×60cm间距处) 1)荷载 箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡ (钢筋砼密度按ρ=2.6*10kg/m,g=10N/KG,h为砼厚度) 施工荷载和风载:10KN/㎡ 总荷载:Q=13.0+10=23.0KN/㎡ 2)顺向条木受力计算(10cm×10cm) 大横杆间距为90cm,顺向条木间距为30cm,故单根单跨顺向条木
桥梁满堂支架工程量计算公式
桥梁满堂支架工程量计算公式桥梁满堂支架是在桥梁施工中经常用到的一种支撑结构,要准确计算它的工程量,那可得有点小技巧和公式。
咱先来说说满堂支架的组成部分,一般包括立杆、横杆、纵杆、剪刀撑还有各种连接件啥的。
那计算工程量的时候,就得把这些部分都考虑进去。
立杆的工程量计算,咱就以长度乘以根数来算。
比如说,一根立杆长度是 3 米,一共用了 100 根,那立杆的总长度就是 3×100 = 300 米。
横杆呢,也是同样的道理,根据横杆的布置间距和长度,还有数量来计算。
假设横杆间距是 1.5 米,每根长度 2 米,一共用了 200 根,那横杆的总长度就是 2×200 = 400 米。
纵杆的计算方法和横杆类似,按照实际的布置情况来算就行。
还有剪刀撑,这个稍微有点复杂。
得根据剪刀撑的布置形式和长度来算。
比如说,剪刀撑每隔 5 米设置一道,每道长度 6 米,一共设置了 50 道,那剪刀撑的总长度就是 6×50 = 300 米。
连接件的数量,就得根据立杆、横杆、纵杆之间的连接点来数啦。
我之前在一个桥梁施工现场,就碰到过计算满堂支架工程量的事儿。
那时候,天气特别热,工人们都在辛苦地干活。
我拿着图纸,在现场一点点地核对数据。
汗水不停地流,眼镜都快滑下来了。
我特别仔细地数着立杆、横杆的数量,还时不时地用尺子量量长度,就怕算错了。
回到办公室,我又根据现场的数据,认真地用公式计算,反复核对,确保工程量的准确性。
因为这工程量算错了,那可不仅仅是数字的问题,会影响到材料的采购、施工的进度,甚至整个工程的成本和质量。
总之,计算桥梁满堂支架的工程量,虽然有点繁琐,但只要咱认真仔细,按照公式一步步来,就不会出错。
这可是保证桥梁施工顺利进行的重要一步哦!。
满堂支架设计计算
满堂支架计算书一、设计依据1.《小乌高速公路改2 + 122.6互通桥工程施工图》2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-853.《公路桥涵施工技术规范》JTJ041-20044.《扣件式钢管脚手架安全技术规范》JGJ130-20015.《公路桥涵钢结构及木结构设计规范》JTJ025-866.《简明施工计算手册》二、地基容许承载力本桥实际施工已新建土模为基础,在原地面清表后采用砾类土分层填筑,分层填筑层厚不大于30cm。
要求碾压后压实度不小于95%,经检测合格后再进行下一层的填筑,填筑至砾类土顶面,然后填筑厚30cm的砾石土,以提高地基承载力。
为了增加土模表面的强度,保证地基承载力不小于12t/*浇注一层10cm 厚C30垫层。
钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。
三、箱梁砼自重荷载分布根据BK2 + 122.6互通立交桥设计图纸,上部结构为25+35x2+25m 一联现浇预应力连续箱梁。
箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽8.50 m , 顶宽13.00 m,梁高2.0m。
箱梁采用C50混凝土现浇,箱梁混凝土数量为1186.6m3。
25m 边跨梁单重为704.67t( 247.21x2.6+61.92 ); 35m 中跨梁单重为986.52t( 346.09x2.6+86.68 )。
墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。
对于空心段箱梁,箱梁顶板厚0.25m,底板厚0.22m,翼缘板前端厚0.20m,根部0.45m,翼板宽2.0m,腹板厚0.5m,根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。
四、模板、支架、枕木等自重及施工荷载本桥箱梁底模、外模均采用6=12mm厚竹胶板,芯模采用6=10mm竹胶板。
底模通过纵横向带木支撑在钢管支架顶托上,支架采用①48mmx3.5mm钢管,通过顶托调整高度。
满堂支架设计与计算
普通满堂均布钢管支架1、普通钢管采用外经48mm,壁厚3.5mm组成,底板下采用0.6米×0.6米布设,在墩柱附近底板增设0.3米×0.3米,纵桥向三排,横杆间距均为1.2米.2、横向搁木和纵向搁木的布设为0.4米×0.4米,材料采用15cm×7.5cm松木,横向摆放采用15cm(高)×7.5cm,纵向摆放采用7.5cm(高) ×15cm,横向搁木摆放在横杆上。
3、横向斜撑在底板每9排形成一个剪刀斜撑,翼板每7排形成一个剪刀斜撑,剪刀斜撑与剪刀斜撑纵向间距为5×0.6=3米,即在平面布置图中按6~16布置,纵向斜撑在底板中间搭设一道,在底板边搭设一道,即(1)(2)(5)搭设布置,翼板边各搭设一道,斜撑减半,即(3)(4)搭设布置。
4、因钢管长度不够,用2个固定卡子卡住以调整标高和拆落支架,每个卡子能承受1.3T,两个卡子为2.6T能满足施工要求。
一、地基处理1、泥浆池、沉淀池的处理将泥浆池、沉淀池内泥浆挖干净,分层每20cm夯实后,用C25砼硬化20cm厚。
2、绿岛采用C25砼硬化,厚度为20cm,布设∮8钢筋网,间距为20cm×20cm。
3、23#~30#墩、36#~39#墩原地面硬化为:先将建筑垃圾清理干净,然后用压路机充分压实,铺30cm厚石碴后,用C25砼进行硬化,硬化厚度为20cm。
支架设计计算一、扣件式满堂均布钢管支架的计算(以19#~20#为例)1、荷载分布及计算为计算简便,统一简化为均布荷载,根据设计图纸的尺寸及混凝土方量,每跨梁(24#) (23#) (19#)(20#)150 200 400 980 980 500 100 125 3440(注:本图以厘米计)N1=50934kg/m N2=29750kg/m N3=25606kg/m N4=21400kg/mN5=19643kg/m N6=21124kg/m N7=26850kg/m N8=50920kg/m(20#) (21#)(21#) (22#)(22#) (23#) 125 100 500 995×2 500 100 125(注:本图以厘米计)N1=N8=50920kg/m N2=N7=26850kg/mN3=N6=21124kg/m N4=N5=19641kg/m根据纵向支架分布图和横向支架分布图,以(2)为例进行检算,荷载分布如下图:=20702×1.25+19641×5.75=138813kgP119641kg/m(2)(3)7.0mP2=19641×7=137487kgP= P1× P2=138813+137487=276300kgP=276300/2=138150kg设计为7根ф60cm钢管桩,壁厚为0.5CM,高度为6m,每根钢管桩受力为:P3=138150/7=19736kg/根考虑到模板、工字钢重量及施工荷载影响,取1.2系数则:P4=19736×1.2=23683kg/根2、应力检算:σ压 = P4/A=23683/(302-29.522)π=254kg/cm2〈[σ]=1700kg/ cm23、失稳检算钢管桩底部与混凝土调整块用螺栓连接,因此可看成为一端固定,另一端自由受压杆件,取长度系数μ=2,惯性距I=π(D4-d4)/64=π(604-594)/64=41342cm4圆转半径r=I/A=41342/π(302-29.52)=21.04cm柔度λ=μL/=2×600/21.04=57查相关资料A3钢λP=100 λ0=61.4 λ<λ0,因此钢管桩属于短粗或小柔度杆,只需按强度问题进行检算即P0=A*σS=π(302-29.52)×1700=158806kg实际每根钢管桩的工作力为P4=23683kg<P0=158806kg。
满堂支架地基承载力计算公式
满堂支架地基承载力计算公式满堂支架地基承载力计算公式为:Q = cNc + γDfNq +
0.5γBNγNγ
其中,Q为地基承载力;c为土壤的凝聚力;Nc、Nq、Nγ为标准值系数,由土壤性质和地基布置方式等参数决定;γ为土壤的干重密度;Df为基础底部的有效宽度;B为基础的宽度;Nγ为剪力系数。
除此之外,还可以根据实际情况考虑土体的压缩变形、基础的变形和轴力等因素,进一步完善承载力计算公式,以确保工程设计的安全性和可靠性。
此外,根据地基的类型、土壤的特性和工程环境等不同情况,还会有各种专业的地基承载力计算公式和方法,需要根据具体情况进行选择和应用。
满堂支架受力计算
一、横杆和钢管架受力计算1、标准截面处受力计算(90c m ×60cm 间距处)1)荷载箱梁自重:q=ρgh=2.6×10×0.5=13.0KN/㎡(钢筋砼密度按ρ=2.6*103kg/m 3,g=10N/KG,h 为砼厚度)施工荷载和风载:10KN/㎡总荷载:Q=13.0+10=23.0KN/㎡2)顺向条木受力计算(10cm ×10cm )大横杆间距为90cm ,顺向条木间距为30cm ,故单根单跨顺向条木受力23.0×0.3=6.9KN/m按最不利因素计算即顺向条木(10cm ×10cm )以简支计算最大弯矩为:m KN ql M ⋅==69.0812max 弯曲强度:Mpa Mpa bh M W M 1114.41.069.06max 632max <=⨯===σ(落叶松木容许弯应力) 最大挠度:mm EI ql f 8.01.0)12/1(1090003849.0109.65384546434max=⨯⨯⨯⨯⨯⨯⨯==<900/400=2.2mm3)横向10cm*10cm 条木计算横向条木以5跨连续计算,即每根条木至少长3.0米,小横杆间距0.6m 。
横向条木受到集中荷载为:P=0.6×23.0×0.3=4.14KN/m最大弯矩为:弯曲强度: Mpa Mpa W M 1126.41.071.063max <=⨯==σ 最大挠度:mm EI Pl f 1.01.0)12/1(1090001006.01014.4764.1100764.146433max =⨯⨯⨯⨯⨯⨯⨯=⨯=<600/400=1.54) 支架受力模板自重:0.43KN /㎡支架顶承受重力为:23.0KN/㎡+0.43KN/㎡=23.43KN/㎡N1=0.9×0.6×23.43=12.65KN支架高度以7米计算:则支架自重:P=7×0.0384+6×0.9×0.0384=0.48KN支架最大荷载为N=12.65+0.48=13.13立杆长细比7678.151200==λ,查表得φ=0.676 [N]=KN N A 1.7171071215489676.0][==⨯⨯=σφ>N 查表得外径48mm 壁厚3.5mm 钢管在步距120mm 时,容许荷载[N]=33.1KN>N 。
现浇箱梁满堂支架计算
现浇箱梁满堂支架计算箱梁是一种常用的结构形式,广泛用于桥梁、高速公路、铁路等工程中。
现浇箱梁满堂支架是箱梁施工过程中常用的一种支撑结构,用于支撑和固定箱梁的预制和浇筑。
一、满堂支架的布置满堂支架的布置应根据箱梁的几何形状和尺寸进行合理布置。
一般情况下,满堂支架的布置应遵循以下原则:1.满堂支架的间距应根据箱梁的宽度和长度来确定,一般间距为1.5-2.0m。
2.满堂支架的布置应满足箱梁的受力和施工要求,应尽可能均匀分布,避免集中荷载。
3.满堂支架的位置应较为稳定,避免对箱梁的施工和安全造成不利影响。
二、满堂支架杆件尺寸计算满堂支架的杆件主要包括立柱、承重梁和斜杆等。
杆件的尺寸计算应根据其受力和稳定性要求进行。
1.立柱的尺寸计算:根据箱梁的荷载和支撑间距等参数,可以计算出立柱的截面尺寸和高度。
2.承重梁的尺寸计算:承重梁可以根据箱梁的荷载和悬挑长度等参数计算出截面尺寸和长度。
3.斜杆的尺寸计算:斜杆的尺寸计算要考虑箱梁的横向和纵向力,以及满堂支架的稳定性要求。
三、满堂支架杆件受力分析满堂支架的杆件在使用过程中会承受各种力的作用,包括水平力、垂直力以及弯矩等。
对于满堂支架的杆件受力分析,可以采用有限元分析方法或经验公式进行计算。
1.立柱的受力分析:立柱在使用过程中会承受箱梁的垂直和水平荷载,应根据受力情况合理选取材料和截面尺寸。
2.承重梁的受力分析:承重梁承受箱梁的悬挑力和水平力,其截面应能满足受力要求,保证安全可靠。
3.斜杆的受力分析:斜杆主要用于支撑箱梁的稳定性,在受力分析时应考虑斜杆的轴向力、剪力和弯矩等。
总结:。
满堂支架的计算算例
满堂支架的计算算例满堂支架是一种常见于建筑工程中的结构支撑形式,用于提供支撑和稳定的功能,以防止结构失稳或倒塌。
下面是一个关于满堂支架的计算算例,详细介绍了它的设计和计算过程。
1.引言满堂支架是建筑工程中常用的支撑结构,用于提供临时支撑和稳定性。
它一般由水平和竖直杆件组成,可以根据需要进行调整和安装。
本文将以一座三层建筑为例,计算满堂支架的设计和安装。
2.建筑结构参数建筑结构参数如下:-建筑高度:12米-楼层数:3层-楼板宽度:5米-楼板厚度:0.2米-楼板自重:2.5kN/m²-混凝土强度等级:C25-支撑点间距:3米3.设计计算3.1楼板荷载计算首先,计算楼板的总荷载。
根据楼板宽度和自重,得到每平米楼板的自重荷载为:自重荷载=楼板宽度×楼板厚度×楼板自重=5m×0.2m×2.5kN/m²=2.5kN总荷载=自重荷载×楼层数=2.5kN×3=7.5kN3.2满堂支架荷载计算接下来,计算满堂支架的荷载。
满堂支架承受的荷载包括楼板荷载和自重荷载。
楼板荷载=楼板宽度×楼板自重=5m×2.5kN/m²=12.5kN/m满堂支架荷载=楼板荷载×支撑点间距=12.5kN/m×3m=37.5kN3.3杆件计算根据支架荷载和结构参数,计算满堂支架杆件的尺寸和数量。
首先,计算竖直杆件的数量。
每层楼需要一根竖直杆件,所以总杆件数量为楼层数。
总竖直杆件数量=楼层数=3根其次,计算水平杆件的数量。
每层楼需要两根水平杆件,所以总杆件数量为楼层数的两倍。
总水平杆件数量=楼层数×2=3根×2=6根然后,计算杆件截面面积。
假设杆件材料为Q235钢,使用方管作为杆件。
方管的截面面积可根据设计要求和安全系数确定。
最后,根据杆件截面面积和长度计算杆件的弯曲强度。
通常,设计时需要考虑杆件的弯曲强度和稳定性。
大桥满堂支架设计计算
××大桥满堂支架设计计算满堂支架设计及预拱度设置计算1. 脚手架稳定性计算:本计算以53#-57#墩左幅箱梁为例,对满堂支架结构的稳定性和安全性进行了验算。
为了便于施工,初拟支架横距0.6m,纵距0.9m,步距1.2m,并在管架间布置剪刀撑。
1) 荷载计算:I. 箱梁自重:G=P/S= r×s×1/S=25×10.50667×1/12..225=21.486 KN/m2由于西互通箱梁不规则,故本计算取一个标准横断面,计算其横截面积s,按荷载全部集中在箱梁底板面积上计算,砼容重按25KN/m3计算。
s——箱梁纵向1米的底板面积(m2)。
II. 支架配件自重:0.3 KN/m2III. 满堂支架上木模及连杆自重:0.75 KN/m22) 活荷载计算:I. 结构脚手架均布活荷载标准值(施工荷载): 3 KN/m2II. 水平风荷载:Wk=0.7µzµsW0=0.294 KN/m2式中 Wk——风荷载标准值(KN/m2);µz——风压高度变化系数,按现行国家标准《建筑结构荷载规范》(GBJ9)规定采用;µs——脚手架风荷载体形系数,按《建筑施工扣件式钢管脚手架安全技术规范(JGJ130-2001)取值;µs本计算中取1.0;W0——基本风压(KN/m2),按现行国家标准《建筑结构荷载规范》(GBJ9)规定采用;W0本计算中取4.0。
为了简化计算,脚手架每排立杆承受的结构自重标准值采用该排立杆内,外立杆的平均值。
3) 荷载组合:I. 模板支架立杆的轴向力设计值N,应按下列公式计算:按不组合风荷载情况计算:N=1.2∑NGk+1.4∑NQk=1.2×(21.486+0.3+0.75)+1.4×3=31.24KN/m2∑NQk——模板及支架自重、新浇混凝土自重与钢筋自重标准值产生的轴向力总和;∑NGk——施工人员及施工设备荷载标准值、振捣混凝土时产生的荷载标准值产生的轴向力总和。
满堂支架计算
渡槽兼人行天桥满堂支架计算一、计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)某市工程建设规范《钢管扣件水平模板的支撑系统安全技术规程》(DG/TJ08-016-2004)二、满堂支架设计方案该下穿分离式中桥底宽5米,顶宽8.5米,长50米,采用现浇砼施工法。
底板5米范围内按100×85cm(纵向×横向)布置立杆,靠近门洞2米范围内按50×85cm布置立杆;2米范围外按1米横距设置立杆作为施工脚手架,大横杆步距按1.2米设置,中间留4m×4.5m(长×高)的门洞,门洞上方按50×50m布置立杆,并在两侧面及门洞上方均布设置连续剪刀撑。
钢管基脚采用50×70cm的砼预制块。
(具体详见支架布置图附后)三、支架力学验算综合考虑该桥箱梁的结构形式,按箱梁断面1.5米计算,则断面面积为5×1.5-0.7×1.5×2=5.1㎡,长度取1.0 m。
对该位置进行支架检算:1、支架断面取7根钢管受力计算钢筋砼重量以25KN/m3 计每延米砼重量为:5.1×1×25=127.5(KN)则单根钢管承载力为:q1=127.5KN/7=18.214(KN/根)2、底模及内模构造荷载取6KN/ ㎡,则单根钢管承受模板荷载为:q2=6×5.1/7=4.371KN/根3、扣件式钢管支架自重(按6m 高度计算)a、立杆自重(采用Ф48×3.5mm 钢管单位重量为3.84kg/m)q31=0.0384KN/m×6m=0.23(KN/根)c、大横杆自重q32=0.0384KN/m×8×1=0.307(KN/根)d、小横杆自重q33=0.0384KN/m×8×0.85=0.261KN/根)d、扣件自重直角扣件: q34=0.0132KN/m×(8×2)个=0.211 (KN/根)所以扣件式钢管支架自重: q3= q31+ q32+ q33+ q34=0.23+0.307+0.261+0.211=1.009(KN/根)4、施工活荷载(参照规范4.2.2 表中结构脚手架施工均布活荷载标准值,以3KN/㎡计,基于安全考虑,取5KN/ ㎡),则单根钢管施工荷载为:q4=5KN/ ㎡×5.1/7=3.643KN/根5、单根钢管设计轴向力施工恒载:NGK=q1+ q2+q3+q4= 18.214+4.371+1.009+3.643=27.237KN/根动载系数取1.2,则轴向力:N=27.237×1.2=32.684(KN/根)6、钢管支架的稳定性检算单根钢管截面面积:A=489.3mm2;回转半径:i=1.58cm由于λ=ι0/i=(h+2a)/i=(120+2×30)/1.58=113.9查得φ=0.489N/(φ×A)= 25752 /(0.489×489.3)=107.6MPa≤205Mpa(Q235 钢管容许应力为205Mpa)根据以上计算可知,钢管立杆的稳定性符合要求,安全系数205/107.6=1.9满足要求(计算时忽略剪刀撑自身重量)7、基底受力分析钢管基脚为50cm×70cm的砼垫块,则基底应力为:σ=32.684×1000/(0.5×0.7)=93.384KPa<[σ0]本段路基土质为一般粘性土,[σ0]取中值240KPa。
满堂支架简易验算
验算过程中仅对段进行验算,对于进单独验算以计算是否满足要求。
大小横杆均按照70cm*70cm计算,所以单位面积内砼、模板自重、施工人员荷载及其砼倾倒时所产生的荷载为:q=0.4*26*0.7+2*2*0.7=10.08KN/m1、小横杆件验算σ=qL12/10*4.49*103=10.08*700*700/(10*4.49*103)=110.004Mpa<215 Mpa满足杆件要求。
f =ql4/150*2.1*105*1.215*105=10.08*7004/(150*2.1*105*1.215*105)=0.632mm<3 mm满足杆件要求。
2、大横杆验算按照三跨连续计算,大横杆件的荷载全部由小横杆传递而来。
所以大横杆所受到的集中力为:7.056 KN。
a、刚度计算:σ=0.26*F*L2/4.493*103=0.26*7.056*0.7*106/(5.078*103)=252.89 Mp a>250 Mp a不满足杆件要求,需要调整间距。
b、扰度计算:f =1.883*F L22/100*2.1*105*1.215*105=1.883*7.056*7002/100*2.1*105*1.215*105=0.002mm<3mm满足杆件的需要。
3、立杆计算立杆所承受的荷载由大横杆传递而来,所以立杆所要承受的荷载为7.056KN。
步距为1m,长细比为λ=h/i=1/1.58=63.291,φ=0.772;立杆容许荷载:N=0.772*489*215=81.16KN>35.7KN满足杆件要求。
4、扣件抗滑验算扣件所要抵抗的荷载来自于立杆和横杆所以:R=7.056KN<8.5KN;满足扣件要求。
5、地基承载力验算地基所要承受的全部荷载由立杆传递7.056/(0.5*0.7)=21.45。
满堂支架受力计算
满堂支架受力计算满堂支架受力计算满堂支架受力计算柏公坑分离立交桥为左、右幅分离式连续箱梁构造,全桥箱梁长137m,由于地形复杂,每跨高度不同,本方案按最高一跨进行计算:H=13m。
一. 上部结构核载1. 新浇砼的重量:2.804t/m22. 模板.支架重量: 0.06t/m23. 钢筋的重量: 0.381t/m24. 施工荷载: 0.35t/m25. 振捣时的核载: 0.28t/m26. 倾倒砼时的荷载: 0.35t/m2则: 1+2+3+4}+5+6=2.804+0.06+0.381+0.35+0.28+0.35=4.162t/m2钢材轴向容许应力: 【σ】=140Mpa受压构件容许长细比:【λ】=200二.钢管的布置、受力计算柏公坑分离立交桥拟采用Φ42mm,壁厚3mm的无缝钢管进行满堂支架立设,并用钢管卡进行联接。
通过上面计算,上部结构核载按4.162t/m2计,钢管间距0.6×0.6m间隔布置,则每区格面积:A1=0.6×0.6=0.36m2每根立杆承受核载Q:Q=0.36×4.162=1.498t竖向每隔h=1m,设纵横向钢管,则钢管回转半径为:i=hµ/【λ】=1000×0.65/140=4.64mm根据i≈0.35d,得出d=i/0.35,则d=4.64/0.35=13.2mm,则选Φ42mm钢管可。
Φ42mm,壁厚3mm的钢管受力面积为:A2=π(42/2)2-π((42-3×2)÷2)2=π(212-182)=367mm则坚向钢管支柱受力为:σ=Q/A2=1.498T/367mm2=1.498×103×10N/367×10-6m2=4.08×107Pa=40.8MPa=140Mpa应变为:ε=σ/E=40.8×106/210×109=1.94×10-4长度改变 L=εh (注h=13m)=1.94×10-4×13000=2.52mm做为预留量,提高模板标高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中交二航局硚孝高速第QXTJ-6标
标准跨径现浇砼箱梁支架结构计算书
编制
审核
中交第二航务工程局
2010年7月
标准跨径(20m)砼箱梁现浇支架结构设计和计算书
一、设计与验算条件
1、设计与验算假定及原则
为简化计算,对于连续结构按简支结构计算,这样偏于安全;其结构形式及构件型号选用宜结合现场条件尽量采用原有,即可周转和便于采购,租赁以及便于运输的材料;施工简单和便于装拆,节省费用,加快施工进度,确保交通,施工安全及施工质量。
2、设计与验算依据
(1)硚口至孝感高速第QXTJ-06合同段设计说明及相关施工图;
(2)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001);
(3)公路桥涵技术规范(JTJ041—2000);
(4)路桥施工计算手册;
3、工程概况
武汉硚口至孝感高速公路时武汉城市圈中武汉(汉口中心城区)至孝感(孝南区)的快速通道,是武汉城市圈实施交通一体化建设的重要组成部分,同时也是武汉市西北方向环线公路之间的一条快速联络通道,沿线经过武汉市下辖的硚口区、东西湖区以及孝感市下辖的孝南区。
第QXTJ-6合同段位于位于武汉市东西湖区的东山农场灯塔大队和胜利大队范围内,为上跨京港澳高速的一个互通(灯塔互通)。
主线全长
2.393km(K20+107-K22+500)、其中路基只有24米,主线宽26米。
主线通过
A、B、C、D、E、F6条匝道桥与京港澳高速互通,匝道总长4.618Km,其中桥梁长度3.008Km、路基长度1.61Km,宽8.5米。
4、桥型及结构特点
全桥分主线桥、A 、B 、C 、D 、E 和F 六条匝道桥。
本项目共有现浇箱梁365孔。
箱梁顶宽8.5m-15.54m ,有单室、双室、三室和四室。
高度为1.4m 。
为非预应力连续箱梁,3跨-6跨为一联。
本项目跨越5口鱼塘,一条灌溉渠,10条水沟,其余均为旱地,因此本项目所有旱地均采用满堂脚手架作为临时支撑,鱼塘、沟渠、跨路处采用少支架。
二、现浇箱梁满堂支架设计与验算
由于本工程现浇箱梁跨径不一,但以20m 跨径居多,所以采用20m 跨径、宽12.75m 、梁高为1.4m 、净空为10m 的箱梁为标准跨径箱梁进行计算。
采用φ48轮扣式满堂支架搭设,底模、侧模采用竹胶合板、钢模组合模板。
经验算满堂支架脚手管的布置型式为:
①箱梁底板下脚手管横桥向布距:箱梁腹板位置为0.6m ,底板及翼缘板区为0.9~1.2m ,层间0.9m 。
每根立杆顶端设60cm 顶托,在其上横向铺设I10横向分配梁,箱梁底模面板采用竹胶合板mm 12=δ,纵向次肋为10×10cm 硬杂枋木,箱梁下布置间距均为@=30cm 。
外侧模及翼缘底模为面板δ=12mm ;横纵梁均为10×10木枋,横向间距300mm ,顺桥向间距100mm ;内模为δ=12mm 竹胶合板加10×10木枋纵横向主次肋。
②脚手管纵桥向排距为60cm 。
具体布置见图一。
③同时支架横向采用φ80×3.5mm 普通脚手管设置剪刀撑,以增加支架整体稳定性,剪刀撑均上、下到底。
组合钢模定型钢模
[6.3槽钢
[10槽钢
脚手架可调节支承
[10槽钢
满堂式脚手架支撑
[8底托
δ6木板
图一满堂支架设计布置图
(一)荷载计算
1.现浇箱梁自重所产生的荷载:
①砼按2400kg/m3计算,则砼自重为:
178.8×2400×9.8=4205.376KN
②钢筋自重为:钢筋总质量为51029.45kg
51029.45×9.8=500.0886KN
③现浇箱梁自重为:4205.376+500.0886=4705.465KN
④箱梁自重每m2所产生的荷载P1为:
4705.465÷(20×12.75)=18.4528Kpa
2.模板体系荷载按规范规定: P2=0.75Kpa
3.砼施工倾倒荷载按规范规定: P3=
4.0Kpa
4.砼施工振捣荷载按规范规定:P4=2.0Kpa
5.施工机具人员荷载按规范规定:P5=2.5Kpa
(二)支架强度和稳定性验算
1.强度计算
即Sd(rgG;rqΣQ)=1.2SG+1.4SQ’
式中SQ’:基本可变荷载产生的力学效应
SG:永久荷载中结构重力产生的效应
Sd:荷载效应函数
rg:永久荷载结构重力的安全系数
rq:基本可变荷载的安全系数
强度满足的条件为:Sd(rgG;rqΣQ)≤rbRd
式中rb:结构工作条件系数
Rd:结构抗力系数
对于钢管支架为σ=N/An≤f
式中N:轴心压力设计值(N)
An:钢管净截面积㎜2
ΣG=(P1+P2)×0.9×0.9
=(18.4528+0.75)×0.9×0.9=15.554KN
ΣQ=(P3+P4+P5)×0.9×0.9
=(4.0+2.0+2.5)×0.9×0.9=6.885KN
q=1.2SG+1.4SQ’=1.2×15.554+1.4×6.885=28.304kN
已知钢管φ48×3.5,I=2.06×105㎜4,A=489.303㎜2。
σ=N/An=28.304×1000/489.303=57.846(N/mm2)≤f=205(N/㎜2 )
强度符合要求。
2.稳定性计算
已知采用φ48×3.5,i=1.58㎝,长度附加系数值取1.155,钢管的步距为1.2m。
则
L0=1.55×1.2=1.86m
λ=1.86×100/1.58=117.722
轴心受压构件的稳定系数ψ=0.320
N/(ψA)=σ/ψ=57.846/0.320=180.769(N/mm2)≤f=205(N/㎜2)
稳定性符合要求。
(三)底模强度计算
1.竹胶板强度计算:(纵向方木间距为:0.1m)
面板抗弯界面系数为:W=bh2/6=1.2×0.012/6=2×10-5m3
b-板宽,h-厚度
惯性矩:I= bh3/12=1.2×0.013/12=1×10-7m4
板跨中弯矩M=qL2/8=28.304×0.12/8=0.0426KN•m
(q=1.2SG+1.4SQ=28.304KN)
抗拉应力为:σ=M/W=0.0426/2×10-5=2.13MPa<60MPa
故符合要求。
2.模板挠度计算
Fmax=5qL4/384EI=5×28.304×0.14/(384×7.0×105×1.3×10-7)
=0.004m <0.006m(L0/300=0.0067)
(q=1.2SG+1.4SQ=28.304KN)
能满足施工要求。
(四)地基承载力计算
支架底座规格为:10cm×10cm,则每个支架方格底座与地基的接触面积为:
100×100×2=20000 mm2
p=q/s=28.304×1000/20000=1.4152(N/㎜2)
地基承载力要求不小于1.42(N/mm2),现场地基将支架范围内的泥浆池进行换填,原土碾压后在其上铺一层30cm厚的道渣石,最后铺一层10cm厚的砂找平,然后垫一块4cm厚的杂木板,故能满足施工要求。